李孝坤,劉抒影,劉忻
釹鐵硼化學(xué)鍍防護(hù)及在模擬海洋大氣環(huán)境中的腐蝕行為
李孝坤1,2*,劉抒影1,2,劉忻3
(1.黃河水利職業(yè)技術(shù)學(xué)院,河南 開封 475004; 2.河南省綠色涂層材料工程技術(shù)研究中心,河南 開封 475004; 3.蘇州科技大學(xué),江蘇 蘇州 215009)
采用化學(xué)鍍方法在釹鐵硼表面分別制備Ni-P合金鍍層、Ni-Mo-P合金鍍層、Ni-P/PTFE復(fù)合鍍層和Ni-Mo-P/PTFE復(fù)合鍍層,并研究了不同化學(xué)鍍層在模擬海洋大氣環(huán)境中的腐蝕行為。結(jié)果表明:Ni-P合金鍍層、Ni-Mo-P合金鍍層、Ni-P/PTFE復(fù)合鍍層和Ni-Mo-P/PTFE復(fù)合鍍層都完整覆蓋釹鐵硼表面,它們的粗糙度差別不大,在模擬海洋大氣環(huán)境中的腐蝕失重都低于釹鐵硼的腐蝕失重,容抗弧半徑增大且電荷轉(zhuǎn)移電阻有不同程度的提高。與Ni-P合金鍍層和Ni-Mo-P合金鍍層相比,Ni-P/PTFE復(fù)合鍍層和Ni-Mo-P/PTFE復(fù)合鍍層具有優(yōu)良的耐腐蝕性能,原因在于PTFE顆粒較均勻的沉積在鍍層表面增加一道屏蔽層,也起到阻礙腐蝕介質(zhì)滲透腐蝕的作用。尤其是Ni-Mo-P/PTFE復(fù)合鍍層,其表面更致密,PTFE顆粒沉積更均勻,能更有效延緩腐蝕介質(zhì)與釹鐵硼接觸,顯著提高釹鐵硼在模擬海洋大氣環(huán)境中的耐腐蝕性能。
化學(xué)鍍層;釹鐵硼;腐蝕行為;模擬海洋大氣環(huán)境
釹鐵硼由于多相結(jié)構(gòu)及各相特性存在差異,其耐腐蝕性能差,限制了進(jìn)一步應(yīng)用[1-2]。通過表面防護(hù)處理可以在不降低釹鐵硼磁性能的前提下有效提高其耐腐蝕性能,因此受到越來越多的關(guān)注。目前,電沉積[3]、化學(xué)鍍[4]、磷化[5]、真空離子鍍[6]和涂覆[7]等方法都適用于釹鐵硼表面防護(hù)處理。與電沉積、真空離子鍍和涂覆等方法相比,化學(xué)鍍具有操作簡單、鍍層厚度均勻且耐腐蝕性能優(yōu)異等優(yōu)點(diǎn),在釹鐵硼表面防護(hù)處理中更具應(yīng)用潛力。
目前,釹鐵硼化學(xué)鍍多元合金鍍層(如Ni-P合金鍍層、Ni-Co-P合金鍍層、Ni-Cu-P合金鍍層)及復(fù)合鍍層(如Ni-P/TiO2復(fù)合鍍層、Ni-P-W/Al2O3復(fù)合鍍層)進(jìn)行表面防護(hù)處理都有報(bào)道[8-12],但針對(duì)多元合金鍍層與復(fù)合鍍層的耐腐蝕性能比較卻鮮見報(bào)道。從提高釹鐵硼耐腐蝕性能的角度考慮,篩選耐腐蝕性能優(yōu)異的化學(xué)鍍層顯得尤為重要。聚四氟乙烯顆粒(Poly tetra fluoroethylene,簡寫為PTFE)是一種高分子聚合物顆粒,將其分散到鍍液中可制備出復(fù)合鍍層。
因此,筆者采用化學(xué)鍍方法在釹鐵硼表面分別制備Ni-P合金鍍層、Ni-Mo-P合金鍍層、Ni-P/PTFE復(fù)合鍍層和Ni-Mo-P/PTFE復(fù)合鍍層,并研究不同化學(xué)鍍層在模擬海洋大氣環(huán)境中的腐蝕行為,旨在篩選耐腐蝕性能優(yōu)異的化學(xué)鍍層,用于在模擬海洋大氣環(huán)境中使用的釹鐵硼表面腐蝕防護(hù)。
選取20 mm×10 mm×3 mm的釹鐵硼作實(shí)驗(yàn)基材,依次進(jìn)行打磨、除油、酸洗活化、清洗和干燥處理。除油液成分及工藝條件為:氫氧化鈉10 g/L、碳酸鈉45 g/L、OP-10乳化劑1 mL/L,60 ℃浸泡6 min。酸洗活化先采用體積分?jǐn)?shù)10%的鹽酸溶液,然后采用2 g/L磺基水楊酸和1.5 g/L氟化氫銨的混合溶液。
處理后的釹鐵硼浸入預(yù)熱至設(shè)定溫度的鍍液中,鍍液配方和工藝條件見表1。采用化學(xué)鍍方法分別制備Ni-P合金鍍層、Ni-Mo-P合金鍍層、Ni-P/PTFE復(fù)合鍍層、Ni-Mo-P/PTFE復(fù)合鍍層。根據(jù)前期實(shí)驗(yàn)得到的沉積速率經(jīng)驗(yàn)值,分別設(shè)定化學(xué)鍍時(shí)間,保證Ni-P合金鍍層、Ni-Mo-P合金鍍層、Ni-P/PTFE復(fù)合鍍層、Ni-Mo-P/PTFE復(fù)合鍍層的厚度都為10 μm左右。實(shí)驗(yàn)結(jié)束后用去離子水沖洗,吹干后進(jìn)行表征與測(cè)試。
表1鍍液配方和工藝條件
Tab.1 Plating solution formula and process conditions
表面形貌:采用Quanta FEG450型掃描電子顯微鏡表征釹鐵硼和不同化學(xué)鍍層的表面形貌,同時(shí)用配備的能譜儀分析釹鐵硼和不同化學(xué)鍍層的元素組成。
粗糙度:采用SJ-210型粗糙度儀測(cè)量釹鐵硼和不同化學(xué)鍍層的粗糙度,為盡可能降低測(cè)量誤差,每個(gè)樣品表面都測(cè)量3次,結(jié)果取平均值。
腐蝕行為:參照GB/T 10125—2012,在YWX-60型鹽霧箱中模擬海洋大氣環(huán)境:濕度>95%,溫度35 ℃。借助于噴霧裝置將pH值6.5~7.2、質(zhì)量分?jǐn)?shù)5%的氯化鈉溶液沉降到樣品表面,48 h后取出樣品,清理腐蝕產(chǎn)物隨即干燥,采用失重法計(jì)算釹鐵硼和不同化學(xué)鍍層的腐蝕速率(見公式(1)),同時(shí)采用掃描電子顯微鏡表征釹鐵硼和不同化學(xué)鍍層腐蝕后的表面形貌。
式中:corr為腐蝕速率,mg/(cm2·h);?為樣品腐蝕前后質(zhì)量的差值,mg;為樣品表面積,cm2;為腐蝕時(shí)間,h。
另外,為進(jìn)一步評(píng)價(jià)釹鐵硼和不同化學(xué)鍍層的腐蝕行為,采用Autolab型電化學(xué)工作站進(jìn)行電化學(xué)阻抗譜測(cè)試。標(biāo)準(zhǔn)三電極體系由工作電極(樣品)、參比電極(飽和甘汞電極)和輔助電極(鉑電極)組成,腐蝕介質(zhì)為質(zhì)量分?jǐn)?shù)3.5%的氯化鈉溶液,測(cè)試頻率范圍10-2~105Hz。
釹鐵硼和不同化學(xué)鍍層的表面形貌如圖1所示。由圖1可知,Ni-P合金鍍層、Ni-Mo-P合金鍍層、Ni-P/PTFE復(fù)合鍍層和Ni-Mo-P/PTFE復(fù)合鍍層表面都較均勻致密,并且都完整覆蓋釹鐵硼表面。但不同于Ni-P合金鍍層和Ni-Mo-P合金鍍層,Ni-P/PTFE復(fù)合鍍層和Ni-Mo-P/PTFE復(fù)合鍍層表面都較均勻的沉積了PTFE顆粒,覆蓋了孔洞等缺陷。
(a) 釹鐵硼(b) Ni-P合金鍍層 (c) Ni-Mo-P合金鍍層(d) Ni-P/PTFE復(fù)合鍍層 (e) Ni-Mo-P/PTFE復(fù)合鍍層
釹鐵硼和不同化學(xué)鍍層的粗糙度測(cè)量結(jié)果如表2所示。一般來說,粗糙度反映材料表面平整性,粗糙度越低,意味著表面平整性越好。由表2可知,Ni-P合金鍍層、Ni-Mo-P合金鍍層、Ni-P/PTFE復(fù)合鍍層和Ni-Mo-P/PTFE復(fù)合鍍層的粗糙度分別為0.388、0.383、0.391和0.388 μm,都低于釹鐵硼的粗糙度2.374 μm,說明不同化學(xué)鍍層的平整性較好,并且它們的粗糙度差別不大。
表2釹鐵硼和不同化學(xué)鍍層的粗糙度測(cè)量結(jié)果
Tab.2 Measurement results of roughness of NdFeB and different electroless coatings
釹鐵硼主要由Fe、Nd和B等元素組成,其中Fe元素的質(zhì)量分?jǐn)?shù)最高,約為64%~68%,B元素的質(zhì)量分?jǐn)?shù)最低,僅為1%左右。表3示出不同化學(xué)鍍層的元素組成,在Ni-P/PTFE復(fù)合鍍層和Ni-Mo-P/PTFE復(fù)合鍍層表面都探測(cè)到F元素,說明PTFE顆粒伴隨著化學(xué)鍍過程進(jìn)入鍍層中,證實(shí)了沉積在Ni-P/PTFE復(fù)合鍍層和Ni-Mo-P/PTFE復(fù)合鍍層表面的細(xì)小顆粒是PTFE顆粒。另外,在不同化學(xué)鍍層表面都探測(cè)到C元素,其中Ni-P合金鍍層和Ni-Mo-P合金鍍層是被碳污染所致,而Ni-P/PTFE復(fù)合鍍層和Ni-Mo-P復(fù)合鍍層一方面是被碳污染,一方面是由于PTFE顆粒沉積在表面,部分C元素來源于PTFE顆粒。排除碳污染的影響,可知Ni-P合金鍍層由Ni和P兩種元素組成,Ni-Mo-P合金鍍層由Ni、Mo和P三種元素組成,Ni-P/PTFE由Ni、P、C和F不同元素組成,Ni-Mo-P/PTFE復(fù)合鍍層由Ni、Mo、P、C和F五種元素組成。
表3不同化學(xué)鍍層的元素組成
Tab.3 Composition of different electroless coatings
2.3.1腐蝕失重
釹鐵硼和不同化學(xué)鍍層的腐蝕失重如圖2所示。由圖2可知,Ni-P合金鍍層、Ni-Mo-P合金鍍層、Ni-P/PTFE復(fù)合鍍層和Ni-Mo-P/PTFE復(fù)合鍍層的腐蝕失重都低于釹鐵硼的腐蝕失重,說明不同化學(xué)鍍層能有效提高釹鐵硼在模擬海洋大氣環(huán)境中的耐腐蝕性能。對(duì)于釹鐵硼,由于其組織結(jié)構(gòu)疏松,在模擬海洋大氣環(huán)境中容易發(fā)生晶間腐蝕,所以腐蝕失重較高。而不同化學(xué)鍍層完整覆蓋在釹鐵硼表面形成較致密的屏蔽層,有效延緩了腐蝕介質(zhì)與釹鐵硼接觸,起到良好的保護(hù)作用,使腐蝕失重降低。
由圖2還可知,Ni-P/PTFE復(fù)合鍍層、Ni-Mo-P/PTFE復(fù)合鍍層的腐蝕失重都低于Ni-P合金鍍層和Ni-Mo-P合金鍍層的腐蝕失重,且Ni-Mo-P/PTFE復(fù)合鍍層的腐蝕失重最低。這是由于Ni-P/PTFE復(fù)合鍍層和Ni-Mo-P/PTFE復(fù)合鍍層表面都較均勻的沉積PTFE顆粒,由于PTFE具有全碳氟結(jié)構(gòu),非常穩(wěn)定[13-14],一般的化學(xué)反應(yīng)或電化學(xué)反應(yīng)很難將C-F鍵破壞,所以PTFE顆粒較均勻的沉積在鍍層表面相當(dāng)于增加一道屏蔽層,更有效延緩了腐蝕介質(zhì)與釹鐵硼接觸,使腐蝕失重進(jìn)一步降低。Ni-Mo-P/PTFE復(fù)合鍍層表面更致密,PTFE顆粒沉積更均勻,所以其腐蝕失重與Ni-P/PTFE復(fù)合鍍層相比更低。
圖2 釹鐵硼和不同化學(xué)鍍層的腐蝕失重
2.3.2腐蝕形貌
釹鐵硼和不同化學(xué)鍍層的腐蝕形貌如圖3所示。由圖3看出,釹鐵硼腐蝕后組織結(jié)構(gòu)更疏松,發(fā)生了明顯的晶間腐蝕。Ni-P合金鍍層和Ni-Mo-P合金鍍層腐蝕后表面的孔洞增大且數(shù)量增多,說明都發(fā)生了點(diǎn)蝕,但腐蝕破壞程度與釹鐵硼相比較輕。Ni-P/PTFE復(fù)合鍍層和Ni-Mo-P/PTFE復(fù)合鍍層腐蝕后表面仍然較致密,未出現(xiàn)較大的孔洞,證實(shí)了PTFE顆粒較均勻沉積在鍍層表面能有效的阻隔腐蝕介質(zhì)抑制其滲透腐蝕,從而使Ni-P/PTFE復(fù)合鍍層和Ni-Mo-P/PTFE復(fù)合鍍層具有優(yōu)良的耐腐蝕性能。
(a) 釹鐵硼(b) Ni-P合金鍍層 (c) Ni-Mo-P合金鍍層(d) Ni-P/PTFE復(fù)合鍍層 (e) Ni-Mo-P/PTFE復(fù)合鍍層
2.3.3電化學(xué)阻抗譜
釹鐵硼和不同化學(xué)鍍層的電化學(xué)阻抗譜如圖4所示。由圖4可知,釹鐵硼和不同化學(xué)鍍層都呈現(xiàn)單一容抗弧特征,容抗弧半徑由大到小排序?yàn)椋篘i-Mo-P/PTFE復(fù)合鍍層、Ni-P/PTFE復(fù)合鍍層、Ni-Mo-P合金鍍層、Ni-P合金鍍層、釹鐵硼。通常情況下,容抗弧半徑被用來評(píng)價(jià)材料的耐腐蝕性能[15-16],即容抗弧半徑越大,材料表面阻礙腐蝕性離子擴(kuò)散的能力越強(qiáng),其耐腐蝕性能越好。Ni-Mo-P/PTFE復(fù)合鍍層的容抗弧半徑最大,反映出其耐腐蝕性能最好,然后依次為Ni-P/PTFE復(fù)合鍍層、Ni-Mo-P合金鍍層、Ni-P合金鍍層。
圖4 釹鐵硼和不同化學(xué)鍍層的電化學(xué)阻抗譜
采用圖5所示的等效電路對(duì)電化學(xué)阻抗譜進(jìn)行擬合,得到釹鐵硼、Ni-P合金鍍層、Ni-Mo-P合金鍍層、Ni-P/PTFE復(fù)合鍍層以及Ni-Mo-P/PTFE復(fù)合鍍層的電荷轉(zhuǎn)移電阻分別為1125.2、4587.3、5322.4、6538.2和6802.8 Ω·cm2。film表示化學(xué)鍍層電容,film表示化學(xué)鍍層電阻,sol表示溶液電阻,dl表示化學(xué)鍍層/釹鐵硼界面處的雙電層電容,ct表示電荷轉(zhuǎn)移電阻。通常情況下,電荷轉(zhuǎn)移電阻表征基體與鍍層間的電荷轉(zhuǎn)移速率,也能反映鍍層的耐腐蝕性能。Ni-P/PTFE復(fù)合鍍層和Ni-Mo-P/PTFE復(fù)合鍍層的電荷轉(zhuǎn)移電阻相對(duì)較高,說明它們能更有效的延緩腐蝕介質(zhì)與釹鐵硼接觸,同時(shí)阻礙界面間發(fā)生氧化還原反應(yīng),從而表現(xiàn)出良好的耐腐蝕性能,優(yōu)于Ni-P合金鍍層和Ni-Mo-P合金鍍層。尤其是Ni-Mo-P/PTFE復(fù)合鍍層,耐腐蝕性能最好。此結(jié)果與模擬海洋大氣環(huán)境中的腐蝕實(shí)驗(yàn)結(jié)果一致。
圖5 等效電路
(1)采用化學(xué)鍍方法制備的Ni-P合金鍍層、Ni-Mo-P合金鍍層、Ni-P/PTFE復(fù)合鍍層和Ni-Mo-P/PTFE復(fù)合鍍層都較均勻致密,完整覆蓋在釹鐵硼表面有效延緩了腐蝕介質(zhì)與釹鐵硼接觸,都能提高釹鐵硼在模擬海洋大氣環(huán)境中的耐腐蝕性能。
(2)Ni-P/PTFE復(fù)合鍍層和Ni-Mo-P/PTFE復(fù)合鍍層具有優(yōu)良的耐腐蝕性能,優(yōu)于Ni-P合金鍍層和Ni-Mo-P合金鍍層,原因在于PTFE顆粒較均勻的沉積在鍍層表面增加一道屏蔽層,也起到阻礙腐蝕介質(zhì)滲透腐蝕的作用。尤其是Ni-Mo-P/PTFE復(fù)合鍍層,表面更致密,PTFE顆粒沉積更均勻,能顯著提高釹鐵硼在模擬海洋大氣環(huán)境中的耐腐蝕性能。
[1] 莊晨. 釹鐵硼永磁材料在CuCl-EMIC離子液體中電沉積銅層的研究[D]. 杭州: 浙江大學(xué), 2019.
[2] 鄧文宇, 王朋陽, 齊麗君, 等. 釹鐵硼永磁材料腐蝕機(jī)理及防護(hù)研究進(jìn)展[J]. 真空, 2020, 57(5): 45-51.
Deng W Y, Wang P Y, Qi L J, et al. Research progress on corrosion mechanism and protection of NdFeB permanent magnet materials[J]. Vacuum, 2020, 57(5): 45-51 (in Chinese).
[3] Tan C, Li Q, She Z, et al. Preparation of Ni-Co alloy coating on sintered NdFeB magnet by potentiodynamic electrodeposition[J]. Materials Science and Technology, 2016, 32(5): 446-453.
[4] 宋玉, 黃濤, 陳小平, 等. 水合肼體系化學(xué)鍍鎳時(shí)間對(duì)釹鐵硼電鍍/化學(xué)鍍鎳層耐蝕性的影響[J]. 電鍍與涂飾, 2020, 39(13): 817-822.
Song Y, Huang T, Chen X P, et al. Effect of electroless plating time in a bath with hydrazine hydrate as reductant on corrosion resistance of electroplated/electroless plated bilayered nickel coating on neodymium-iron-boron permanent magnet[J]. Electroplating & Finishing, 2020, 39(13): 817-822 (in Chinese).
[5] Chen J, Yang H Y, Xu G Q, et al. Phosphating passivation of vacuum evaporated Al/NdFeB magnets boosting high anti-corrosion performances[J]. Surface and Coatings Technology, 2020(399): 126115.
[6] 段永利, 鄧文宇, 齊麗君, 等. 金屬Tb晶界擴(kuò)散對(duì)燒結(jié)釹鐵硼磁性和耐溫性的影響[J]. 真空, 2018, 55(6): 76-79.
Duan Y L, Deng W Y, Qi L J, et al. Influence of Tb grain boundary diffusion on the magnetic performance and heat resistance of sintered NdFeB magnet[J]. Vacuum, 2018, 55(6): 76-79 (in Chinese).
[7] Iacovacci V, Naselli I, Salgarella A R, et al. Stability and in vivo safety of gold, titanium nitride and parylene C coatings on NdFeB magnets implanted in muscles towards a new generation of myokinetic prosthetic limbs[J]. RSC Advances, 2021, 11(12): 6766-6775.
[8] 孫臣, 張偉, 嚴(yán)川偉. 前處理對(duì)燒結(jié)釹鐵硼化學(xué)鍍鎳結(jié)合力的影響[J]. 腐蝕科學(xué)與防護(hù)技術(shù), 2009, 21(2): 212-215.
Sun C, Zhang W, Yan C W. Effect of pretreatment on adhesion of electroless plated Ni-P coatings on sintered NdFeB permanent magnet[J]. Corrosion Science and Protection Technology, 2009, 21(2): 212-215 (in Chinese).
[9] Ma T Ym Ying H G, Yan M. Electroless Ni-Co-P coatings on sintered Nd-Fe-B magnets with improved corrosion resistance[J]. Advanced Materials Research, 2009(75): 53-56.
[10] 王勇, 張祖軍. 釹鐵硼磁體表面化學(xué)鍍 Ni-Cu-P合金工藝及性能研究[J]. 機(jī)械工程與自動(dòng)化, 2013(3): 88-91.
Wang Y, Zhang Z J. Process and performance study on electroless plating Ni-Cu-P alloy on Nd-Fe-B magnet[J]. Mechanical Engineering & Automation, 2013(3): 88-91 (in Chinese).
[11] Song L Z, Yang Z Y. Corrosion resistance of sintered NdFeB permanent magnet with Ni-P/TiO2composite film[J]. Journal of Iron and Steel Research International, 2009, 16(3): 89-94.
[12] Chen H M, Yang D, Lin X X, et al. Investigation on the interfacial bonding strength between Ni-P-W/Al2O3composite coatings and NdFeB matrix[J]. Applied Mechanics and Materials, 2012(217-219): 1359-1362.
[13] 林煒盛. PTFE/金屬用含氟膠黏劑的制備和應(yīng)用[D]. 合肥: 合肥工業(yè)大學(xué), 2014.
[14] 付景國, 徐長旗, 朱新河, 等. 硅烷偶聯(lián)劑對(duì)表面微坑復(fù)合PTFE的減摩及緩釋性能影響研究[J]. 表面技術(shù), 2020, 49(2): 178-184.
Fu J G, Xu C Q, Zhu X H, et al. Effect of the silane coupling agent on the anti-friction and sustained release properties of surface with the micro dimple filled with PTFE[J]. Surface Technology, 2020, 49(2): 178-184 (in Chinese).
[15] Wei T G, Zhang R Q, Yang H Y, et al. Microstructure, corrosion resistance and oxidation behavior of Cr-coatings on Zircaloy-4 prepared by vacuum arc plasma deposition[J]. Corrosion Science, 2019(158): 108077.
[16] Li C Y, Feng X L, Fan X L, et al. Corrosion and wear resistance of micro-arc oxidation composite coatings on magnesium alloy AZ31-the influence of inclusions of carbon spheres[J]. Advanced Engineering Materials, 2019, 21(9): 1900446.
Protection of NdFeB by Electroless Plating and Its Corrosion Behavior in Simulated Marine Atmosphere
LI Xiaokun1,2*, LIU Shuying1,2, LIU Xin3
(1.Yellow River Conservancy Technical Institute, Kaifeng 475004, China;2.Henan Engineering Technology Research Center of Green Coating Materials, Kaifeng 475004, China;3.Suzhou University of Science and Technology, Suzhou 215009, China)
Ni-P alloy coating, Ni-Mo-P alloy coating, Ni-P/PTFE composite coating and Ni-Mo-P/PTFE composite coating were prepared on the surface of NdFeB by electroless plating respectively, and the corrosion behavior of different electroless coatings in simulated marine atmosphere was studied. The results showed that Ni-P alloy coating, Ni-Mo-P alloy coating, Ni-P/PTFE composite coating and Ni-Mo-P/PTFE composite coating were completely covered the surface of NdFeB, and there was little difference in their roughness. The corrosion weight loss of different electroless coatings in simulated marine atmosphere was lower than that of NdFeB, the radius of capacitive reactance arc was increased and the charge transfer resistance was increased in different degrees. Compared with Ni-P alloy coating and Ni-Mo-P alloy coating, Ni-P/PTFE composite coating and Ni-Mo-P/PTFE composite coating showed excellent corrosion resistance, the reason was that PTFE particles were evenly deposited on surface of the coating to form an additional shielding layer, which could also plays a role in preventing the erosion of corrosive media. Especially for Ni-Mo-P/PTFE composite coating, its surface was denser and PTFE particle deposited more uniform, which could more effectively delay the contact between corrosive medium and NdFeB, and then significantly improved the corrosion resistance of NdFeB in the simulated marine atmosphere.
electroless coating; NdFeB; corrosion behavior; simulated marine atmosphere
TQ153
A
10.3969/j.issn.1001-3849.2022.01.005
2021-05-18
2021-06-10
李孝坤(1982-),男,碩士,講師,主要研究方向:腐蝕與防護(hù)、化學(xué)分析檢測(cè)等,email:li_kaifeng004@163.com。
河南省高等學(xué)校重點(diǎn)科研項(xiàng)目計(jì)劃(20A530004)、開封市科技攻關(guān)計(jì)劃項(xiàng)目(1901021)