武曉晶 鄭文棪 吳學(xué)禮 甄然 邵士凱
摘 要:針對(duì)具有未知外部擾動(dòng)和阻力系數(shù)的時(shí)變負(fù)載四旋翼無(wú)人機(jī)系統(tǒng),提出了一種復(fù)合有限時(shí)間控制策略。首先,通過(guò)牛頓-歐拉方法建立了完整的四旋翼無(wú)人機(jī)數(shù)學(xué)模型。位置環(huán)采用自適應(yīng)參數(shù)校正方法對(duì)負(fù)載進(jìn)行估計(jì),并與反步遞推控制相結(jié)合,在阻力系數(shù)未知情況下設(shè)計(jì)了自適應(yīng)軌跡跟蹤控制器。其次,采用基于擾動(dòng)觀測(cè)器的有限時(shí)間滑??刂破?,并利用Lyapunov穩(wěn)定性理論進(jìn)行無(wú)人機(jī)系統(tǒng)位置環(huán)和姿態(tài)環(huán)漸近穩(wěn)定和有限時(shí)間穩(wěn)定性驗(yàn)證。最后,通過(guò)數(shù)值仿真進(jìn)行驗(yàn)證。結(jié)果表明,所提控制器提高了系統(tǒng)的收斂速度,減少了外界擾動(dòng)對(duì)系統(tǒng)的影響。研究方法克服了已有研究要求阻力系數(shù)和負(fù)載已知的局限性,提高了系統(tǒng)的抗干擾能力,對(duì)于增強(qiáng)四旋翼無(wú)人機(jī)的實(shí)際應(yīng)用性具有一定的參考價(jià)值。
關(guān)鍵詞:自動(dòng)控制理論;四旋翼無(wú)人機(jī);時(shí)變負(fù)載;擾動(dòng)觀測(cè)器;反步遞推控制;滑模控制
中圖分類號(hào):TN958.98?? 文獻(xiàn)標(biāo)識(shí)碼:A
doi:10.7535/hbkd.2021yx06005
Adaptive finite-time control for quadrotor UAV with time-varying load based on disturbance observer
WU Xiaojing1,ZHENG Wenyan1,WU Xueli1,2,ZHEN Ran1,SHAO Shikai1
(1.School of Electrical Engineering,Hebei University of Science and Technology,shijiazhuang,Hebei 050018,China;2.Hebei Provincial Research Center for Technologies in Process Engineering Automation,Shijiazhuang,Hebei 050018,China)
Abstract:For the quadrotor unmanned aerial vehicle (UAV) system with time-varying load,the compound finite-time control strategy was proposed in the presence of unknown external disturbances and unknown drag coefficients.Firstly,a complete mathematical model of quadrotor UAV was established by Newton-Euler method .An adaptive trajectory tracking controller with unknown drag coefficient was designed by combining the adaptive parameter correction method of position loop with backstepping control to estimate load.Then,a finite-time sliding mode controller and Lyapunov stability theory were used so that the position loop and the attitude loop were proved to be asymptotically stable and finite-time stable,respectively.Finally,it was verified by numerical simulation.The results show that the proposed controller improves the system convergence rate,and reduces the influence of outside disturbance to the system.This method overcomes the limitations of known drag coefficients and load in the existing research,improves the anti-interference ability of the system,and has certain reference value for enhancing the practical application of the quadrotor UAV.
Keywords:
automatic control theory;quadrotor unmanned aerial vehicle (UAV);time-varying load;disturbance observer;backstepping control;sliding mode control
四旋翼無(wú)人機(jī)具有體積小、攜帶方便、使用簡(jiǎn)單、價(jià)格便宜、機(jī)動(dòng)性較強(qiáng)等特點(diǎn)。近年來(lái),其應(yīng)用范圍逐漸從軍事領(lǐng)域擴(kuò)展到民用領(lǐng)域[1]。在工業(yè)生產(chǎn)線巡檢、農(nóng)作物生長(zhǎng)情況監(jiān)測(cè)、實(shí)時(shí)畫面轉(zhuǎn)播、道路監(jiān)管等領(lǐng)域被廣泛使用[2],因此,無(wú)人機(jī)的控制問(wèn)題受到了廣泛關(guān)注。眾所周知,四旋翼無(wú)人機(jī)是一種典型的非線性、欠驅(qū)動(dòng)、強(qiáng)耦合系統(tǒng),又由于其質(zhì)量較小、易受風(fēng)擾動(dòng),給無(wú)人機(jī)在實(shí)際應(yīng)用中的控制問(wèn)題帶來(lái)了巨大挑戰(zhàn)[3]。
針對(duì)四旋翼無(wú)人機(jī)的控制問(wèn)題,傳統(tǒng)的PID控制算法[4-5]、LQR控制算法[6-8]等線性控制方法先后被應(yīng)用于無(wú)人機(jī)控制上,但是這些線性控制方法不能保證無(wú)人機(jī)系統(tǒng)具有較好的控制性能。隨后,反步控制、自適應(yīng)控制、滑??刂频纫幌盗蟹蔷€性控制方法被相繼提出[9-13]。文獻(xiàn)[9]針對(duì)存在參數(shù)不確定性和外部擾動(dòng)的四旋翼無(wú)人機(jī)系統(tǒng),設(shè)計(jì)了基于擾動(dòng)觀測(cè)器的自適應(yīng)滑模控制策略。文獻(xiàn)[10]結(jié)合魯棒自適應(yīng)反推控制方法和快速終端滑??刂品椒?,確保系統(tǒng)的穩(wěn)定性和控制器的魯棒性。文獻(xiàn)[11]研究了一類具有未知外部復(fù)合擾動(dòng)的四旋翼無(wú)人機(jī)姿態(tài)系統(tǒng),提出一種新的指數(shù)式非奇異終端滑??刂?,使系統(tǒng)獲得了較好的控制性能。為了實(shí)現(xiàn)存在參數(shù)不確定性的四旋翼無(wú)人機(jī)系統(tǒng)姿態(tài)軌跡的全局漸近跟蹤,文獻(xiàn)[12]提出了一種自適應(yīng)滑模反推控制方案。文獻(xiàn)[13]針對(duì)存在外部風(fēng)擾的無(wú)人機(jī)系統(tǒng),設(shè)計(jì)了基于非線性擴(kuò)張觀測(cè)器的滑模控制器,并通過(guò)仿真實(shí)驗(yàn),驗(yàn)證了跟蹤誤差的收斂性。然而,上述研究都是針對(duì)具有固定負(fù)載的無(wú)人機(jī)進(jìn)行研究,而在實(shí)際應(yīng)用中,四旋翼無(wú)人機(jī)經(jīng)常被用于運(yùn)輸貨物和噴灑農(nóng)藥等工作,負(fù)載可能是時(shí)變的。
為了解決上述問(wèn)題,文獻(xiàn)[14—16]研究了具有時(shí)變負(fù)載的四旋翼無(wú)人機(jī)的控制方法。其中,文獻(xiàn)[14]為四旋翼無(wú)人機(jī)系統(tǒng)設(shè)計(jì)了一種自適應(yīng)控制器,用來(lái)補(bǔ)償負(fù)載質(zhì)量的不確定性。文獻(xiàn)[15]提出了一種基于反推法的分?jǐn)?shù)滑??刂破饔糜诰哂袝r(shí)變負(fù)載的四旋翼無(wú)人機(jī)系統(tǒng),該控制器實(shí)現(xiàn)了控制系統(tǒng)跟蹤軌跡的漸近穩(wěn)定。文獻(xiàn)[16]基于滑??刂品椒ㄔO(shè)計(jì)了一種魯棒控制方案,實(shí)現(xiàn)了存在時(shí)變負(fù)載的四旋翼無(wú)人機(jī)姿態(tài)跟蹤誤差的漸近穩(wěn)定。
然而,上述研究所提出的控制方法都只能保證四旋翼無(wú)人機(jī)系統(tǒng)漸近穩(wěn)定,即:系統(tǒng)狀態(tài)只有當(dāng)時(shí)間趨近于無(wú)窮大的時(shí)候才能收斂到平衡點(diǎn)。實(shí)際應(yīng)用中,對(duì)四旋翼無(wú)人機(jī)系統(tǒng)收斂的快速性提出了更高的要求,有限時(shí)間控制可以確保狀態(tài)變量在限定的時(shí)間內(nèi)收斂到平衡點(diǎn)。因此,四旋翼無(wú)人機(jī)系統(tǒng)的有限時(shí)間控制研究具有非常重要的意義。文獻(xiàn)[17]針對(duì)四旋翼無(wú)人機(jī)姿態(tài)子系統(tǒng),基于指定姿態(tài)軌跡,提出了一種基于有限時(shí)間控制的姿態(tài)跟蹤算法,但是,此系統(tǒng)阻力系數(shù)已知,而且沒(méi)有考慮位置子系統(tǒng)的控制器設(shè)計(jì)。文獻(xiàn)[18]針對(duì)具有未知外部擾動(dòng)的四旋翼無(wú)人機(jī)系統(tǒng),基于改進(jìn)的Overtorque等效控制算法,提出了一種自適應(yīng)多變量有限時(shí)間穩(wěn)定控制算法,但是沒(méi)有考慮無(wú)人機(jī)的時(shí)變負(fù)載。文獻(xiàn)[19—20]基于擾動(dòng)觀測(cè)器,針對(duì)四旋翼無(wú)人機(jī)設(shè)計(jì)了有限時(shí)間控制器,然而,此研究未考慮阻力系數(shù)未知和時(shí)變負(fù)載對(duì)系統(tǒng)的影響。
基于以上分析,本文面向具有未知外部擾動(dòng)、時(shí)變負(fù)載和未知阻力系數(shù)的四旋翼無(wú)人機(jī)系統(tǒng),分別針對(duì)位置環(huán)和姿態(tài)環(huán),提出了自適應(yīng)反步遞推控制方法和基于擾動(dòng)觀測(cè)器的有限時(shí)間滑??刂品椒?。
1 四旋翼無(wú)人機(jī)數(shù)學(xué)模型
四旋翼無(wú)人機(jī)“Ⅹ”形機(jī)身結(jié)構(gòu)如圖1所示。
無(wú)人機(jī)的4個(gè)旋翼分別由4個(gè)電機(jī)驅(qū)動(dòng),2個(gè)相鄰旋翼的旋轉(zhuǎn)方向相反。Ωii=1,2,3,4為轉(zhuǎn)子的角速度。慣性參考坐標(biāo)系E=ex,ey,ez描述無(wú)人機(jī)相對(duì)于地面的位置變化。機(jī)身固定坐標(biāo)系B=bx,by,bz描述四旋翼的空間位置坐標(biāo)。三維空間中,狀態(tài)變量ξ=x,y,zT和δ=,θ,ψT分別描述無(wú)人機(jī)系統(tǒng)的位置信息和姿態(tài)信息。其中姿態(tài)角,θ,ψ分別代表滾轉(zhuǎn)角、俯仰角、偏航角。根據(jù)設(shè)計(jì)要求,給出姿態(tài)角的范圍(-π/2<<π/2)、(-π/2<θ<π/2)、(-π/2<ψ<π/2)。為了建立準(zhǔn)確并適合于控制器設(shè)計(jì)的數(shù)學(xué)模型,對(duì)四旋翼無(wú)人機(jī)系統(tǒng)進(jìn)行以下假設(shè):
假設(shè)1四旋翼無(wú)人機(jī)是一類剛體;
假設(shè)2四旋翼無(wú)人機(jī)的機(jī)體結(jié)構(gòu)是對(duì)稱的;
假設(shè)3四旋翼無(wú)人機(jī)飛行過(guò)程中,重力加速度不隨位置的變化而變化;
假設(shè)4慣性參考系是地面,機(jī)身重心與剛體固定坐標(biāo)系的原點(diǎn)重合。
3 數(shù)值仿真
為了驗(yàn)證定理1和定理3中所提出的四旋翼無(wú)人機(jī)自適應(yīng)反步控制器和有限時(shí)間滑??刂破鞯挠行院蛢?yōu)越性,采用Matlab軟件進(jìn)行仿真,并在設(shè)計(jì)參數(shù)相同的條件下與不考慮時(shí)變負(fù)載的控制器進(jìn)行對(duì)比。四旋翼無(wú)人機(jī)系統(tǒng)的初始狀態(tài)值設(shè)置為(x,y,z)=(0.1,2.5,2) m和(,θ,ψ)=(0.4π,0.4π,0.4π) rad,選取參考軌跡xd=2cos t,
yd=2sin t,zd=0.5t,ψd=0,
外部擾動(dòng)
機(jī)模型參數(shù)和控制器設(shè)計(jì)參數(shù)分別如表1和表2所示。
為了探究時(shí)變負(fù)載對(duì)控制器的影響,將四旋翼的質(zhì)量和負(fù)載變化模擬為正弦函數(shù),靜態(tài)過(guò)載和指數(shù)下降的連續(xù)狀態(tài),飛行過(guò)程中的負(fù)載變化曲線如圖3所示。相應(yīng)的仿真結(jié)果如圖4—圖8所示。
該系統(tǒng)的三維軌跡圖和各個(gè)方向的投影圖如圖4所示。圖5和圖6分別表示位置子系統(tǒng)和姿態(tài)子系統(tǒng)的跟蹤曲線。位置子系統(tǒng)x,y,z的跟蹤誤差曲線ex=x-xd,ey=y-yd,ez=z-zd和姿態(tài)子系統(tǒng),θ,ψ的跟蹤誤差曲線e=-d,eθ=θ-θd,eψ=ψ-ψd如圖7和圖8所示。由圖4—圖8可知,所設(shè)計(jì)的控制器使得四旋翼無(wú)人機(jī)系統(tǒng)具有較好的跟蹤性能。
擾動(dòng)觀測(cè)器對(duì)外部擾動(dòng)的估計(jì)曲線如圖9所示,觀測(cè)器可以準(zhǔn)確地估計(jì)外部擾動(dòng)。此外,為了驗(yàn)證擾動(dòng)觀測(cè)器對(duì)不同擾動(dòng)的有效性,圖10顯示了擾動(dòng)觀測(cè)器針對(duì)不同外部擾動(dòng)Dx7=1,Dx9=0.2t,Dx11=0.5sin2t的估計(jì)曲線。由圖9和圖10可知,擾動(dòng)觀測(cè)器可以在有限時(shí)間內(nèi)準(zhǔn)確地估計(jì)未知的外部擾動(dòng)。
為了說(shuō)明本文控制方法的優(yōu)越性,與文獻(xiàn)[19]的控制方法進(jìn)行對(duì)比仿真。得到的對(duì)比仿真結(jié)果如圖11—圖12所示。其中,位置子系統(tǒng)軌跡跟蹤曲線如圖11所示,姿態(tài)子系統(tǒng)軌跡跟蹤曲線如圖12所示。由圖11可知,本文提出的控制策略具有更好的跟蹤性能。由圖12可知,本文所提出的有限時(shí)間控制方法可以提高姿態(tài)子系統(tǒng)的跟蹤速度。
4 結(jié) 語(yǔ)
本文針對(duì)具有未知阻力系數(shù)、未知外部擾動(dòng)和時(shí)變負(fù)載的四旋翼無(wú)人機(jī)系統(tǒng)設(shè)計(jì)了位置環(huán)和姿態(tài)環(huán)控制器??紤]了實(shí)際飛行過(guò)程中,四旋翼無(wú)人機(jī)系統(tǒng)同時(shí)具有時(shí)變負(fù)載、未知外部擾動(dòng)和未知阻力系數(shù)的情況,利用自適應(yīng)控制策略,打破了已有研究的局限性,提高了系統(tǒng)的收斂速度和魯棒性;同時(shí),針對(duì)四旋翼無(wú)人機(jī)系統(tǒng)姿態(tài)環(huán),提出了一種新的滑模面。基于所設(shè)計(jì)的滑模面和擾動(dòng)觀測(cè)器,設(shè)計(jì)了有限時(shí)間控制策略,提高了系統(tǒng)的收斂速度,減少了外界擾動(dòng)對(duì)系統(tǒng)的影響。
本文所設(shè)計(jì)的控制器雖然使得系統(tǒng)能夠在有限時(shí)間內(nèi)收斂,但尚未實(shí)現(xiàn)系統(tǒng)狀態(tài)未知時(shí)的有限時(shí)間控制。接下來(lái)需要進(jìn)一步完善數(shù)學(xué)模型和控制器,使四旋翼無(wú)人機(jī)系統(tǒng)能夠?qū)崿F(xiàn)輸出反饋控制,更符合實(shí)際需求,進(jìn)而達(dá)到更好的控制效果。
參考文獻(xiàn)/References:
[1] 方璇,鐘伯成.四旋翼飛行器的研究與應(yīng)用[J].上海工程技術(shù)大學(xué)學(xué)報(bào),2015,29(2):113-118.
FANG Xuan,ZHONG Bocheng.Research and application of four-rotor aircraft[J].Journal of Shanghai University of Engineering Science,2015,29(2):113-118.
[2] PHILLIPS B,HRISHIKESHAVAN V,YEO D,et al.Flight performance of a package delivery quadrotor biplane[C]//7th American Helicopter Society Technical Meeting on VTOL Unmanned Aircraft Systems and Autonomy.[S.l.]:American Helicopter Society International,2017:1-11.
[3] BERGAMASCO M,LOVERA M.Identification of linear models for the dynamics of a hovering quadrotor[J].IEEE Transactions on Control Systems Technology,2014,22(5):1696-1707.
[4] GARCA R A,RUBIO F R,ORTEGA M G.Robust PID control of the quadrotor helicopter[J].IFAC Proceedings Volumes,2012,45(3):229-234.
[5] ZHONGHAO D Y.PID control of four-rotor aircraft based on quaternion[J].Applied Mechanics and Materials,2014,484/485:1071-1075.
[6] ALOTHMAN Y,GUO M H,GU D B.Using iterative LQR to control two quadrotors transporting a cable-suspended load[J].IFAC-Papers-OnLine,2017,50(1):4324-4329.
[7] 王志方,付興建,李同.四旋翼飛行器的LQR優(yōu)化控制[J].傳感器世界,2017,23(3):17-23.
WANG Zhifang,F(xiàn)U Xingjian,LI Tong.LQR optimal control for quadrotor aircraft[J].Sensor World,2017,23(3):17-23.
[8] RYAN T,JIN KIM H.LMI-based gain synthesis for simple robust quadrotor control[J].IEEE Transactions on Automation Science and Engineering,2013,10(4):1173-1178.
[9] WANG B,YU X,MU L X,et al.Disturbance observer-based adaptive fault-tolerant control for a quadrotor helicopter subject to parametric uncertainties and external disturbances[J].Mechanical Systems and Signal Processing,2019,120:727-743.
[10]LABBADI M,CHERKAOUI M.Robust adaptive backstepping fast terminal sliding mode controller for uncertain quadrotor UAV[J].Aerospace Science andTechnology,2019,93.doi:10.1016/j.ast.2019.105306.
[11]LIU H B,WANG H P,SUN J L.Attitude control for QTR using exponential nonsingular terminal sliding mode control[J].Journal of Systems Engineering and Electronics,2019,30(1):191-200.
[12]CHINGOZHA T,NYANDORO O.Adaptive sliding backstepping control of quadrotor UAV attitude[J].IFAC Proceedings Volumes,2014,47(3):11043-11048.
[13]ZHAO L,DAI L W,XIA Y Q,et al.Attitude control for quadrotors subjected to wind disturbances via active disturbance rejection control and integral sliding mode control[J].Mechanical Systems and Signal Processing,2019,129:531-545.
[14]DAI S C,LEE T,BERNSTEIN D S.Adaptive control of a quadrotor UAV transporting a cable-suspended load with unknown mass[C]//53rd IEEE Conference on Decision and Control.[S.l.]:IEEE,2014:6149-6154.
[15]VAHDANIPOUR M,KHODABANDEH M.Adaptive fractional order sliding mode control for a quadrotor with a varying load[J].Aerospace Science and Technology,2019,86:737-747.
[16]WU X W,XIAO B,QU Y H.Modeling and sliding mode-based attitude tracking control of a quadrotor UAV with time-varying mass[J/OL].ISA Transactions.[2019-08-17].https://pubmed.ncbi.nlm.nih.gov/31439392/.
[17]ZHANG J,DU H B,ZHU W W,et al.Attitude trajectory planning and finite-time attitude tracking control for a quadrotor aircraft[C]//IECON 2018-44th Annual Conference of the IEEE Industrial Electronics Society.[S.l.]:IEEE,2018:6167-6171.
[18]TIAN B L,CUI J,LU H C,et al.Adaptive finite-time attitude tracking of quadrotors with experiments and comparisons[J].IEEE Transactions on Industrial Electronics,2019,66(12):9428-9438.
[19]WANG N,DENG Q,XIE G M,et al.Hybrid finite-time trajectory tracking control of a quadrotor[J].ISA Transactions,2019,90:278-286.
[20]SHARMA M,KAR I.Finite time disturbance observer based geometric control of quadrotors[J].IFAC-PapersOnLine,2020,53(1):295-300.
[21]SHEN Y J,HUANG Y H.Uniformly observable and globally Lipschitzian nonlinear systems admit global finite-time observers[J].IEEE Transactions on Automatic Control,2009,54(11):2621-2625.
[22]SHTESSEL Y B,SHKOLNIKOV I A,LEVANT A.Smooth second-order sliding modes:Missile guidance application[J].Automatica,2007,43(8):1470-1476.
[23]ZHANG J Q,GU D W,REN Z H,et al.Robust trajectory tracking controller for quadrotor helicopter based on a novel composite control scheme[J].Aerospace Science and Technology,2019,85:199-215.
收稿日期:2021-04-21;修回日期:2021-09-10;責(zé)任編輯:馮 民
基金項(xiàng)目:國(guó)家自然科學(xué)基金(62003129,61903122);河北省研究生創(chuàng)新資助項(xiàng)目(CXZZSS2021098);國(guó)防基礎(chǔ)計(jì)劃研究項(xiàng)目;河北省重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(19250801D)
第一作者簡(jiǎn)介:武曉晶(1985—),女,河北石家莊人,副教授,博士,主要從事非線性系統(tǒng)控制及無(wú)人機(jī)自主飛行控制、協(xié)同控制方面的研究。
通訊作者:甄 然教授。E-mail:zhenranzr@126.com
武曉晶,鄭文棪,吳學(xué)禮,等.
基于擾動(dòng)觀測(cè)器的時(shí)變負(fù)載四旋翼無(wú)人機(jī)自適應(yīng)有限時(shí)間控制
[J].河北科技大學(xué)學(xué)報(bào),2021,42(6):579-590.
WU Xiaojing,ZHENG Wenyan,WU Xueli,et al.
Adaptive finite-time control for quadrotor UAV with time-varying load based on disturbance observer
[J].Journal of Hebei University of Science and Technology,2021,42(6):579-590.