劉童童 王宇陽(yáng) 王倩 冒慧敏 占永立
摘要 目的:探討緩衰方對(duì)慢性腎臟病(CKD)心腎保護(hù)作用的機(jī)制。方法:基于中藥系統(tǒng)藥理學(xué)數(shù)據(jù)庫(kù)與分析平臺(tái)(TCMSP)檢索緩衰方中5味中藥的有效活性成分并獲得相應(yīng)的預(yù)測(cè)靶點(diǎn);通過(guò)GEO數(shù)據(jù)庫(kù)、GeneCards數(shù)據(jù)庫(kù)和人類孟德?tīng)栠z傳數(shù)據(jù)庫(kù)(OMIM)檢索與CKD和心血管疾?。–VD)相關(guān)的靶點(diǎn),并對(duì)藥物靶點(diǎn)和疾病靶點(diǎn)進(jìn)行映射取交集作為緩衰方對(duì)CKD患者心腎保護(hù)作用的關(guān)鍵靶點(diǎn)。基于String數(shù)據(jù)庫(kù)對(duì)關(guān)鍵靶點(diǎn)進(jìn)行蛋白質(zhì)-蛋白質(zhì)相互作用(PPI)網(wǎng)絡(luò)分析,并通過(guò)拓?fù)浞治龅玫骄徦シ綄?duì)CKD患者心腎保護(hù)作用的核心靶點(diǎn),基于autodock軟件對(duì)緩衰方的活性成分和核心靶點(diǎn)作分子對(duì)接,分析成分和靶點(diǎn)的結(jié)合能力。并對(duì)關(guān)鍵靶點(diǎn)進(jìn)行基因本體(GO)富集分析和京都基因和基因組百科全書(KEGG)通路富集分析。結(jié)果:共得到緩衰方有效活性成分105種,預(yù)測(cè)靶點(diǎn)135個(gè),得到CKD疾病相關(guān)靶點(diǎn)1 436個(gè),CVD疾病相關(guān)靶點(diǎn)744個(gè)。共得到緩衰方對(duì)CKD心腎保護(hù)作用的關(guān)鍵靶點(diǎn)53個(gè),拓?fù)浞治龅玫胶诵陌悬c(diǎn)18個(gè),分子對(duì)接結(jié)果顯示緩衰方的11個(gè)活性成分和10個(gè)核心靶點(diǎn)平均最低結(jié)合能為-6.58 kcal/mol,其中豆甾醇、槲皮素與PTGS2靶點(diǎn)蛋白結(jié)合能最高。共得到對(duì)氧含量的反應(yīng)、細(xì)胞對(duì)藥物的反應(yīng)、循環(huán)系統(tǒng)中的血管過(guò)程等1 275個(gè)GO富集結(jié)果和低氧誘導(dǎo)因子-1(HIF-1)信號(hào)通路、腫瘤壞死因子(TNF)信號(hào)通路、白細(xì)胞介素-17(IL-17)信號(hào)通路等76條KEGG信號(hào)通路。結(jié)論:緩衰方通過(guò)多成分、多靶點(diǎn)、多信號(hào)通路途徑實(shí)現(xiàn)對(duì)CKD的心腎保護(hù)作用。
關(guān)鍵詞 網(wǎng)絡(luò)藥理學(xué);緩衰方;慢性腎臟病;心血管疾病;活性成分;靶點(diǎn);信號(hào)通路;作用機(jī)制
Abstract Objective:To explore the mechanism of the heart and kidney protective effect of Huan Shuai Formula on the chronic kidney disease(CKD).Methods:We searched for targets related to CKD and Cardiovascular Disease(CVD) through GEO database,GeneCards database and Human Mendelian Inheritance Database(OMIM),and map drug targets and disease targets to take the intersection as a slowing down prescription as the key target of cardio-renal protection in CKD patients.The protein-protein interaction(PPI) network analysis of key targets was based on the String database,and topological analysis was used to obtain the core targets of the heart and kidney protection of CKD patients.Based on the autodock software,molecular docking of the active ingredients and core targets of the Huan Shuai formula was performed,and the binding ability of the ingredients and the targets was analyzed.And we carried out GO(Gene Ontology) biological process enrichment analysis and Genome Encyclopedia(KEGG) pathway enrichment analysis for key targets.Results:A total of 105 active components,135 predicted targets,1 436 CKD disease related targets and 744 CVD disease related targets were obtained.A total of 53 key targets for the cardio-renal protection of CKD by Yan shuai Formula were obtained,and 18 core targets were obtained by topological analysis.The molecular docking results showed that the average minimum binding energy of 11 active ingredients and 10 core targets of Yan Shuai Formula was-6.58 kcal/mol,of which stigmasterol and quercetin had the highest binding energy to PTGS2 target protein.A total of 1275 GO enrichment results,hypoxia inducible Factor-1(HIF-1) signaling pathway,Tumor Necrosis Factor(TNF) signaling pathway,Interleukin-17(Interleukin-17,IL-17),the 76 KEGG signal pathways were obtained.Conclusion:Huan Shuai Formula can protect the heart and kidney function of CKD through multi-component,multi-target and multi signal pathway.
Keywords Network pharmacology; Huan Shuai Formula; Chronic kidney disease; Cardiovascular disease; Active components; Targets; Signaling pathway; Mechanism
中圖分類號(hào):R242;R692文獻(xiàn)標(biāo)識(shí)碼:Adoi:10.3969/j.issn.1673-7202.2021.20.004
慢性腎臟?。–hronic Kidney Disease,CKD)已成為全球共同關(guān)注的公共衛(wèi)生問(wèn)題,全世界超過(guò)13.4%的成年人患有CKD[1]。在我國(guó),成年人CKD的發(fā)病率約為10.8%[2]。心血管疾?。–ardiovascular Disease,CVD)為CKD常見(jiàn)的并發(fā)癥,超過(guò)64.5%的CKD患者患有不同程度的CVD,約為健康人群的2~4倍[3-4]。有研究表明,隨著CKD的進(jìn)展,CVD的發(fā)生風(fēng)險(xiǎn)顯著增加,終末期腎臟疾?。‥nd Stage Renal Disease,ESRD)患者CVD的發(fā)生率可達(dá)80%[5]。CKD患者血脂異常、血壓控制不佳等傳統(tǒng)CVD危險(xiǎn)因素導(dǎo)致動(dòng)脈硬化和心肌重構(gòu)是CVD形成的基本病變,臨床主要表現(xiàn)為冠狀動(dòng)脈粥樣硬化性心臟病、心律失常、慢性心力衰竭等[6-8]。CKD腎素-血管緊張素-醛固酮系統(tǒng)(Renin-angiotensin-aldosterone System,RAAS)激活、蛋白尿、腎小球?yàn)V過(guò)率下降、貧血、全身營(yíng)養(yǎng)不良等非傳統(tǒng)CKD危險(xiǎn)因素,可加速CVD進(jìn)展;而心輸出量的減少和靜脈壓的增加,使腎臟灌注減少,導(dǎo)致腎功能丟失加速。CKD和CVD的相互影響使伴有CVD的CKD患者死亡率高達(dá)50%,為健康人群的10~30倍,是CKD死亡的首要因素[9]。由此可見(jiàn),CKD患者防治CVD至關(guān)重要。
緩衰方以黃芪、丹參、當(dāng)歸、大黃、白花蛇舌草為核心組成,具有益氣活血、解毒降濁之效。臨床和實(shí)驗(yàn)研究發(fā)現(xiàn),緩衰方能夠有效改善CKD患者的生命質(zhì)量,延緩CKD患者進(jìn)入終點(diǎn)事件(透析、全因死亡、血清肌酐雙倍增加)的時(shí)間[10-11]。在長(zhǎng)期臨床實(shí)踐中我們發(fā)現(xiàn),緩衰方可顯著減輕CKD患者胸悶、胸痛、心悸等CVD癥狀。然而目前關(guān)于緩衰方對(duì)CKD心腎保護(hù)作用的有效活性成分、作用靶點(diǎn)和作用機(jī)制尚未完全闡明。因此,本研究擬采用網(wǎng)絡(luò)藥理學(xué)的方法從分子水平方面研究和分析緩衰方對(duì)CKD患者心腎保護(hù)作用的有效活性成分、潛在靶點(diǎn)和作用機(jī)制,以期為緩衰方的應(yīng)用和開發(fā)提供科學(xué)依據(jù)。
1 資料與方法
1.1 緩衰方活性成分及靶點(diǎn)的篩選 通過(guò)檢索中藥系統(tǒng)藥理學(xué)數(shù)據(jù)庫(kù)與分析平臺(tái)(TCMSP,http://tcmspw.com/tcmsp.php),收集緩衰方中“黃芪”“丹參”“當(dāng)歸”“大黃”“白花蛇舌草”5味中藥的活性成分,根據(jù)活性成分的藥物毒代動(dòng)力學(xué)參數(shù)進(jìn)行篩選,以類藥性(Drug-like,DL)≥0.18和口服生物利用度(Oral Bioavailability,OB)≥30%的化合物作為緩衰方的有效活性成分。同時(shí)根據(jù)TCMSP數(shù)據(jù)庫(kù)整理有效活性成分所涉及的靶點(diǎn),并通過(guò)Uniprot數(shù)據(jù)庫(kù)(https://www.uniprot.org)進(jìn)行靶點(diǎn)信息比對(duì)和靶點(diǎn)名校正。
1.2 CKD和CVD疾病相關(guān)靶點(diǎn)的檢索 GEO數(shù)據(jù)庫(kù)是全球最大的公共基因表達(dá)數(shù)據(jù)庫(kù),具有較全面的高通量分子數(shù)據(jù)。以關(guān)鍵詞“chronic kidney disease”在GEO數(shù)據(jù)庫(kù)中檢索與CKD相關(guān)的靶點(diǎn),選擇物種為人類(Homo Sapiens),對(duì)得到的基因靶點(diǎn)進(jìn)行整理并找出差異基因靶點(diǎn)。同時(shí)分別在GeneCards數(shù)據(jù)庫(kù)(https://www.genecards.org)和人類孟德?tīng)栠z傳數(shù)據(jù)庫(kù)(OMIM,https://www.omim.org)檢索與CKD和CVD相關(guān)的疾病靶點(diǎn),保留相關(guān)評(píng)分(Relevance Score)≥25的疾病相關(guān)靶點(diǎn)。
1.3 蛋白質(zhì)-蛋白質(zhì)相互作用網(wǎng)絡(luò)構(gòu)建 利用半編程性質(zhì)的腳本性軟件R project(×64 3.6.1)對(duì)緩衰方活性成分所預(yù)測(cè)的靶點(diǎn)和CKD、CVD相關(guān)的疾病靶點(diǎn)進(jìn)行映射,獲得3個(gè)靶點(diǎn)數(shù)據(jù)的交集作為緩衰方對(duì)CKD心腎保護(hù)作用的關(guān)鍵靶點(diǎn)進(jìn)行機(jī)制探討。使用Bisogenet數(shù)據(jù)庫(kù)(http://stringdb.org)構(gòu)建關(guān)鍵靶點(diǎn)的蛋白質(zhì)-蛋白質(zhì)相互作用(Protein Protein Interaction,PPI)網(wǎng)絡(luò),設(shè)定物種為人類(Homo Sapiens),基于Cytoscape(Version 3.7.2)軟件的cytNCA插件計(jì)算PPI網(wǎng)路中各節(jié)點(diǎn)的度中心性(Degree Centrality,DC)、中介中心性(Betweenness Centrality,BC)和緊密中心性(Closeness Centrality,CC)等信息并進(jìn)行拓?fù)浞治觯x取DC、BC和CC值均高于均值的靶點(diǎn)作為核心靶點(diǎn)?;赑ubchem數(shù)據(jù)庫(kù)(https://pubchem.ncbi.nlm.nih.gov)查找緩衰方藥物活性成分的3D結(jié)構(gòu),并進(jìn)行能量最小化處理,利用RCSB PDB數(shù)據(jù)庫(kù)(http://www.rcsb.org)查找核心靶點(diǎn)的相關(guān)蛋白晶體結(jié)構(gòu),利用PyMOL(Version 1.7.2)軟件對(duì)靶點(diǎn)蛋白進(jìn)行去水、加氫處理,并以對(duì)心腎血管具有保護(hù)作用的厄貝沙坦(Irbesartan)作為陽(yáng)性對(duì)照,基于autodock(Version 1.5.6)軟件對(duì)緩衰方藥物活性成分和靶點(diǎn)相關(guān)蛋白進(jìn)行分子模擬對(duì)接,并計(jì)算最低結(jié)合能(Binding Affinity),最低結(jié)合能≤-5 kcal/mol則說(shuō)明藥物活性成分和靶點(diǎn)蛋白對(duì)接較好,結(jié)合能的絕對(duì)值越大說(shuō)明活性成分與靶點(diǎn)蛋白結(jié)合越好[12]。
1.4 網(wǎng)絡(luò)分析 基于bioconductor數(shù)據(jù)庫(kù)(http://www.bioconductor.org)對(duì)緩衰方心腎同治作用的關(guān)鍵靶點(diǎn)進(jìn)行基因本體(Gene Ontology,GO)生物學(xué)過(guò)程富集分析和京都基因與基因組百科全書(Kyoto Encyclopedia of Genes and Genomes,KEGG)通路富集分析,保留P<0.05,Q<0.05的富集結(jié)果,獲得關(guān)鍵靶點(diǎn)參與的生物過(guò)程(Biological Process,BP)、細(xì)胞組分(Cellular Component,CC)、分子功能(Molecular Function,MF)和作用信號(hào)通路?;贑ytoscape軟件,構(gòu)建“成分-靶點(diǎn)-通路”網(wǎng)絡(luò),對(duì)緩衰方活性成分、靶點(diǎn)和疾病之間的相互關(guān)系進(jìn)行分析。
2 結(jié)果
2.1 緩衰方的活性成分及靶點(diǎn) 共得到緩衰方的活性成分105種,包括大黃的活性成分16種、丹參的活性成分65種、白花蛇舌草的活性成分7種、黃芪的活性成分20種、當(dāng)歸的活性成分2種。其中當(dāng)歸、白花蛇舌草共屬活性成分1種,丹參、白花蛇舌草共屬活性成分1種,黃芪、白花蛇舌草共屬活性成分1種,大黃、當(dāng)歸、白花蛇舌草共屬活性成分1種。見(jiàn)圖1。共得到預(yù)測(cè)靶點(diǎn)1 988個(gè),其中白花蛇舌草預(yù)測(cè)靶點(diǎn)200個(gè)、大黃預(yù)測(cè)靶點(diǎn)146個(gè)、丹參預(yù)測(cè)靶點(diǎn)1 177個(gè)、當(dāng)歸預(yù)測(cè)靶點(diǎn)77個(gè)、黃芪預(yù)測(cè)靶點(diǎn)388個(gè)。經(jīng)過(guò)剔重后得到靶點(diǎn)135個(gè),預(yù)測(cè)靶點(diǎn)超過(guò)35個(gè)的活性成分共有18種。見(jiàn)表1。
2.2 CKD和CVD的疾病相關(guān)靶點(diǎn) 共得到CKD疾病相關(guān)靶點(diǎn)1504個(gè),其中來(lái)自GEO數(shù)據(jù)庫(kù)485個(gè)(上調(diào)靶點(diǎn)240個(gè),下調(diào)靶點(diǎn)245個(gè))、GeneCards數(shù)據(jù)庫(kù)591個(gè)、OMIM數(shù)據(jù)庫(kù)428個(gè);CVD疾病相關(guān)靶點(diǎn)795個(gè),其中來(lái)自GeneCards數(shù)據(jù)庫(kù)322個(gè)、OMIM數(shù)據(jù)庫(kù)473個(gè)。經(jīng)過(guò)剔重后共等到CKD疾病相關(guān)靶點(diǎn)1 436個(gè),CVD疾病相關(guān)靶點(diǎn)744個(gè)。見(jiàn)圖2。
2.3 蛋白質(zhì)-蛋白質(zhì)相互作用(PPI)網(wǎng)絡(luò)構(gòu)建 共得到緩衰方對(duì)CKD心腎保護(hù)作用的關(guān)鍵靶點(diǎn)53個(gè)。見(jiàn)圖3?;贑ytoscape軟件對(duì)得到的關(guān)鍵靶點(diǎn)進(jìn)行PPI網(wǎng)絡(luò)分析,共得到53個(gè)蛋白節(jié)點(diǎn),361條邊,平均度值為13.6。對(duì)PPI網(wǎng)絡(luò)進(jìn)行拓?fù)浞治?,共得到DC、BC、CC均大于均值的核心靶點(diǎn)18個(gè)。見(jiàn)表2?;贏utodock軟件對(duì)預(yù)測(cè)靶點(diǎn)超過(guò)40個(gè)的緩衰方活性成分和前10個(gè)核心靶點(diǎn)進(jìn)行分子模擬對(duì)接,結(jié)果顯示緩衰方各活性成分和靶點(diǎn)蛋白對(duì)接的平均最低結(jié)合能為-6.58 kcal/mol,與陽(yáng)性藥物和核心靶點(diǎn)對(duì)接的最低結(jié)合能比較無(wú)明顯差異;除豆甾醇、β-谷甾醇與IL1β靶點(diǎn)蛋白對(duì)接的結(jié)合能外,其余最低結(jié)合能均≤-5 kcal/mol。見(jiàn)圖4。其中豆甾醇、槲皮素與PTGS2的結(jié)合能絕對(duì)值最高,其分子對(duì)接模式見(jiàn)圖5。
2.4 富集分析 共得到緩衰方對(duì)CKD心腎保護(hù)作用的GO富集結(jié)果1 275個(gè),其中BP1 172個(gè)、CC 43個(gè)、MF 60個(gè)。生物過(guò)程主要包括對(duì)氧含量的反應(yīng)(Response to Oxygen Levels)、細(xì)胞對(duì)藥物的反應(yīng)(Cellular Response to Drug)、循環(huán)系統(tǒng)中的血管過(guò)程(Vascular Process in Circulatory System)、血壓的調(diào)節(jié)(Regulation of Blood Pressure)、對(duì)營(yíng)養(yǎng)水平的反應(yīng)(Response to Nutrient Levels)等;細(xì)胞組分主要有膜微區(qū)(Membrane Microdomain)、膜區(qū)(Membrane Region)等;分子功能主要包括絲氨酸型內(nèi)肽酶活性(Serine-type Endopeptidase Activity)、類固醇激素受體(Steroid Hormone Receptor Activity)等。見(jiàn)圖6。GO富集分析的生物過(guò)程中關(guān)鍵靶點(diǎn)的參與情況見(jiàn)圖7。共得到KEGG信號(hào)通路76條,其中與心腎疾病相關(guān)的信號(hào)通路包括:低氧誘導(dǎo)因子-1(Hypoxia Inducible Factor-1,HIF-1)信號(hào)通路、腫瘤壞死因子(Tumor Necrosis Factor,TNF)信號(hào)通路、白細(xì)胞介素-17(Interleukin-17,IL-17)信號(hào)通路、磷脂酰肌醇3-激酶(Phosphatidylinositol-3-kinases,PI3K)/蛋白質(zhì)絲氨酸-蘇氨酸激酶(Protein-serine-threonine Kinase,AKT)信號(hào)通路、內(nèi)分泌抵抗、血小板活化、細(xì)胞骨架等。見(jiàn)表3。各信號(hào)通路之間的相互關(guān)系網(wǎng)絡(luò)見(jiàn)圖8,信號(hào)通路與關(guān)鍵靶點(diǎn)的相互關(guān)系網(wǎng)絡(luò)見(jiàn)圖9。對(duì)緩衰方有效活性成分、關(guān)鍵靶點(diǎn)參與CKD心腎保護(hù)作用的信號(hào)通絡(luò)構(gòu)建“成分-靶點(diǎn)-通路”網(wǎng)絡(luò)圖。見(jiàn)圖10。
3 討論
CKD屬于中醫(yī)學(xué)“虛勞”“水腫”“尿濁”等病的范疇,其病機(jī)多以本虛標(biāo)實(shí)、虛實(shí)夾雜為特點(diǎn):本虛以肺脾腎虧虛為主,標(biāo)實(shí)則多為水濕痰瘀阻滯。邪伏不去,影響氣機(jī)升降出入,久蘊(yùn)乃成濁毒。脈為血之府,濁毒隨氣血游行,侵損脈絡(luò)。心主血脈,濁毒積蓄,導(dǎo)致心失司用,使機(jī)體并發(fā)“胸痹”“關(guān)格”“溺毒”。《證治準(zhǔn)繩》提出關(guān)格的治則當(dāng)遵循“治主當(dāng)緩,治客當(dāng)急”。因此,CKD并發(fā)CVD的治則當(dāng)以補(bǔ)腎活血、化濁解毒為要。臨床實(shí)踐發(fā)現(xiàn),CKD的進(jìn)展與中醫(yī)“濁毒”的致病特點(diǎn)密切相關(guān),使用芳香、滲濕、通腑、辛開苦降等化濁解毒的治法對(duì)延緩CKD的進(jìn)展有較好的治療作用[13]。緩衰方由黃芪、丹參、當(dāng)歸、大黃、白花蛇舌草5味藥物組成,方中黃芪為補(bǔ)氣要品,《藥性賦》言黃芪可“溫分肉而實(shí)腠理,益元?dú)舛a(bǔ)三焦”,當(dāng)歸、丹參補(bǔ)血活血,黃芪合當(dāng)歸、丹參補(bǔ)氣活血而不留瘀,白花蛇舌草為清熱解毒之品,配以大黃蕩滌出新,全方合伍共奏益氣活血、去濁解毒之功。研究發(fā)現(xiàn),CKD患者尿毒癥毒素在體內(nèi)蓄積是并發(fā)CVD的重要原因[14]。藥理學(xué)研究發(fā)現(xiàn),活血解毒的中藥可有效減少尿毒癥毒素的蓄積從而延緩CKD、CVD進(jìn)展[15-16]。
本研究共檢索出緩衰方中有效活性成分105種,得到預(yù)測(cè)靶點(diǎn)135個(gè),其中緩衰方對(duì)CKD心腎保護(hù)作用的關(guān)鍵靶點(diǎn)53個(gè),拓?fù)浞治龅玫胶诵陌悬c(diǎn)18個(gè),包括IL6、EGF、VEGFA、IL1β、CCL2等,這些靶點(diǎn)均與CKD、CVD的發(fā)生和進(jìn)展密切相關(guān)[17]。分子對(duì)接研究發(fā)現(xiàn),緩衰方有效活性成分和靶點(diǎn)蛋白的結(jié)合較好,其中PTGS-2與活性成分的結(jié)合能絕對(duì)值最高。PTGS-2是人體重要的炎癥介質(zhì),CKD尿毒癥毒素的蓄積刺激炎癥介質(zhì)的表達(dá),進(jìn)而導(dǎo)致PTGS-2等炎癥介質(zhì)表達(dá)上調(diào),促使PTGS-2基因編碼COX-2蛋白,引起血管鈣化,血管鈣化是CKD、CVD的共同病理改變[18-21]。研究發(fā)現(xiàn),COX-2抑制劑能夠有效改善血管鈣化[22]。緩衰方的活性成分通過(guò)與關(guān)鍵靶點(diǎn)的結(jié)合,對(duì)CKD患者的心腎起到保護(hù)作用。研究發(fā)現(xiàn),槲皮素可以抑制核因子κB(Nuclear Factor-κB,NF-κB)途徑的激活,改善尿毒癥毒素誘發(fā)的內(nèi)皮細(xì)胞損傷,改善動(dòng)脈粥樣硬化,從而發(fā)揮對(duì)CKD的心腎保護(hù)作用[23-25];豆甾醇、β-谷甾醇等植物甾醇類活性成分也具有較好的抗炎抗氧化作用[26]。
通過(guò)GO富集分析和KEGG信號(hào)通路富集分析發(fā)現(xiàn),與炎癥相關(guān)的TNF信號(hào)通路、IL-17信號(hào)通路、PI3K/AKT信號(hào)通路、核因子κB信號(hào)通路等參與了緩衰方對(duì)CKD的心腎保護(hù)作用,提示緩衰方可能通過(guò)抑制炎癥介質(zhì)的級(jí)聯(lián)反應(yīng),來(lái)達(dá)到對(duì)CKD的心腎保護(hù)作用;同時(shí),HIF-1信號(hào)通路、血小板活化、內(nèi)分泌抵抗、肌動(dòng)蛋白細(xì)胞骨架的調(diào)節(jié)等信號(hào)通路也可能參與了緩衰方對(duì)CKD的心腎保護(hù)作用。低氧誘導(dǎo)因子(Hypoxia Inducible Factors,HIFs)對(duì)炎癥反應(yīng)和血管內(nèi)皮損傷有著重要的調(diào)節(jié)作用,脯氨酸羥化酶(Proline Hydroxylase,PHD)抑制劑可促進(jìn)CKD患者HIFs的激活,進(jìn)而對(duì)CKD的心腎起到保護(hù)作用[27-29]。有學(xué)者發(fā)現(xiàn),CKD血瘀證患者存在血小板活化現(xiàn)象,血小板活化或聚集可激活多種信號(hào)通路,介導(dǎo)CKD心腎損傷[30-31]。胰島素抵抗(Insulin Resistance,IR)與血管功能障礙密切相關(guān)[32]。有研究表明,IR通過(guò)對(duì)內(nèi)皮細(xì)胞的調(diào)節(jié)增加CKD患者發(fā)生CVD的風(fēng)險(xiǎn),槲皮素、大黃素等中藥活性成分可以有效干預(yù)IR相關(guān)信號(hào)通路,降低CKD患者發(fā)生CVD的風(fēng)險(xiǎn)[33-34]。另外我們前期研究發(fā)現(xiàn),益氣活血解毒中藥(黃芪、當(dāng)歸、白花蛇舌草等)可以抑制肌動(dòng)蛋白細(xì)胞骨架的重排,恢復(fù)肌動(dòng)蛋白微絲的正常排布,改善CKD足細(xì)胞損傷引發(fā)的蛋白尿[35]。
綜上所述,本研究基于網(wǎng)絡(luò)藥理學(xué)的研究方法發(fā)現(xiàn),緩衰方可通過(guò)多成分、多靶點(diǎn)、多信號(hào)通路實(shí)現(xiàn)對(duì)CKD的心腎保護(hù)作用,其中一些信號(hào)通路已在前期的研究中得到驗(yàn)證。后續(xù)研究中,我們將基于上述研究結(jié)果對(duì)緩衰方的心腎同治作用機(jī)制進(jìn)行臨床及基礎(chǔ)研究,以揭示和闡明緩衰方對(duì)CKD心腎保護(hù)作用的確切機(jī)制。
參考文獻(xiàn)
[1]Hill NR,F(xiàn)atoba ST,Oke JL,et al.Global prevalence of chronic kidney disease-A systematic review and meta-analysis[J].PLoS One,2016,11(7):e0158765.
[2]Zhang L,Wang F,Wang L,et al.Prevalence of chronic kidney disease in China:A cross-sectional survey[J].Lancet,2012,379(9818):815-822.
[3]Saran R,Robinson B,Abbott KC,et al.US renal data system 2019 annual data report:epidemiology of kidney disease in the united states[J].Am J Kidney Dis,2020,75(1):A6-A7.
[4]陳曉農(nóng),潘曉霞,俞海瑾,等.慢性腎臟病患者心血管疾病患病率調(diào)查[J].上海醫(yī)學(xué),2009,32(9):769-773.
[5]Thompson S,James M,Wiebe N,et al.Cause of death in patients with reduced kidney function[J].J Am Soc Nephrol,2015,26(10):2504-2511.
[6]Malluche HH,Blomquist G,Monier-Faugere MC,et al.High parathyroid hormone level and osteoporosis predict progression of coronary artery calcification in patients on dialysis[J].J Am Soc Nephrol,2015,26(10):2534-2544.
[7]Górriz JL,Molina P,Cerverón MJ,et al.Vascular calcification in patients with nondialysis CKD over 3 years[J].Clin J Am Soc Nephrol,2015,10(4):654-666.
[8]賈鳳玉,孟建中.慢性腎臟病(透析)患者的心血管疾病診療指南解讀[J].中國(guó)血液凈化,2011,10(10):570-575.
[9]Hickson LJ,Negrotto SM,Onuigbo M,et al.Echocardiography criteria for structural heart disease in patients with end-stage renal disease initiating hemodialysis[J].J Am Coll Cardiol,2016,67(10):1173-1182.
[10]Li S,Rao XR,Dai XW,et al.Beneficial effects of Fu-Zheng-Qu-Zhuo oral liquid combined with standard integrated therapy in patients with chronic kidney disease(stage 3-4):A randomized placebo-controlled clinical trial[J].Medicine(Baltimore),2017,96(28):e7448.
[11]Li S,Rao XR,Song JY,et al.Effects of Huanshuai Recipe Oral Liquid on restructuring glomerular microvasculature and expression of vascular endothelial growth factor in subtotal nephrectomized rats[J].Chin J Integr Med,2010,16(3):239-246.
[12]劉福和,陳少軍,倪文娟.川芎中抗血栓活性成分的計(jì)算機(jī)虛擬篩選研究[J].中國(guó)藥房,2017,28(16):2182-2196.
[13]王宇陽(yáng),馬放,占永立.基于“濁毒”理論論治慢性腎臟病[J].中醫(yī)雜志,2019,60(16):1374-1377.
[14]Tomlinson J,Wheeler DC.The role of trimethylamine N-oxide as a mediator of cardiovascular complications in chronic kidney disease[J].Kidney Int,2017,92(4):809-815.
[15]方敬愛(ài).從中西醫(yī)結(jié)合的角度探討結(jié)腸透析治療慢性腎臟病[J].中國(guó)中西醫(yī)結(jié)合雜志,2019,39(7):773-775.
[16]陶芳,孔薇.基于腸-腎軸理論研究中藥灌腸治療慢性腎臟病機(jī)制的思路探討[J].天津中醫(yī)藥,2019,36(10):973-976.
[17]Rayego-Mateos S,Rodrigues-Diez R,Morgado-Pascual JL,et al.Role of epidermal growth factor receptor(EGFR) and its ligands in kidney inflammation and damage[J].Mediators Inflamm,2018,2018:8739473.
[18]Dou L,Sallée M,Cerini C,et al.The cardiovascular effect of the uremic solute indole-3 acetic acid[J].J Am Soc Nephrol,2015,26(4):876-887.
[19]Ye Y,Bian W,F(xiàn)u F,et al.Selenoprotein S inhibits inflammation-induced vascular smooth muscle cell calcification[J].J Biol Inorg Chem,2018,23(5):739-751.
[20]Demer LL,Tintut Y.Inflammatory,metabolic,and genetic mechanisms of vascular calcification[J].Arterioscler Thromb Vasc Biol,2014,34(4):715-723.
[21]Agharazii M,St-Louis R,Gautier-Bastien A,et al.Inflammatory cytokines and reactive oxygen species as mediators of chronic kidney disease-related vascular calcification[J].Am J Hypertens,2015,28(6):746-755.
[22]Radi ZA,Khan KN.Cardio-renal safety of non-steroidal anti-inflammatory drugs[J].J Toxicol Sci,2019,44(6):373-391.
[23]Vera M,Torramade-Moix S,Martin-Rodriguez S,et al.Antioxidant and anti-Inflammatory strategies based on the potentiation of glutathione geroxidase activity prevent endothelial dysfunction in chronic kidney disease[J].Cell Physiol Biochem,2018,51(3):1287-1300.
[24]Guo SX,Sun JJ,Zhuang Y.Quercetin alleviates lipopolysaccharide-induced inflammatory responses by up-regulation miR-124 in human renal tubular epithelial cell line HK-2[J].Biofactors,2020,46(3):402-410.
[25]Cao YC,Hu JL,Sui JY,et al.Quercetin is able to alleviate TGF-β-induced fibrosis in renal tubular epithelial cells by suppressing miR-21[J].Exp Ther Med,2018,16(3),2442-2448.
[26]Al-Okbi SY,Mohamed DA,Hamed TE,et al.Prevention of renal dysfunction by nutraceuticals prepared from oil rich plant foods[J].Asian Pac J Trop Biomed,2014,4(8):618-627.
[27]Liu M,Ning X,Li R,et al.Signalling pathways involved in hypoxia-induced renal fibrosis[J].J Cell Mol Med,2017,21(7):1248-1259.
[28]Abe H,Semba H,Takeda N.The roles of hypoxia signaling in the pathogenesis of cardiovascular diseases[J].J Atheroscler Thromb,2017,24(9):884-894.
[29]Tanaka T,Eckardt KU.HIF activation against CVD in CKD:novel treatment opportunities[J].Semin Nephrol,2018,38(3):267-276.
[30]陳可冀,薛梅,殷惠軍.血小板活化與冠狀動(dòng)脈粥樣硬化性心臟病和血瘀證的關(guān)系[J].首都醫(yī)科大學(xué)學(xué)報(bào),2008,29(3):266-269.
[31]凌絲絲,曾艷,李仕正,等.薤白皂苷對(duì)ADP誘導(dǎo)血小板源性細(xì)胞外囊泡炎癥反應(yīng)的影響[J].中藥材,2019,42(9):2157-2162.
[32]Doris TC,Gerald FW,Ashley BI,et al.Insulin resistance and vascular dysfunction in chronic kidney disease:mechanisms and therapeutic interventions[J].Nephrol Dial Transplant,2015,32(8):1274-1281.
[33]侯敬濤,賴德源.胰島素抵抗與腎臟病的關(guān)系[J].國(guó)際內(nèi)科學(xué)雜志,2008,35(2):90-92,104.
[34]吳薇,楊晶晶,萬(wàn)毅剛,等.慢性腎臟病胰島素抵抗的發(fā)病機(jī)制、治療策略及中藥的干預(yù)作用[J].中國(guó)中藥雜志,2017,42(1):49-55.
[35]馬放,劉慧潔,陳靜,等.益氣清熱膏通過(guò)肌動(dòng)蛋白骨架重排保護(hù)嘌呤霉素氨基核苷大鼠足細(xì)胞損傷機(jī)制[J].中華中醫(yī)藥雜志,2019,34(5):2175-2179.
(2020-05-27收稿 責(zé)任編輯:張樂(lè)杰)