李彥軍,王夢(mèng)成,袁建平,袁壽其,鄭云浩
環(huán)量分布對(duì)基于反問(wèn)題設(shè)計(jì)的混流泵優(yōu)化結(jié)果的影響
李彥軍,王夢(mèng)成,袁建平,袁壽其,鄭云浩
(江蘇大學(xué)國(guó)家水泵研究中心,鎮(zhèn)江 212013)
為定量研究葉輪出口環(huán)量分布對(duì)導(dǎo)葉式混流泵優(yōu)化結(jié)果的影響,該研究在試驗(yàn)驗(yàn)證數(shù)值模擬準(zhǔn)確性的基礎(chǔ)上,以反問(wèn)題設(shè)計(jì)為基礎(chǔ),結(jié)合最優(yōu)拉丁超立方抽樣法,徑向基神經(jīng)網(wǎng)絡(luò)模型和多島遺傳算法,以0.8des、1.0des和1.2des處泵段加權(quán)效率為優(yōu)化目標(biāo)(des表示設(shè)計(jì)流量),以1.0des處揚(yáng)程變化小于3%為約束條件,在自由渦設(shè)計(jì)(葉輪出口環(huán)量恒定分布)和強(qiáng)迫渦設(shè)計(jì)(葉輪出口環(huán)量線性變化)兩種不同方案下分別對(duì)比轉(zhuǎn)速為511的導(dǎo)葉式混流泵葉輪進(jìn)行參數(shù)化優(yōu)化,并對(duì)優(yōu)化結(jié)果進(jìn)行對(duì)比分析。研究結(jié)果表明:以輪轂處環(huán)量值作為翼展方向環(huán)量分布控制參數(shù),結(jié)合連續(xù)性方程、能量方程和徑向平衡方程,對(duì)葉輪出口處環(huán)量分布進(jìn)行計(jì)算是可行的;局部敏感性分析表明環(huán)量控制參數(shù)對(duì)優(yōu)化結(jié)果具有較大影響,在優(yōu)化設(shè)計(jì)中應(yīng)該被考慮;自由渦設(shè)計(jì)優(yōu)化結(jié)果的加權(quán)效率為84.14%,而在強(qiáng)迫渦設(shè)計(jì)中該加權(quán)效率為85.08%,且兩者揚(yáng)程均滿足約束條件,內(nèi)流分析表明強(qiáng)迫渦設(shè)計(jì)中效率的提升主要由葉輪出口附近流態(tài)的改善引起。研究結(jié)果可為同類型渦輪機(jī)械的優(yōu)化設(shè)計(jì)提供參考。
優(yōu)化設(shè)計(jì);混流泵葉輪;反問(wèn)題設(shè)計(jì);數(shù)值模擬;水動(dòng)力參數(shù);局部敏感性分析
混流泵由于其適中的揚(yáng)程、較高的效率以及良好的抗空化性能被廣泛應(yīng)用于工業(yè)生產(chǎn)、農(nóng)業(yè)灌溉及污水處理等領(lǐng)域[1-3]。然而,其理論設(shè)計(jì)體系相比于軸流泵與離心泵尚不完善[4],因此,研究其優(yōu)化設(shè)計(jì)具有十分重要的意義。目前混流泵的優(yōu)化設(shè)計(jì)可分為基于幾何參數(shù)的傳統(tǒng)設(shè)計(jì)與基于水動(dòng)力參數(shù)的反問(wèn)題設(shè)計(jì)兩大類[5]。后者相比于前者具有設(shè)計(jì)參數(shù)數(shù)量少及水力性能與設(shè)計(jì)參數(shù)聯(lián)系更緊密的優(yōu)點(diǎn)。更重要的是,反問(wèn)題設(shè)計(jì)中葉片角由給定的水動(dòng)力參數(shù)通過(guò)迭代計(jì)算得到,相比于傳統(tǒng)設(shè)計(jì)中通過(guò)保角變換得到的葉片角其分布形式更加多樣,更有可能獲得性能超出現(xiàn)有設(shè)計(jì)的創(chuàng)新型結(jié)果[6]。
反問(wèn)題設(shè)計(jì)方法的有效性已在各種渦輪機(jī)械的設(shè)計(jì)優(yōu)化中得到廣泛證明[7-10]。Zangeneh等[11]通過(guò)調(diào)整輪轂與輪緣處流線方向載荷分布研究了載荷分布形式對(duì)混流泵性能的影響。結(jié)果表明輪緣處前加載,輪轂處后加載有利于葉片吸力面流動(dòng)分離的抑制。Goto等[12]通過(guò)試驗(yàn)驗(yàn)證了上述研究的正確性。他們發(fā)現(xiàn)上述載荷分布形式也有利于葉輪出口處“尾跡-射流”的消除。Maillard等[13]在軸流風(fēng)機(jī)的優(yōu)化設(shè)計(jì)中發(fā)現(xiàn)給予葉片前緣適當(dāng)?shù)妮d荷有利于葉頂泄漏渦的提前破裂。Zhu等[14]通過(guò)調(diào)整流線載荷與軸面投影圖研究了泵做透平的多目標(biāo)優(yōu)化。研究發(fā)現(xiàn)改變?nèi)~片通道內(nèi)的壓力梯度可以有效控制分離渦的位置。Huang等[15]以流線方向載荷分布與葉片尾緣傾角為設(shè)計(jì)參數(shù)對(duì)混流泵葉輪的設(shè)計(jì)優(yōu)化進(jìn)行了研究。結(jié)果表明適當(dāng)?shù)暮蠹虞d有助于平滑葉片通道內(nèi)的速度梯度,進(jìn)而消除二次流。在另一項(xiàng)工作中,Ashihara等[16]發(fā)現(xiàn)流線方向載荷后加載有利于葉片前半部壓力的提升,進(jìn)而改善泵的空化性能。
雖然上述研究取得了令人滿意的結(jié)果,但仍存在一定的局限性,如為控制葉輪理論揚(yáng)程,在優(yōu)化設(shè)計(jì)中采用自由渦來(lái)控制葉輪出口處環(huán)量分布。由Zangeneh[17]提出的葉片載荷理論可知,葉片載荷與葉輪進(jìn)出口環(huán)量的分布密切相關(guān),且張德勝等[18-19]在相關(guān)研究中指出葉輪出口處環(huán)量分布影響葉片不同葉高處的做功能力。因此,在混流泵的優(yōu)化設(shè)計(jì)中,考慮翼展方向環(huán)量分布形式對(duì)混流泵優(yōu)化結(jié)果的影響是必要的。
為定量研究翼展方向環(huán)量分布形式對(duì)混流泵優(yōu)化結(jié)果的影響,本文以反問(wèn)題設(shè)計(jì)為基礎(chǔ),結(jié)合最優(yōu)拉丁超立方抽樣、徑向基神經(jīng)網(wǎng)絡(luò)模型和多島遺傳算法,在自由渦和強(qiáng)迫渦設(shè)計(jì)兩種方案下,分別對(duì)同一混流泵模型進(jìn)行參數(shù)化優(yōu)化,并對(duì)優(yōu)化結(jié)果進(jìn)行對(duì)比分析,以期為同類型旋轉(zhuǎn)機(jī)械的優(yōu)化設(shè)計(jì)提供參考。
本文采用由Zangeneh[20]提出的全三維反問(wèn)題設(shè)計(jì)方法,在該方法中,假定流體定常無(wú)粘不可壓縮,葉片對(duì)流體的作用由渦片表示,其強(qiáng)度(m2/s)定義為
葉片形狀由流切條件計(jì)算
在此基礎(chǔ)上給定葉輪進(jìn)出口翼展方向環(huán)量分布、流線方向載荷分布及葉片尾緣處傾角即可確定葉片形狀。
葉輪做工能力由進(jìn)出口翼展方向環(huán)量差確定。為滿足葉輪進(jìn)口流體無(wú)預(yù)旋的假設(shè),通常假定葉輪進(jìn)口處環(huán)量為0,因此,葉輪出口處環(huán)量分布與葉輪做工能力直接相關(guān)。
在之前的研究中,葉輪出口翼展方向環(huán)量被設(shè)定為恒定分布,即自由渦設(shè)計(jì)。在本研究中,為研究葉輪出口翼展方向環(huán)量分布對(duì)混流泵優(yōu)化結(jié)果的影響,采用如圖1所示的強(qiáng)迫渦設(shè)計(jì)對(duì)葉輪出口翼展方向環(huán)量分布進(jìn)行參數(shù)化。
為保證在優(yōu)化設(shè)計(jì)過(guò)程中葉輪理論揚(yáng)程基本不變,參考湯方平和張德勝等[21-22]所提出的環(huán)量計(jì)算公式對(duì)環(huán)量分布進(jìn)行估算。
由連續(xù)性方程可知
式中m為軸向速度,m/s;des為設(shè)計(jì)流量,m3/s;h和s分別為輪轂和輪緣處半徑值,m。
由能量方程可知
由徑向平衡方程可知
記
葉片流線方向載荷分布采用如圖2所示的“三段式”分布進(jìn)行控制,其由兩段拋物線和一段中間直線組成。圖中縱坐標(biāo)為載荷,橫坐標(biāo)為軸面流線相對(duì)位置。一般而言,葉片載荷沿輪轂與輪緣處流線方向給定,葉片其它位置的載荷值由線性插值確定。
注:m=0表示輪轂,m=1表示輪緣;NC、ND和K分別為中間直線的起始點(diǎn)、終止點(diǎn)和斜率,LE為前緣載荷值。
Zhu等[23]通過(guò)研究發(fā)現(xiàn)葉片尾緣處傾角對(duì)葉輪內(nèi)的二次流及壓力脈動(dòng)幅值具有較大影響。因此,傾角也被選為設(shè)計(jì)參數(shù)。
在采用反問(wèn)題設(shè)計(jì)方法對(duì)混流泵模型進(jìn)行參數(shù)化之前需對(duì)其有效性進(jìn)行驗(yàn)證。本文以楊魏等[24]提出的給定載荷分布與計(jì)算載荷分布的重合度作為反問(wèn)題設(shè)計(jì)方法是否有效的判據(jù),結(jié)果如圖3所示。由圖可知在整個(gè)流線范圍內(nèi),計(jì)算載荷與給定載荷的變化趨勢(shì)基本一致,兩者的最大差值出現(xiàn)在輪緣處軸面流線相對(duì)位置0.2附近,相對(duì)誤差約7%,而其他位置處相對(duì)誤差均小于5%。考慮到在反問(wèn)題設(shè)計(jì)中流場(chǎng)及葉片形狀的計(jì)算均為基于無(wú)粘假設(shè),而在CFX計(jì)算中流體的粘性被納入計(jì)算,因此,認(rèn)為上述誤差在可接受范圍內(nèi)。
以圖4所示的南水北調(diào)工程中某泵站所使用的比轉(zhuǎn)速為511的導(dǎo)葉式混流泵葉輪為基礎(chǔ)模型,記為F0,其設(shè)計(jì)流量為0.4207 m3/s,設(shè)計(jì)揚(yáng)程為12.6 m,葉片數(shù)為4個(gè),葉輪直徑為320 mm,進(jìn)口輪轂與輪緣處直徑分別為270 mm和20 mm,出口輪轂處與輪緣處直徑分別為210 mm和370 mm。
結(jié)構(gòu)化網(wǎng)格相比于非結(jié)構(gòu)化網(wǎng)格具有數(shù)量及質(zhì)量可控的優(yōu)點(diǎn)[25],因此,本文采用圖5所示的六面體結(jié)構(gòu)化網(wǎng)格對(duì)整體計(jì)算域進(jìn)行網(wǎng)格劃分,并在壁面處進(jìn)行局部加密處理,以確保第一層網(wǎng)格節(jié)點(diǎn)與壁面之間的距離較小(即較小的+值)。其中,進(jìn)水直管與出水彎管的網(wǎng)格劃分由ANSYS-ICEM采用O型拓?fù)浣Y(jié)構(gòu)完成,葉輪和導(dǎo)葉的網(wǎng)格劃分由ANSYS-Turbogrid采用H-C形拓?fù)浣Y(jié)構(gòu)完成。
1.進(jìn)水管 2.葉輪 3.導(dǎo)葉 4.出水管
在反問(wèn)題設(shè)計(jì)方法中,葉片形狀的求解與流場(chǎng)的求解通過(guò)迭代計(jì)算完成,因此,流場(chǎng)的初始化對(duì)葉片形狀的求解至關(guān)重要。由于導(dǎo)葉的主要作用是回收葉輪出口處流體的旋轉(zhuǎn)動(dòng)能并將其轉(zhuǎn)化為壓能,因此,在導(dǎo)葉的優(yōu)化設(shè)計(jì)中需預(yù)先求得葉輪出口處流場(chǎng)并將其作為進(jìn)口條件。這意味著葉輪與導(dǎo)葉間的匹配優(yōu)化最佳策略為分步優(yōu)化,即先對(duì)葉輪進(jìn)行優(yōu)化,然后再根據(jù)優(yōu)化好的葉輪對(duì)導(dǎo)葉進(jìn)行匹配優(yōu)化。本研究重點(diǎn)關(guān)注葉輪出口處環(huán)量分布對(duì)混流泵葉輪優(yōu)化結(jié)果的影響,因此,僅以葉輪作為參數(shù)化優(yōu)化對(duì)象。優(yōu)化系統(tǒng)如圖8所示,其由反問(wèn)題設(shè)計(jì)、數(shù)值模擬和優(yōu)化算法三部分組成,其中,反問(wèn)題設(shè)計(jì)理論與數(shù)值模擬設(shè)置已在前文進(jìn)行過(guò)介紹,下文將對(duì)算法選擇與設(shè)置進(jìn)行介紹。
為定量研究不同渦設(shè)計(jì)對(duì)混流泵優(yōu)化結(jié)果的影響,本文基于反問(wèn)題設(shè)計(jì)方法,在兩種不同方案下分別對(duì)F0進(jìn)行參數(shù)化優(yōu)化。在方案1中忽略葉輪出口翼展方向環(huán)量分布形式對(duì)混流泵優(yōu)化結(jié)果的影響,故在葉輪的參數(shù)化中采用自由渦設(shè)計(jì);而在方案2中考慮該影響,因此采用強(qiáng)迫渦設(shè)計(jì)對(duì)葉輪進(jìn)行參數(shù)化。方案1和方案2的設(shè)計(jì)參數(shù)如表1所示。相比于方案1,方案2中葉輪出口翼展方向環(huán)量分布控制參數(shù)h也被選為設(shè)計(jì)參數(shù)。為防止反問(wèn)題設(shè)計(jì)計(jì)算不收斂,無(wú)法得到正確的物理解,需保證翼展方向環(huán)量差的最大值小于均值的30%[26],因此,在本研究中,參數(shù)h的范圍被定為0.27~0.35。流線方向載荷控制參數(shù)及葉片尾緣堆棧范圍的選取參考文獻(xiàn)[27]。
為使優(yōu)化后混流泵模型與基礎(chǔ)模型具有相似的比轉(zhuǎn)速,且使其在較大的流量范圍內(nèi)均比基礎(chǔ)模型具有更好的水力性能,以優(yōu)化后模型1.0des處泵段揚(yáng)程相比于基礎(chǔ)模型揚(yáng)程變化小于3%為約束條件1,以優(yōu)化后模型0.8des、1.0des和1.2des處泵段效率相比于基礎(chǔ)模型效率不降低為約束條件2;以上述3工況點(diǎn)泵段加權(quán)效率為優(yōu)化目標(biāo),對(duì)混流泵葉輪進(jìn)行參數(shù)化優(yōu)化,權(quán)重因子按照各工況的重要性進(jìn)行確定。一般而言,在混流泵的多工況優(yōu)化設(shè)計(jì)中,1.0des處效率是最重要的,因此,需賦予其最大的權(quán)重值,在本研究該值為0.5;此外,由于本文研究對(duì)象為一特定調(diào)水泵站所用混流泵,其在1.2des工況運(yùn)行時(shí)間與0.8des工況運(yùn)行時(shí)間的比值約為3比2,因此,分別賦予1.2des和0.8des工況處0.3和0.2的權(quán)重值。約束條件的數(shù)學(xué)表達(dá)如式(8)所示,優(yōu)化目標(biāo)的數(shù)學(xué)表達(dá)如式(9)所示
約束條件:
優(yōu)化目標(biāo):
表1 自由渦設(shè)計(jì)與強(qiáng)迫渦設(shè)計(jì)中設(shè)計(jì)參數(shù)及范圍選擇
注:h表示輪轂處環(huán)量,表示葉片尾緣處傾角。下標(biāo)h和s分別表示輪轂和輪緣。
Note:hmeans circulation value at the hub,means the inclination angle at the blade trailing edge; The subscripts h and s represent hub and shroud, respectively.
3.3.1 試驗(yàn)設(shè)計(jì)
最優(yōu)拉丁超立方抽樣法可將設(shè)計(jì)空間劃分為設(shè)計(jì)者指定的層數(shù),并對(duì)每層進(jìn)行獨(dú)立隨機(jī)抽樣,具有抽樣效率高,空間填充能力強(qiáng),及樣本空間與設(shè)計(jì)空間結(jié)構(gòu)相似的優(yōu)點(diǎn)。因此,兩種方案下均使用最優(yōu)拉丁超立方抽樣法在設(shè)計(jì)空間中生成110個(gè)樣本點(diǎn)??紤]到方案2中設(shè)計(jì)參數(shù)包含翼展方向環(huán)量分布控制參數(shù),為了提高近似模型揚(yáng)程預(yù)測(cè)準(zhǔn)確性,需要對(duì)各樣本點(diǎn)設(shè)計(jì)工況揚(yáng)程進(jìn)行監(jiān)測(cè),從而剔除揚(yáng)程波動(dòng)過(guò)大(10%設(shè)計(jì)點(diǎn)處泵段揚(yáng)程)的樣本點(diǎn),并增加新樣本點(diǎn)。
注:實(shí)線為設(shè)計(jì)工況處F0的泵段揚(yáng)程,虛線為所允許的揚(yáng)程變化極限。
3.3.2 近似模型
近似模型可用于構(gòu)建設(shè)計(jì)參數(shù)與優(yōu)化目標(biāo)之間的映射關(guān)系,其可有效減少優(yōu)化過(guò)程中數(shù)值模擬的調(diào)用次數(shù),從而減少計(jì)算資源的消耗。徑向基神經(jīng)網(wǎng)絡(luò)模型[28]是一種單隱層前饋神經(jīng)網(wǎng)絡(luò)模型,由輸入層、隱藏層和輸出層組成。其中輸入層到隱藏層為非線性變換,而隱藏層到輸出層為線性變換,其基本原理見文獻(xiàn)[29]。由于其良好的非線性逼近能力,在優(yōu)化設(shè)計(jì)中得到了廣泛的應(yīng)用。因此,本文采用該神經(jīng)網(wǎng)絡(luò)模型構(gòu)建設(shè)計(jì)參數(shù)與優(yōu)化目標(biāo)之間的函數(shù)關(guān)系,其中,濾波算子設(shè)定為0.02,最大迭代次數(shù)為50,激活函數(shù)選用高斯函數(shù)。
3.3.3 優(yōu)化算法
最優(yōu)解的尋找由多島遺傳算法完成,與傳統(tǒng)遺傳算法相比,其不僅擁有交叉、變異和選擇等操作,還額外引入了“島”這一理念。在該算法中,整個(gè)種群被劃分為若干個(gè)子群(島),通過(guò)在各子群間執(zhí)行交叉、變異和選擇,并周期性的在各個(gè)子群間進(jìn)行相應(yīng)的遷徙,保持解的多樣性,從而避免傳統(tǒng)遺傳算法早熟收斂的缺點(diǎn)。在本研究中,優(yōu)化算法的設(shè)置在兩種方案下保持一致,初始種群數(shù)均為50,種群代數(shù)為20,島嶼數(shù)為10,交叉概率為0.75,變異概率為0.1。因此,兩種方案下各生成了10 000種不同配置的葉輪。
方案1與方案2的迭代計(jì)算過(guò)程如圖10所示。相比于方案1,方案2在經(jīng)過(guò)若干次迭代計(jì)算后更易獲得加權(quán)效率更高的葉輪配置。分別記兩種方案下滿足約束條件且加權(quán)效率最高的葉輪配置為F1與F2。兩者設(shè)計(jì)參數(shù)及葉片外形對(duì)比分別如表2和圖11所示。相比于F1,F(xiàn)2的設(shè)計(jì)參數(shù)及葉片外形均出現(xiàn)了較大變化,因此,在混流泵的優(yōu)化設(shè)計(jì)中,有必要考慮葉輪出口翼展方向環(huán)量分布形式。
為驗(yàn)證近似模型預(yù)測(cè)準(zhǔn)確性,對(duì)優(yōu)化后模型F1與F2分別進(jìn)行數(shù)值模擬分析,結(jié)果如表3所示。由表3可知F1和F2加權(quán)效率的計(jì)算值與預(yù)測(cè)值相差較小,且均滿足約束條件要求。F1加權(quán)效率的計(jì)算值為84.14%,相比于F0,該加權(quán)效率增加了2.55個(gè)百分點(diǎn),而F2的加權(quán)效率則在F1的基礎(chǔ)上進(jìn)一步提高了0.94個(gè)百分點(diǎn)。因此,在基于反問(wèn)題設(shè)計(jì)的混流泵的優(yōu)化設(shè)計(jì)中,采用強(qiáng)迫渦設(shè)計(jì)相比自由渦設(shè)計(jì)更具優(yōu)勢(shì),可以進(jìn)一步提升優(yōu)化效果。
表2 F1與F2設(shè)計(jì)參數(shù)對(duì)比
表3 計(jì)算性能與預(yù)測(cè)性能對(duì)比
F0、F1與F2的外特性對(duì)比如圖12所示。在整個(gè)流量范圍內(nèi),F(xiàn)2的泵段效率最高,F(xiàn)1次之,且隨著流量增加,三者間的差值逐漸增大。以0.8des、1.0des和1.2des處泵段效率為例,F(xiàn)0的泵段效率為80.59%、85.31%和76.07%,F(xiàn)1的泵段效率相比于F0分別增加了0.06、2.54和4.22個(gè)百分點(diǎn),而F2的泵段效率則在F1的基礎(chǔ)上進(jìn)一步增加了0.59、0.87和1.39個(gè)百分點(diǎn)。三者的揚(yáng)程也出現(xiàn)了較大的區(qū)別。在設(shè)計(jì)工況處,三者揚(yáng)程基本相同。然而在小流量工況處,F(xiàn)0的揚(yáng)程最大,而F1和F2的揚(yáng)程基本相等,且隨著流量的減小,F(xiàn)0與F1和F2的揚(yáng)程差逐漸增大。在大流量工況處,F(xiàn)1的揚(yáng)程最大,而F2與F0的揚(yáng)程基本相等。
圖12 優(yōu)化結(jié)果外特性對(duì)比
為分析F0、F1與F2性能差異產(chǎn)生的原因,以設(shè)計(jì)工況為例,對(duì)三者的內(nèi)流場(chǎng)進(jìn)行進(jìn)一步對(duì)比分析。
圖13展示了三種模型葉輪出口軸向速度和總壓沿展向分布的對(duì)比。由圖13a可知F0輪轂附近(*=0處)軸向速度為負(fù)值且在較大的范圍內(nèi)軸向速度處于較低的水平,這意味著該處出現(xiàn)了小范圍的回流區(qū)及較大范圍的低速區(qū)。經(jīng)過(guò)優(yōu)化后,F(xiàn)1與F2在輪轂處的軸向速度相比于F0得到了巨大的提升,從而消除了該低速回流區(qū)的存在。輪轂附近軸向速度的增加與輪緣附近軸向速度的減小使得F1與F2在整個(gè)翼展方向的軸向速度分布相比于F0更加均勻。在圖13b中的翼展方向總壓分布觀察到了類似的現(xiàn)象,這表明F1與F2在葉輪出口處的流態(tài)相比于F0得到了改善。此外,相比于F1,F(xiàn)2在輪轂附近的軸向速度與總壓略有降低,而輪緣附近的軸向速度與總壓略有升高,該趨勢(shì)與葉輪出口處翼展方向環(huán)量分布形式相一致,表明在混流泵的優(yōu)化設(shè)計(jì)中采用強(qiáng)迫渦設(shè)計(jì)可以有效控制葉輪出口處的流態(tài)。
圖14為葉輪出口葉片吸力面輪轂附近速度矢量和靜壓分布圖。由圖14可知F0在葉片出口輪轂附近產(chǎn)生了明顯的回流現(xiàn)象,考慮到該區(qū)域內(nèi)靜壓分布相對(duì)均勻且壓力梯度與主流方向基本一致,結(jié)合圖13a中F0在葉輪出口輪轂附近軸向速度為負(fù)值且在較大范圍內(nèi)存在低速區(qū)的事實(shí),分析認(rèn)為該回流是由低動(dòng)量流體的聚集所導(dǎo)致的邊界層脫落引起的,且該回流對(duì)葉輪出口處的流態(tài)產(chǎn)生了不利影響。此外,該回流與輪轂附近主流的互相作用迫使主流向跨中方向偏轉(zhuǎn),導(dǎo)致了葉片尾緣附近二次流的產(chǎn)生。在F1的葉片吸力面尾緣處也觀察到了相似的回流和二次流現(xiàn)象,然而其形成機(jī)理與F0相比存在較大區(qū)別,且其對(duì)葉輪內(nèi)部流場(chǎng)的影響也存在較大區(qū)別。在F1中,盡管輪轂附近的軸向速度最大,可以有效防止低動(dòng)量流體的聚集,抑制邊界層的生長(zhǎng),然而由于該區(qū)域內(nèi)的靜壓分布存在著明顯的畸變,且壓力梯度垂直于主流方向,從而導(dǎo)致該區(qū)域內(nèi)回流與二次流的出現(xiàn)。然而,相比于F0,F(xiàn)1中的回流與二次流對(duì)葉輪內(nèi)部流態(tài)的影響在到達(dá)葉輪出口處之前已被消除。在F2中,由于輪轂附近軸向速度較大,且壓力梯度與主流方向幾乎一致,因此,該區(qū)域內(nèi)的流態(tài)得到了明顯改善。
考慮到葉輪出口流態(tài)對(duì)葉輪下游部件的水力性能具有較大影響,而F0、F1與F2中葉輪出口的流態(tài)又存在較大區(qū)別,因此有必要對(duì)三者下游部件的水力性能進(jìn)行分析,以確定泵段整體性能提升的原因。表4為各部件的水力損失與總輸入功率的比值。由表可知F0在設(shè)計(jì)工況處的葉輪效率為95.04%,已處于較高的水平,然而由于葉輪出口附近存在脫流現(xiàn)象,導(dǎo)致葉輪下游部件出現(xiàn)了較大的水力損失。經(jīng)過(guò)優(yōu)化后,在F1中,盡管葉輪內(nèi)的水力效率損失僅降低0.11個(gè)百分點(diǎn),然而由于出口流態(tài)的改善,葉輪下游部件的水力效率損失降低了2.43個(gè)百分點(diǎn)。與F1相比,F(xiàn)2中葉輪的水力效率損失進(jìn)一步降低了0.59個(gè)百分點(diǎn),而葉輪下游部件的水力效率損失則進(jìn)一步降低了0.28個(gè)百分點(diǎn)。
表4 水力效率損失分析
在優(yōu)化設(shè)計(jì)中,與優(yōu)化目標(biāo)相關(guān)性較大的設(shè)計(jì)參數(shù)應(yīng)該被重點(diǎn)考慮以提高優(yōu)化效果,而相關(guān)性較小的設(shè)計(jì)參數(shù)則可以被忽略,從而降低優(yōu)化復(fù)雜度,加快優(yōu)化進(jìn)程。局部敏感性分析通過(guò)求解各設(shè)計(jì)參數(shù)對(duì)優(yōu)化目標(biāo)的偏導(dǎo)數(shù)來(lái)確定各參數(shù)對(duì)優(yōu)化目標(biāo)的影響程度,因其良好的可操作性和較低的操作復(fù)雜度被廣泛應(yīng)用于各種優(yōu)化設(shè)計(jì)中。本文所構(gòu)建的近似模型的準(zhǔn)確性已在3.1節(jié)中得到驗(yàn)證,因此,在此基礎(chǔ)上進(jìn)行的局部敏感性分析是可靠的。
圖15為局部敏感性分析結(jié)果。在方案1中,、s、h、h和s對(duì)優(yōu)化目標(biāo)影響較大,而h、s、h和s對(duì)優(yōu)化目標(biāo)影響較小,且h、s、h和h為正影響,其余參數(shù)為負(fù)影響。在方案2中,h、s、h、h、h、s和s對(duì)優(yōu)化目標(biāo)影響較大,h、和s對(duì)優(yōu)化目標(biāo)影響較小,且h、h、h和h為負(fù)影響,其余參數(shù)為正影響。相比于方案1,方案2中各參數(shù)對(duì)優(yōu)化目標(biāo)的影響程度及正負(fù)關(guān)系均產(chǎn)生了較大改變。因此,在強(qiáng)迫渦設(shè)計(jì)中,設(shè)計(jì)參數(shù)的選擇將與自由渦設(shè)計(jì)產(chǎn)生較大區(qū)別。
本文以反問(wèn)題設(shè)計(jì)為基礎(chǔ),通過(guò)連續(xù)性方程、能量方程與徑向平衡方程完成了葉輪出口翼展方向環(huán)量分布的參數(shù)化,并在此基礎(chǔ)上通過(guò)數(shù)值模擬與優(yōu)化算法相結(jié)合的方法探究了環(huán)量分布對(duì)混流泵優(yōu)化結(jié)果的影響。結(jié)果表明:
1)與自由渦設(shè)計(jì)相比,在強(qiáng)迫渦設(shè)計(jì)中各樣本點(diǎn)在設(shè)計(jì)工況處的揚(yáng)程波動(dòng)無(wú)明顯增加,且優(yōu)化結(jié)果表明,強(qiáng)迫渦設(shè)計(jì)中優(yōu)化結(jié)果F2的加權(quán)效率相比于自由渦設(shè)計(jì)優(yōu)化結(jié)果F1進(jìn)一步提高了0.94%,因此在基于反問(wèn)題設(shè)計(jì)的混流泵優(yōu)化設(shè)計(jì)中,考慮翼展方向環(huán)量分布對(duì)優(yōu)化結(jié)果的影響是可行且必要的。
2)通過(guò)控制葉輪出口處翼展方向環(huán)量分布可有效控制葉輪出口附近流態(tài),防止回流等不利流動(dòng)的產(chǎn)生,進(jìn)而改善葉輪出流條件。
3)內(nèi)流分析及水力損失分析結(jié)果表明,F(xiàn)2相比于F1效率的提升主要由兩方面所引起。一是葉輪出口吸力面輪轂附近回流的抑制,二是葉輪出口流態(tài)的改善所導(dǎo)致的下游部件水力損失的減小。
[1] Li W, Ji L L, Shi W D, et al. Vibration of shaft system in the mixed-flow pump induced by the rotor-stator interaction under partial load conditions[J]. Shock and Vibration, 2018(2): 1-12.
[2] Tan L, Yu Z Y, Xu Y, et al. Role of blade rotational angle on energy performance and pressure fluctuation of a mixed-flow pump[J]. Proceedings of the Institution of Mechanical Engineers Part A Journal of Power and Energy, 2017, 231(3): 227-238.
[3] 李偉,路德樂(lè),馬凌凌,等. 混流泵啟動(dòng)過(guò)程壓力脈動(dòng)特性試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(1):44-50.
Li Wei, Lu Dele, Ma Lingling, et al. Experimental study on pressure vibration characteristics of mixed-flow pump during start-up[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(1): 44-50. (in Chinese with English abstract)
[4] 潘中永,倪永燕,袁壽其,等. 斜流泵研究進(jìn)展[J]. 流體機(jī)械,2009,37(9):45-49.
Pan Zhongyong, Ni Yongyan, Yuan Shouqi, et al. Research progress of mixed-flow pump[J]. Fluid Machinery, 2009, 37(9): 45-49. (in Chinese with English abstract)
[5] 肖若富,陶然,王維維,等. 混流泵葉輪反問(wèn)題設(shè)計(jì)與水力性能優(yōu)化[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2014,45(9):84-88.
Xiao Ruofu, Tao Ran, Wang Weiwei, et al. Inverse design and hydraulic optimization of mixed-flow pump impeller[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(9): 84-88. (in Chinese with English abstract)
[6] Goto A, Zangeneh M. Hydrodynamic design of pump diffuser using inverse design method and CFD[J]. Journal of Fluids Engineering, 2002, 124: 319-328.
[7] 邴浩,曹樹良,譚磊. 混流泵葉輪設(shè)計(jì)正反問(wèn)題迭代方法[J]. 排灌機(jī)械工程學(xué)報(bào),2011,29(4):277-281.
Bing Hao, Cao Shuliang, Tan Lei. Iteration method of direct inverse problem of mixed-flow pump impeller design[J]. Journal of Drainage and Irrigation Machinery Engineering, 2011, 29(4): 277-281. (in Chinese with English abstract)
[8] 王福軍,姚志峰,楊魏,等. 雙吸離心泵葉輪交替加載設(shè)計(jì)方法[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2015,46(6):84-91.
Wang Fujun, Yao Zhifeng, Yang Wei, et al. Impeller design with alternate loading technique for double-suction centrifugal pumps[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(6): 84-91. (in Chinese with English abstract)
[9] 楊魏,王福軍,王宏. 離心風(fēng)機(jī)葉片三維反問(wèn)題優(yōu)化設(shè)計(jì)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2012,43(8):105-109.
Yang Wei, Wang Fujun, Wang Hong. Aerodynamic optimization design of centrifugal fan blades based on 3-D inverse design method[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(8): 105-109. (in Chinese with English abstract)
[10] Zangeneh M. A compressible three-dimensional design method for radial and mixed flow turbomachinery blades[J]. International Journal for Numerical Methods in Fluids, 1991, 13(5), 599-624.
[11] Zangeneh M, Goto A, Takemura T. Suppression of secondary flows in a mixed-flow pump impeller by application of three-dimensional inverse design method: Part 1-design and numerical validation[J]. Journal of Turbomachinery, 1996, 118(3), 536-543.
[12] Goto A, Takemura T, Zangeneh M. Suppression of secondary flows in a mixed-flow pump impeller by application of three-dimensional inverse design method part 2-experimental validation[J]. Journal of Turbomachinery, 1996, 118(3), 544-551.
[13] Maillard M D, Zangeneh M. Application of 3d inverse design based multi-objective optimization of axial cooling fan with large tip gap[J]. Sea Technical Papers, 2014, 1, 415-422.
[14] Zhu B S, Wang X H, Tan L, et al. Optimization design of a reversible pump-turbine runner with high efficiency and stability[J]. Renewable Energy, 2005, 81, 366-376.
[15] Huang R F, Luo X W, Ji B, et al. Multi-objective optimization of a mixed-flow pump impeller using modified NSGA-II algorithm[J]. Science China Technological Sciences, 2015, 58, 2122–2130.
[16] Ashihara K, Goto A. Effects of blade loading on pump inducer performance and flow fields[C]. Proceedings of the ASME 2002 Joint U. S. -European Fluids Engineering Division Conference. Volume 2: Symposia and General Papers, Parts A and B. Montreal, Quebec, Canada, July, 14–18, 925-934. ASME.
[17] Zangeneh M, Goto A, Harada H. On the design criteria for suppression of secondary flows in centrifugal and mixed flow impellers[J]. Journal of Turbomachinery, 1997, 120(4): 723-735.
[18] 張德勝,施衛(wèi)東,李通通,等. 軸流泵葉輪非線性環(huán)量數(shù)學(xué)模型建立與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2013,44(1):58-61.
Zhang Desheng, Shi Weidong, Li Tongtong, et al. Establishment and experiment on nonlinear circulation mathematical model of axial-flow pump impeller[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(1): 58-61. (in Chinese with English abstract)
[19] 張德勝,李通通,施衛(wèi)東,等. 軸流泵葉輪出口軸面速度和環(huán)量的試驗(yàn)研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(7):73-77.
Zhang Desheng, Li Tongtong, Shi Weidong, et al. Experimental investigation of meridional velocity and circulation in axial-flow impeller outlet[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(7): 73-77. (in Chinese with English abstract)
[20] Zangeneh M. Inviscid-viscous interaction method for three-dimensional inverse design of centrifugal Impellers[J]. Journal of Turbomachinery, 1994, 116(2): 280-290.
[21] 張德勝. 軸流泵葉輪非線性環(huán)量分布理論及實(shí)驗(yàn)研究[D]. 鎮(zhèn)江:江蘇大學(xué),2010.
Zhang Desheng. Theoretical and Experimental Research on Nonlinear Circulation Distribution of Axial Pump Impeller[D]. Zhenjiang: Jiangsu University, 2010. (in Chinese with English abstract)
[22] 湯方平. 噴水推進(jìn)軸流泵設(shè)計(jì)及紊流數(shù)值分析[D]. 上海:上海交通大學(xué),2006.
Tang Fangpin. Design and Turbulence Numerical Analysis of Water jet Axial-Flow Pump[D]. Shanghai: Shanghai Jiaotong University, 2010. (in Chinese with English abstract)
[23] Zhu B S, Tan L, Wang X H, et al. Investigation on flow characteristics of pump-turbine runners with large blade lean[J]. Journal of Fluids Engineering, 2018, 140(3): 1113-1122.
[24] 楊魏,雷曉宇,張志民,等. 基于載荷分布的潛水軸流泵葉輪與導(dǎo)葉水力設(shè)計(jì)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2017,48(11):179-187.
Yang Wei, Lei Xiaoyu, Zhang Zhimin, et al. Hydraulic design of submersible axial-flow pump based on blade loading distributions[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(11): 179-187. (in Chinese with English abstract)
[25] 李志祥,馮建剛,錢尚拓,等. 排水泵站整流底坎參數(shù)優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(3):56-63.
Li Zhixiang, Feng Jiangang, Qian Shangtuo, et al. Optimization of rectification bottom sill parameters in drainage pumping stations[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(3): 56-63. (in Chinese with English abstract)
[26] 王夢(mèng)成,李彥軍,袁建平,等. 葉輪出口環(huán)量非線性分布條件下混流泵性能研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2020,51(11):211-218.
Wang Mengcheng, Li Yanjun, Yuan Jianping, et al. Performance of mixed flow pump under condition of non-linear distribution of impeller exit circulation[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(11): 211-218. (in Chinese with English abstract)
[27] 王夢(mèng)成,袁建平,李彥軍,等. 混流泵葉輪三維反問(wèn)題設(shè)計(jì)多目標(biāo)優(yōu)化[J]. 哈爾濱工程大學(xué)學(xué)報(bào),2020,41(12):1854-1860.
Wang Mengcheng, Yuan Jianping, Li Yanjun, et al. Multi-objective optimization of mixed-flow pump impeller based on 3-D inverse design[J]. Journal of Harbin Engineering University, 2020, 41(12): 1854-1860. (in Chinese with English abstract)
[28] 王春林,胡蓓蓓,馮一鳴,等. 基于徑向基神經(jīng)網(wǎng)絡(luò)與粒子群算法的雙葉片泵多目標(biāo)優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(2):25-32.
Wang Chunlin, Hu Beibei, Feng Yiming, et al. Multi-objective optimization of double vane pump based on radial basis neural network and particle swarm[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(2): 25-32. (in Chinese with English abstract)
[29] 吳月寶,趙晉斌,張少騰,等. 基于徑向基神經(jīng)網(wǎng)絡(luò)的多負(fù)載無(wú)線電能傳輸系統(tǒng)自適應(yīng)阻抗匹配方法[J]. 電工技術(shù)學(xué)報(bào),2021,36(19):3969-3977.
Wu Yuebao, Zhao Jinbin, Zhang Shaoteng, et al. An adaptive impedance matching method based on radial basis function neural network in multi-Load wireless power transfer Systems[J]. Transactions of China Electrotechnical Society, 2021, 36(19): 3969-3977. (in Chinese with English abstract)
Influence of circulation distribution on the optimization results of mixed-flow pump based on inverse design
Li Yanjun, Wang Mengcheng, Yuan Jianping, Yuan Shouqi, Zheng Yunhao
(,,212023,)
To quantitatively study the influence of the impeller outlet circulation distribution on the optimization results of the mixed flow pump, the mixed flow pump with a specific speed of 511 was selected as the baseline model. A comprehensive optimization system was used to optimize under two different conditions, and the performance of the optimization results were compared with the baseline model. In the first case, the influence of the distribution form of the impeller outlet circulation on the optimization result of the mixed flow pump impeller was not considered, that is, the free vortex design (constant distribution of impeller outlet spanwise circulation) was adopted, while in the second case, the effect of circulation distribution was considered, and the forced vortex design (linear distribution of impeller outlet spanwise circulation) was adopted. The optimization system consists of an inverse design method, an optimal latin hypercube sampling method, a radial basis function neural network model and a multi-island genetic algorithm. The optimization objective is the weighted efficiency at 0.8des, 1.0desand 1.2deswith weighting factors of 0.2, 0.5, and 0.3 (desmeans design flow rate). The constraints are the head change of the optimized mixed flow pump at 1.0desless than 3% compared to the baseline model design point, and the pump section efficiency at 0.8des, 1.0desand 1.2desis greater than the baseline model. The research results showed that in the forced vortex design, when the circulation value at the hub was selected as the design parameter, it is feasible to combinedly use the continuity equation, the energy conservation equation and the radial balance equation to calculate the spanwise distribution of impeller outlet circulation. Which can ensure that the pump section head changes of the sampling points under the design condition are within a reasonable range (the range of head variation is less than 10% of the baseline model design head), and there is no need to add new sample points. In addition, the comparison of the predicted head and calculated head of the optimal solution also shows the same result. The results of local sensitivity analysis showed that the impeller outlet spanwise circulation distribution control parameters has a greater impact on the pump section weighted efficiency, and it can influence the other design parameters effect on the weighted efficiency. Therefore, it is necessary to consider the influence of the impeller outlet circulation in the optimal design of the mixed flow pump. The internal flow analysis showed that the forced vortex design can more effectively control the flow regime near the impeller outlet than the free vortex design. This is not only conductive to the improvement of the efficiency of the impeller, but also to the reduction of the hydraulic loss of the downstream components of the impeller, thereby further improving the overall optimization effect of the mixed flow pump. In the free vortex design, the weighted efficiency of the optimization result is 84.14%, while in the forced vortex design, the weighted efficiency of the optimization result is 85.08%, and the heads of both all meet the constraint conditions. This study can provide reference for the optimization design of turbomachinery, so as to maximize the optimization effect.
optimization design; mixed-flow pump impeller; inverse design; numerical simulation; hydrodynamic parameters; local sensitivity analysis
李彥軍,王夢(mèng)成,袁建平,等. 環(huán)量分布對(duì)基于反問(wèn)題設(shè)計(jì)的混流泵優(yōu)化結(jié)果的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(20):44-52.doi:10.11975/j.issn.1002-6819.2021.20.005 http://www.tcsae.org
Li Yanjun, Wang Mengcheng, Yuan Jianping, et al. Influence of circulation distribution on the optimization results of mixed-flow pump based on inverse design[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(20): 44-52. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.20.005 http://www.tcsae.org
2021-06-29
2021-09-29
國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2018YFB0606103);武漢市科技計(jì)劃項(xiàng)目(2018060403011350).
李彥軍,博士,副教授,碩士生導(dǎo)師,研究方向?yàn)樗眉八谜镜墓こ虄?yōu)化。Email:lyj782900@ujs.edu.com
10.11975/j.issn.1002-6819.2021.20.005
TH313
A
1002-6819(2021)-20-0044-09
農(nóng)業(yè)工程學(xué)報(bào)2021年20期