徐建華,江 萍,鄧 炯
1.昆明醫(yī)科大學(xué)病理學(xué)與病理生理學(xué)系,昆明650032;2.上海交通大學(xué)基礎(chǔ)醫(yī)學(xué)院病理生理系細(xì)胞分化與凋亡教育部重點(diǎn)實(shí)驗(yàn)室,上海200025
肺癌是全球發(fā)病率和死亡率最高的癌癥,且患病率逐年上升。肺癌包括非小細(xì)胞肺癌(non small-cell lung cancer,NSCLC)和小細(xì)胞肺癌(small-cell lung cancer,SCLC),其中NSCLC 約占所有肺癌病例的85%[1-2]。肺癌患者中約75%的患者在晚期才被診斷,而此時(shí)已發(fā)生繼發(fā)性多器官轉(zhuǎn)移,故5年生存率極低[3]。肺癌細(xì)胞的干性和多藥耐藥性是該病常規(guī)化學(xué)治療(化療)難以治愈以及高復(fù)發(fā)率的主要原因[4]。為了克服耐藥,臨床上常常采用增大藥物劑量的治療方案。但該策略卻產(chǎn)生大量的不良反應(yīng),仍不能有效改善臨床預(yù)后。因此,揭示和闡明肺癌細(xì)胞耐藥的分子機(jī)制,尋找并設(shè)計(jì)有效的藥物靶點(diǎn),或成為改善肺癌患者的個(gè)體化治療效果、提高患者治愈率和生存率的關(guān)鍵。ATP 結(jié)合盒(ATP-binding cassette,ABC)蛋白家族,如ABC 蛋白G 超家族成員2(ABC superfamily G member 2,ABCG2),與肺癌細(xì)胞的干性和耐藥性緊密相關(guān)[5-6]。ABCG2 表達(dá)增加可促進(jìn)細(xì)胞對藥物及其代謝產(chǎn)物的外排,從而保護(hù)癌細(xì)胞免受抗癌藥物的毒性作用,最終導(dǎo)致肺癌細(xì)胞高度耐藥。ABCG2 的異常高表達(dá)與肺癌的不良預(yù)后呈正相關(guān)[7]。本文對近年來ABCG2 與肺癌干性及耐藥性的相關(guān)研究進(jìn)展進(jìn)行綜述。
ABC 蛋白家族成員眾多,其中參與腫瘤多藥耐藥的亞家族有ABCB、ABCC、ABCG 等。該家族蛋白可通過利用水解ATP 將各種藥物從細(xì)胞質(zhì)內(nèi)轉(zhuǎn)運(yùn)到細(xì)胞外,如抗癌藥物(米托蒽酮、托泊替康和氨甲蝶呤)、抗生素(西咪替丁、哌唑嗪和氟喹諾酮)、光毒素、血紅素/卟啉和酪氨酸激酶抑制劑等。其中,ABCG2 蛋白的作用最為顯著。ABCG2 又稱為乳腺癌耐藥蛋白(breast cancer resistance protein,BCRP),最初由Doyle 等[8]于1998 年從乳腺癌細(xì)胞中發(fā)現(xiàn);該乳腺癌細(xì)胞具有一定的耐藥性,但并不表達(dá)ABCB1 和ABCC。ABCG2基因位于染色體4q22位點(diǎn),由16個(gè)外顯子和15個(gè)內(nèi)含子組成,其編碼的蛋白質(zhì)含有655 個(gè)氨基酸。ABCG2 蛋白是由2 個(gè)轉(zhuǎn)運(yùn)體組成的同源二聚體,具有相同的亞單位,也稱為半轉(zhuǎn)運(yùn)體,其含有1 個(gè)參與藥物結(jié)合和外排的跨膜結(jié)構(gòu)域(transmembrane domain,TMD)和1 個(gè)參與ATP 水解和結(jié)合的核苷酸結(jié)合域(nucleotide binding domain,NBD)。與其他家族分子半轉(zhuǎn)運(yùn)體通常表達(dá)在細(xì)胞內(nèi)膜上不同,ABCG2 主要定位于細(xì)胞膜上。正常情況下ABCG2 分布廣泛,在各種組織和器官中均有表達(dá),但在癌細(xì)胞中表達(dá)明顯增加[9-10]。
迄今為止,肺癌細(xì)胞中ABCG2 表達(dá)調(diào)控的具體分子機(jī)制尚不清楚。目前已知的ABCG2 表達(dá)增高的主要機(jī)制包括轉(zhuǎn)錄因子異常、肺癌酸性微環(huán)境改變、抗癌藥物誘導(dǎo)及原癌基因信號(hào)通路激活等。例如Yes 相關(guān)蛋白1(yes-associated protein 1,YAP1)是Hippo 通路的主要轉(zhuǎn)錄因子,在調(diào)控器官發(fā)育和腫瘤發(fā)生中發(fā)揮重要作用。Dai 等[11]發(fā)現(xiàn)ABCG2 和YAP1 在肺癌側(cè)群細(xì)胞(side population cells,SP)中均呈異常高表達(dá)。在肺癌細(xì)胞中,敲減YAP1可降低ABCG2 的蛋白表達(dá),進(jìn)而顯著降低SP在肺癌細(xì)胞中的比例和成球率;而過表達(dá)YAP1可導(dǎo)致ABCG2 表達(dá)異常增加及SP 比例增加。肺癌發(fā)生發(fā)展過程中常伴隨缺氧引起的腫瘤酸性微環(huán)境的形成。Hu等[12]發(fā)現(xiàn),酸化的腫瘤微環(huán)境可通過激活磷脂酰肌醇3激酶(phosphatidylinositol 3 kinase,PI3K)/蛋白激酶B(protein kinase B,AKT)/哺乳動(dòng)物雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)/S6 通路,進(jìn)而顯著增加ABCG2 和髓細(xì)胞白血病1 (myeloid cell leukemia sequence 1,MCL1)的表達(dá),導(dǎo)致多藥耐藥性形成。Ke等[4]發(fā)現(xiàn),抗癌藥物喜樹堿和順鉑不僅可誘導(dǎo)激活共濟(jì)失調(diào)毛細(xì)血管擴(kuò)張突變基因(ataxia telangiectasia-mutated gene,ATM)和核因子κB(nuclear factor-κB,NF-κB)信號(hào)通路,而且還可增加ABCG2基因的表達(dá)。礦塵誘導(dǎo)基因(mineral dust-induced gene,MDIG)是一種與肺癌相關(guān)的原癌基因,在腫瘤發(fā)生過程中起到重要作用。Wang 等[13]的研究表明,MDIG 通過激活β-catenin/Wnt 信號(hào)通路可顯著提高ABC 蛋白(ABCB1、ABCC1 和ABCG2)在肺癌細(xì)胞中的表達(dá),導(dǎo)致肺腺癌細(xì)胞對順鉑類藥物產(chǎn)生耐藥性。綜上所述,揭示ABCG2 表達(dá)的分子調(diào)控機(jī)制對于提高肺癌細(xì)胞的藥物敏感性和改善肺癌治療效果具有重要意義。
細(xì)胞群中有一小部分細(xì)胞被定義為癌癥起始細(xì)胞或癌干細(xì)胞,參與了癌細(xì)胞的耐藥性、轉(zhuǎn)移和癌癥復(fù)發(fā)。SP 被認(rèn)為是富集癌干細(xì)胞的一類群細(xì)胞。Zhou 等[14]首次證明ABCG2 是SP 表型的分子決定因素。Dai 等[11]發(fā)現(xiàn),YAP1 在肺癌中異常高表達(dá)導(dǎo)致ABCG2 表達(dá)上調(diào),SP 比例增加及成球率增加。Yang 等[15]發(fā)現(xiàn),氧化還原感受轉(zhuǎn)錄因子2(nuclear factor-E2-related factor 2,Nrf2)介導(dǎo)了肺腺癌SP 中ABCG2 的表達(dá)上調(diào),而后者可能是導(dǎo)致化療失敗的主要原因。肺癌細(xì)胞中包含2.9%的SP,且Nrf2 和ABCG2 在SP 中均異常高表達(dá),經(jīng)維拉帕米治療后,SP 比例可降低至0.3%。Singh 等[16]在對ABCG25′啟動(dòng)子側(cè)翼區(qū)域的分析中發(fā)現(xiàn):-431~-420 bp 之間存在的抗氧化反應(yīng)元件(anti-oxidative response element,ARE)是肺癌細(xì)胞中Nrf2誘導(dǎo)ABCG2表達(dá)的關(guān)鍵;抑制Nrf2 可有效降低ABCG2 表達(dá)和SP 比例,并增強(qiáng)腫瘤細(xì)胞對化療藥物米托蒽醌和拓?fù)涮婵档拿舾行?。因此,Nrf2 介導(dǎo)的ABCG2 表達(dá)增加維持了SP 的穩(wěn)定,并賦予了其化療耐藥性,在SP 的形成和多種癌癥常規(guī)化療耐藥方面發(fā)揮著十分重要的作用。
一般認(rèn)為,CD133、CD44、CD24、NANOG、乙酰脫氫酶家族成員A1(aldehyde dehydrogenase 1 family member A1,ALDHlAl)和八聚體結(jié)合轉(zhuǎn)錄因子4(octamer binding transcription factor 4,OCT4)等是肺癌干性標(biāo)志物。現(xiàn)在,越來越多的研究將ABCG2也作為一種干性標(biāo)志物。肺癌干細(xì)胞中高水平的CD133和ABCG2可增強(qiáng)腫瘤細(xì)胞的增殖、克隆形成、侵襲能力和順鉑耐藥性[17-18];抗癌藥環(huán)丙沙星處理不僅可增加NSCLC的干性樣特征,同時(shí)可促進(jìn)CD133、CD44、ABCG2和ALDH1A1的高表達(dá)[19];慢性的細(xì)顆粒物(particulate matter 2.5,PM2.5)暴露可誘導(dǎo)癌干細(xì)胞特性,表現(xiàn)為細(xì)胞表面標(biāo)志物(CD44、ABCG2)表達(dá)增加、自我更新基因(SOX2、OCT4)表達(dá)增加、SP比例增多、成瘤能力增加[20];鐵處理NSCLC細(xì)胞系H460和H292可顯著增加其類干性特征,同時(shí)伴隨著ABCG2 表達(dá)水平的明顯升高[21]。盡管越來越多的研究者將ABCG2視為肺癌干性標(biāo)志物,但也有研究發(fā)現(xiàn),ABCG2并不是肺癌干性的直接標(biāo)志物。例如,Miranda-Lorenzo等[22]發(fā)現(xiàn),在具有干細(xì)胞特征的ABCG2陽性肺癌細(xì)胞中,ABCG2在其囊泡膜上表達(dá)并通過聚集核黃素導(dǎo)致出現(xiàn)自發(fā)熒光;而在質(zhì)膜上也表達(dá)ABCG2的肺癌細(xì)胞,沒有出現(xiàn)自發(fā)熒光,也無干性特征;該研究認(rèn)為,ABCG2的表達(dá)量與癌干細(xì)胞的干細(xì)胞樣表型并無直接關(guān)系,而ABCG2在亞細(xì)胞的定位與之功能有重要關(guān)系。總之,ABCG2參與調(diào)控細(xì)胞干性的具體作用機(jī)制及其是否可作為肺癌干性標(biāo)志物還有待進(jìn)一步揭示。
基因的單核苷酸多態(tài)性會(huì)影響藥物干預(yù)后的藥物反應(yīng)和毒性。Cui 等[23]對490 例接受鉑類為基礎(chǔ)的化療方案的NSCLC 患者進(jìn)行研究,對其504 個(gè)基因進(jìn)行基因分型 發(fā) 現(xiàn) ,ABCG2rs2231142 和 羧 酸 酯 酶 5A(carboxylesterase 5A,CES5A)rs3859104 與化療藥物產(chǎn)生的毒性作用顯著相關(guān)(OR=8.044,P=0.000)。Campa等[24]發(fā)現(xiàn),ABCG2rs717620 與化療不良反應(yīng)相關(guān),與SCLC 患者較短的無進(jìn)展生存期和總生存期密切相關(guān),但與NSCLC 患者無進(jìn)展生存期和總生存期無關(guān)。這提示ABCG2的單核苷酸多態(tài)性是影響SCLC 化療后生存的重要因素。Chen 等[25]對100 例晚期NSCLC 患者的ABCG2基因進(jìn)行基因分型(34 G/A、421 C/A、1 143 C/T 和-15 622 C/T)發(fā)現(xiàn):ABCG2的34 G/A、421 C/A和1 143 C/T多態(tài)性出現(xiàn)的頻率更高(P<0.05),而ABCG2的-15 622 C/T多態(tài)性與臨床特征無明顯相關(guān)性(P>0.05)。ABCG2基因34 G/A多態(tài)性與患者的總生存率有關(guān),其中GG基因型患者的總生存率明顯低于GA 或AA 基因型患者(P<0.05);ABCG2的421 C/A多態(tài)性和1 143 C/T多態(tài)性的總生存率差異無統(tǒng)計(jì)學(xué)意義(P>0.05)。因此,該研究認(rèn)為,ABCG2基因(34 G/A 多態(tài)性)可能是NSCLC 患者酪氨酸激酶抑制劑(tyrosine kinase inhibitor,TKI)治療臨床結(jié)果的預(yù)測指標(biāo)。Limviphuvadh等[26]對90例NSCLC患者進(jìn)行吉西他濱藥理通路基因的單核苷酸多態(tài)性分析,發(fā)現(xiàn)了ABCG2的Q141K(rs2231142)與患者延長的無進(jìn)展生存期顯著相關(guān)(P<0.05)。可見,ABCG2的單核苷酸多態(tài)性可能影響肺癌患者的藥物反應(yīng)性和預(yù)后。因此,ABCG2的單核苷酸多態(tài)性分析可能為肺癌臨床治療提供新策略。
由于ABCG2 表達(dá)上調(diào)可增強(qiáng)肺癌細(xì)胞的多藥耐藥性和干性,因此靶向ABCG2 有望逆轉(zhuǎn)癌癥的多藥耐藥現(xiàn)象。目前,關(guān)于ABCG2 抑制劑在肺癌應(yīng)用的研究還相對較少。已知的ABCG2 抑制劑及其作用包括:①表皮生長因子受體(epidermal growth factor receptor,EGFR)抑制劑可通過直接靶向ABCG2 發(fā)揮抑制效應(yīng)。例如,吉非替尼具有ABCB1/ABCG2 的競爭性作用,可有效抑制ABCG2 的活性[27-28]。PD153035 可顯著下調(diào)ABCG2 的表達(dá),有效逆轉(zhuǎn)ABCG2 介導(dǎo)的肺癌多藥耐藥;PD153035和拓?fù)涮婵德?lián)合用藥可協(xié)同抑制小鼠移植人肺癌細(xì)胞H460/MX20 的致瘤性[29]。奧姆替尼不僅可直接與ABCG2 相互作用,而且是該轉(zhuǎn)運(yùn)蛋白的競爭性抑制劑[30]。②利血平可抑制ABCG2 活性,增加抗癌藥拓?fù)涮婵翟贖23/SN-38 肺癌細(xì)胞中的累積[31]。③染料木黃酮作為一種植物雌激素,通過競爭性抑制ABCG2 活性,阻止熒光光敏劑原卟啉Ⅸ(protoporphyrin Ⅸ,PpⅨ)從肺癌細(xì)胞中泵出,進(jìn)而實(shí)現(xiàn)更好的療效[32]。④煙曲酶毒素C(fumitremorgin C,F(xiàn)TC)可逆轉(zhuǎn)ABCG2過表達(dá)引起的A431/ABCG2 細(xì)胞的耐藥性,增加其對光敏素光學(xué)療法的敏感性[33]。⑤Ko143聯(lián)合ABCB1抑制劑,不僅可有效改善肺癌的腦轉(zhuǎn)移,也可改善ABCB1 或ABCG2 過表達(dá)導(dǎo)致的對色瑞替尼產(chǎn)生的耐藥性,提升治療效果[34]。⑥依克立達(dá)可同時(shí)靶向ABCB1 和ABCG2,與克唑替尼聯(lián)合用藥可提高克唑替尼對NSCLC 腦轉(zhuǎn)移的治療效果[35]。⑦HhAntag691 不僅是ABCG2 和ABCB1 的有效抑制劑,對ABCC1 也有抑制作用。HhAntag691 處理ABCG2 過表達(dá)的人NSCLC 細(xì)胞NCI-H460/par 和NCIH460/MX20,可以明顯增強(qiáng)其對抗癌藥物米托蒽醌、拓?fù)涮婵祷騍N-38的敏感性[36]。⑧拉帕替尼可有效逆轉(zhuǎn)H460/MX20細(xì)胞對米托蒽醌和拓?fù)涮婵档哪退幮裕?7]。以上研究表明,許多臨床藥物很可能通過抑制ABCG2 活性來發(fā)揮抗癌作用。然而,其他ABCG2 抑制劑是否有望應(yīng)用于肺癌治療或者逆轉(zhuǎn)肺癌細(xì)胞耐藥性還有待進(jìn)一步研究。
越來越多的證據(jù)表明,ABCG2 在肺癌中的異常高表達(dá)是導(dǎo)致肺癌多藥耐藥和復(fù)發(fā)率高的主要原因。但對于ABCG2 是否可作為肺癌干細(xì)胞標(biāo)志物目前仍無明確結(jié)論。許多抗腫瘤藥物來自于天然產(chǎn)物,而ABCG2 轉(zhuǎn)運(yùn)蛋白的存在為腫瘤細(xì)胞提供了天然的保護(hù)機(jī)制,使其能夠抵抗化療的作用。目前正在開發(fā)新的ABCG2 抑制劑,以期克服腫瘤細(xì)胞耐藥性。目前臨床上使用的伊立替康和拓?fù)涮婵担ň鶠橄矘鋲A類似物)是ABCG2 的底物,但并不能克服ABCG2 異常高表達(dá)導(dǎo)致的肺癌細(xì)胞的耐藥性;而FL118(喜樹堿衍生物)不是ABCG2 的底物,其作用不受ABCG2 表達(dá)的影響,可有效克服ABCG2 介導(dǎo)的肺癌細(xì)胞耐藥[38]。這提示相比使用ABCG2 抑制劑,那些不受ABCG2 表達(dá)影響的抗腫瘤藥物可以克服ABCG2 導(dǎo)致的耐藥性,可能成為一種更有效的治療選擇,但仍有待于臨床研究的證實(shí)。
參·考·文·獻(xiàn)
[1] Ke B, Wei T, Huang Y, et al. Interleukin-7 resensitizes non-small-cell lung cancer to cisplatinviainhibition of ABCG2[J]. Mediators Inflamm, 2019,2019:7241418.
[2] Kovacsics D, Brózik A, Tihanyi B, et al. Precision-engineered reporter cell lines reveal ABCG2 regulation in live lung cancer cells[J]. Biochem Pharmacol,2020,175:113865.
[3] Barton MK. Adjuvant chemotherapy benefits older and younger non-small cell lung cancer patients alike[J]. CA Cancer J Clin,2012,62(5):279-280.
[4] Ke SZ, Ni XY, Zhang YH, et al. Camptothecin and cisplatin upregulate ABCG2 and MRP2 expression by activating the ATM/NF-κB pathway in lung cancer cells[J]. Int J Oncol,2013,42(4):1289-1296.
[5] Ding XW, Wu JH, Jiang CP. ABCG2: a potential marker of stem cells and novel target in stem cell and cancer therapy[J]. Life Sci, 2010, 86(17/18):631-637.
[6] Monzo M,Rosell R,Taron M. Drug resistance in non-small cell lung cancer[J].Lung Cancer,2001,34:S91-S94.
[7] Yoh K, Ishii G, Yokose T, et al. Breast cancer resistance protein impacts clinical outcome in platinum-based chemotherapy for advanced non-small cell lung cancer[J]. Clin Cancer Res,2004,10(5):1691-1697.
[8] Doyle LA, Yang WD,Abruzzo LV, et al. A multidrug resistance transporter from human MCF-7 breast cancer cells[J]. Proc Natl Acad Sci USA, 1998,95(26):15665-15670.
[9] Chen LM, Manautou JE, Rasmussen TP, et al. Development of precision medicine approaches based on inter-individual variability of BCRP/ABCG2[J].Acta Pharm Sin B,2019,9(4):659-674.
[10] Lusvarghi S, Robey RW, Gottesman MM, et al. Multidrug transporters:recent insights from cryo-electron microscopy-derived atomic structures and animal models[J]. F1000Res,2020,9(F1000 Faculty Rev):17.
[11] Dai YY, Liu S, Zhang WQ, et al. YAP1 regulates ABCG2 and cancer cell side population in human lung cancer cells[J]. Oncotarget,2017,8(3):4096-4109.
[12] Hu CF,Huang YY,Wang YJ,et al. Upregulation of ABCG2viathe PI3K-Akt pathway contributes to acidic microenvironment-induced cisplatin resistance in A549 and LTEP-a-2 lung cancer cells[J]. Oncol Rep,2016,36(1):455-461.
[13] Wang Q,Geng F,Zhou H,et al. MDIG promotes cisplatin resistance of lung adenocarcinoma by regulating ABC transporter expressionviaactivation of the WNT/β-catenin signaling pathway[J]. Oncol Lett, 2019, 18(4): 4294-4307.
[14] Zhou S, Schuetz JD, Bunting KD, et al. The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype[J]. Nat Med, 2001, 7(9):1028-1034.
[15] Yang B, Ma YF, Liu Y. Elevated expression of Nrf-2 and ABCG2 involved in multidrug resistance of lung cancer SP cells[J]. Drug Res (Stuttg), 2015,65(10):526-531.
[16] Singh A,Wu HL,Zhang P,et al. Expression of ABCG2(BCRP)is regulated by Nrf-2 in cancer cells that confers side population and chemoresistance phenotype[J]. Mol Cancer Ther,2010,9(8):2365-2376.
[17] Summer R, Kotton DN, Sun X, et al. Side population cells and Bcrp1 expression in lung[J]. Am J Physiol Lung Cell Mol Physiol, 2003, 285(1):L97-L104.
[18] Zhao WS, Luo Y, Li BY, et al. Tumorigenic lung tumorospheres exhibit stem-like features with significantly increased expression of CD133 and ABCG2[J]. Mol Med Rep,2016,14(3):2598-2606.
[19] Phiboonchaiyanan PP, Kiratipaiboon C, Chanvorachote P. Ciprofloxacin mediates cancer stem cell phenotypes in lung cancer cells through caveolin-1-dependent mechanism[J]. Chem Biol Interact,2016,250:1-11.
[20] Wei HY, Liang F, Cheng W, et al. The mechanisms for lung cancer risk of PM2.5: induction of epithelial-mesenchymal transition and cancer stem cell properties in human non-small cell lung cancer cells[J]. Environ Toxicol,2017,32(11):2341-2351.
[21] Chanvorachote P, Luanpitpong S. Iron induces cancer stem cells and aggressive phenotypes in human lung cancer cells[J]. Am J Physiol Cell Physiol,2016,310(9):C728-C739.
[22] Miranda-Lorenzo I, Dorado J, Lonardo E, et al. Intracellular autofluorescence: a biomarker for epithelial cancer stem cells[J]. Nat Methods,2014,11(11):1161-1169.
[23] Cui JJ, Wang LY, Zhu T, et al. Gene-gene and gene-environment interactions influence platinum-based chemotherapy response and toxicity in non-small cell lung cancer patients[J]. Sci Rep,2017,7(1):5082.
[24] Campa D, Müller P, Edler L, et al. A comprehensive study of polymorphisms in ABCB1, ABCC2 and ABCG2 and lung cancer chemotherapy response and prognosis[J]. Int J Cancer,2012,131(12):2920-2928.
[25] Chen XQ, Chen DD, Yang SY, et al. Impact of ABCG2 polymorphisms on the clinical outcome of TKIs therapy in Chinese advanced non-small-cell lung cancer patients[J]. Cancer Cell Int,2015,15:43.
[26] Limviphuvadh V,Tan CS, Konishi F, et al. Discovering novel SNPs that are correlated with patient outcome in a Singaporean cancer patient cohort treated with gemcitabine-based chemotherapy[J]. BMC Cancer,2018,18(1):555.
[27] To KK, Poon DC, Wei YM, et al. Pelitinib (EKB-569) targets the upregulation of ABCB1 and ABCG2 induced by hyperthermia to eradicate lung cancer[J]. Br J Pharmacol,2015,172(16):4089-4106.
[28] Galetti M, Petronini PG, Fumarola C, et al. Effect of ABCG2/BCRP expression on efflux and uptake of gefitinib in NSCLC cell lines[J]. PLoS One,2015,10(11):e0141795.
[29] Zhang GN, Zhang YK, Wang YJ, et al. Epidermal growth factor receptor(EGFR) inhibitor PD153035 reverses ABCG2-mediated multidrug resistance in non-small cell lung cancer:in vitroandin vivo[J]. Cancer Lett, 2018,424:19-29.
[30] Zhang W,Fan YF,Cai CY,et al. Olmutinib(BI1482694/HM61713),a novel epidermal growth factor receptor tyrosine kinase inhibitor, reverses ABCG2-mediated multidrug resistance in cancer cells[J]. Front Pharmacol, 2018, 9:1097.
[31] Bessho Y, Oguri T, Achiwa H, et al. Role of ABCG2 as a biomarker for predicting resistance to CPT-11/SN-38 in lung cancer[J]. Cancer Sci, 2006,97(3):192-198.
[32] Fujita H,Nagakawa K,Kobuchi H,et al. Phytoestrogen suppresses efflux of the diagnostic marker protoporphyrin Ⅸin lung carcinoma[J]. Cancer Res,2016,76(7):1837-1846.
[33] Usuda J, Tsunoda Y, Ichinose S, et al. Breast cancer resistant protein(BCRP) is a molecular determinant of the outcome of photodynamic therapy(PDT) for centrally located early lung cancer[J]. Lung Cancer, 2010, 67(2):198-204.
[34] Kort A,Sparidans RW,Wagenaar E,et al. Brain accumulation of the EML4-ALK inhibitor ceritinib is restricted by P-glycoprotein (P-gp/ABCB1) and breast cancer resistance protein (BCRP/ABCG2)[J]. Pharmacol Res, 2015,102:200-207.
[35] Tang SC, Nguyen LN, Sparidans RW, et al. Increased oral availability and brain accumulation of the ALK inhibitor crizotinib by coadministration of the P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2)inhibitor elacridar[J]. Int J Cancer,2014,134(6):1484-1494.
[36] Zhang YM, Laterra J, Pomper MG. Hedgehog pathway inhibitor HhAntag691 is a potent inhibitor of ABCG2/BCRP and ABCB1/P-gp[J].Neoplasia,2009,11(1):96-101.
[37] Zhang W, Chen Z, Chen LK, et al. ABCG2-overexpressing H460/MX20 cell xenografts in athymic nude mice maintained original biochemical and cytological characteristics[J]. Sci Rep,2017,7:40064.
[38] Westover D, Ling X, Lam H, et al. FL118, a novel camptothecin derivative,is insensitive to ABCG2 expression and shows improved efficacy in comparison with irinotecan in colon and lung cancer models with ABCG2-induced resistance[J]. Mol Cancer,2015,14:92.