国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

花后漬水對(duì)不同耐漬型冬小麥籽粒灌漿特性的影響

2021-11-24 10:35吳啟俠譚京紅朱建強(qiáng)
關(guān)鍵詞:花后天數(shù)冬小麥

吳啟俠,譚京紅,朱建強(qiáng),王 威,韓 蕊,鄒 娟

花后漬水對(duì)不同耐漬型冬小麥籽粒灌漿特性的影響

吳啟俠1,2,譚京紅1,2,朱建強(qiáng)1,2,王 威1,2,韓 蕊1,2,鄒 娟3※

(1. 濕地生態(tài)與農(nóng)業(yè)利用教育部工程研究中心,荊州 434025;2. 長(zhǎng)江大學(xué)農(nóng)學(xué)院,荊州 434025;3. 湖北省農(nóng)業(yè)科學(xué)院糧食作物研究所,武漢 430064)

江漢平原冬小麥中后期常遭受澇漬災(zāi)害,為明確花后漬水對(duì)冬小麥籽粒灌漿進(jìn)程的影響,以鄭麥9023(耐漬型)和揚(yáng)麥20(敏感型)2個(gè)小麥品種為研究對(duì)象,利用灌排可控的測(cè)坑模擬冬小麥花后不同天數(shù)(5、9、13和17 d)的漬水脅迫,應(yīng)用Richards模型對(duì)冬小麥籽粒灌漿進(jìn)程進(jìn)行了模擬,在此基礎(chǔ)上分析各籽粒灌漿參數(shù)與漬水天數(shù)的關(guān)系。結(jié)果表明:花后漬水5、9、13和17 d,鄭麥9023(耐漬型)分別減產(chǎn)10.84%、19.51%、25.93%和36.52%,揚(yáng)麥20(敏感型)分別減產(chǎn)14.25%、25.84%、37.26%和47.84%。導(dǎo)致冬小麥減產(chǎn)的主要原因是千粒質(zhì)量降低,花后漬水天數(shù)每增加1 d,冬小麥鄭麥9023和揚(yáng)麥20千粒質(zhì)量分別降低0.961和0.996 g。Richards方程能極顯著模擬花后漬水冬小麥籽粒灌漿過(guò)程,擬合方程決定系數(shù)均在0.99以上。對(duì)耐漬型冬小麥,花后漬水主要顯著縮短活躍灌漿期,且主要是顯著縮短籽粒灌漿快增期和緩增期的持續(xù)天數(shù);對(duì)敏感型冬小麥,花后漬水主要顯著降低籽粒灌漿三階段的灌漿速率?;ê鬂n水增加1 d,鄭麥9023籽?;钴S灌漿期縮短0.827 d,籽粒灌漿快增期、緩增期灌漿持續(xù)天數(shù)分別縮短0.492、0.963 d,揚(yáng)麥20單粒最大灌漿速率降低0.046 mg/d、單粒平均灌漿速率降低0.032 mg/d,籽粒灌漿漸增期、快增期和緩增期單粒灌漿速率分別降低0.011、0.040和0.010 mg/d。研究可揭示花后漬水致使冬小麥減產(chǎn)的影響過(guò)程,為冬小麥澇漬災(zāi)害防控提供理論支撐。

灌溉;產(chǎn)量;漬水脅迫;Richards模型;灌漿特征參數(shù);冬小麥

0 引 言

在中國(guó),小麥?zhǔn)侨蠹Z食作物之一,2019年種植面積占全國(guó)糧食作物播種面積的20.4%[1],在確保糧食安全上具有重要地位。長(zhǎng)江中下游地區(qū)是中國(guó)冬小麥主產(chǎn)區(qū)之一,該區(qū)域冬小麥播種面積占全國(guó)小麥播種面積的20%左右[2]。該區(qū)域?yàn)榧撅L(fēng)氣候,春季降雨量較多,且多集中于冬小麥生長(zhǎng)中后期[3],加上多數(shù)實(shí)行水稻-冬小麥輪作種植方式[4],地勢(shì)相對(duì)較低,土壤質(zhì)地黏重,透水性差,導(dǎo)致長(zhǎng)江中下游地區(qū)冬小麥中后期常遭受澇漬災(zāi)害威脅[5-6]。開(kāi)花前后是冬小麥對(duì)漬水最敏感的時(shí)期[7-8],花后漬害使小麥地上部功能葉早衰,葉綠素合成受阻,光合作用受抑制,影響植株干物質(zhì)的積累與轉(zhuǎn)運(yùn),最終導(dǎo)致減產(chǎn)超過(guò)20%[9-10]。

單粒質(zhì)量是小麥產(chǎn)量的重要構(gòu)成因素[11],受作物品種[12]、降水[13]、土壤水分[14]等諸多因素影響。運(yùn)用三次多項(xiàng)式方程、Logistic方程和Richards方程模擬作物灌漿過(guò)程,得出影響單粒質(zhì)量變化的主要因素,是研究單粒質(zhì)量變化的重要手段之一。Tian等[15]運(yùn)用Logistic方程擬合了受漬春玉米灌漿過(guò)程;楊麗麗等[16]應(yīng)用Richards方程對(duì)干旱脅迫后復(fù)水小麥強(qiáng)勢(shì)粒、弱勢(shì)粒的籽粒灌漿過(guò)程進(jìn)行了擬合;徐云姬等[17]運(yùn)用Richards方程對(duì)干濕交替灌溉水稻籽粒灌漿對(duì)籽粒灌漿過(guò)程進(jìn)行了擬合。諸多學(xué)者圍繞構(gòu)建模型模擬水分變化影響作物籽粒灌漿過(guò)程進(jìn)行了大量研究,但關(guān)于花后漬水條件下冬小麥籽粒灌漿過(guò)程的擬合分析研究報(bào)道甚少。花后漬水造成長(zhǎng)江中下游地區(qū)冬小麥產(chǎn)量下降的主要原因是單粒質(zhì)量減小[7],而單粒質(zhì)量很大程度上取決于籽粒灌漿速率和持續(xù)時(shí)間[18],即具體灌漿過(guò)程。Richards生長(zhǎng)模型可塑性強(qiáng),擬合精度高,且能更好地反映品種的灌漿特性,并能夠?qū)酀{期進(jìn)行準(zhǔn)確劃分[19-20]。

為此,本研究利用灌排可控的測(cè)坑模擬不同耐漬型冬小麥花后漬水,運(yùn)用Richards模型擬合冬小麥籽粒灌漿進(jìn)程并分析產(chǎn)量構(gòu)成要素,量化分析花后漬水對(duì)不同耐漬型冬小麥灌漿特性的差異化影響,揭示花后漬水致使冬小麥減產(chǎn)的影響過(guò)程,以期為冬小麥花后漬害精準(zhǔn)調(diào)控提供理論支撐。

1 材料與方法

1.1 試驗(yàn)區(qū)概況

試驗(yàn)區(qū)為地處江漢平原腹地的長(zhǎng)江大學(xué)試驗(yàn)基地(30°21′N,112°09′E),該基地屬東部季風(fēng)農(nóng)業(yè)氣候大區(qū)、北亞熱帶農(nóng)業(yè)氣候帶、長(zhǎng)江中下游農(nóng)業(yè)氣候區(qū),試驗(yàn)期間氣象要素如圖1所示。試驗(yàn)在基地面積為4 m2(2 m×2 m)、深1 m的測(cè)坑中進(jìn)行。測(cè)坑表面中部布設(shè)直徑25 cm、長(zhǎng)1.0 m的灌水管,灌水管連接灌水系統(tǒng),灌水管均勻打孔,灌水時(shí)水以噴的形式灌到測(cè)坑中。測(cè)坑底部布設(shè)直徑25 cm、長(zhǎng)1.0 m的排水管,水管均勻打孔,排水管外有完善的反濾層,水管聯(lián)通到測(cè)坑外后連接4個(gè)水閥,分別可排100、80、50和30 cm深地下水。測(cè)坑土層厚度為100 cm,土壤為中壤,取自旱地,按等土壤密度分層回填,0~30 cm耕層土壤pH值為7.6,土壤堿解氮含量為89.4 mg/kg,土壤速效磷含量為28.7 mg/kg,土壤速效鉀含量為118.7 mg/kg。

1.2 試驗(yàn)設(shè)計(jì)

選擇在江漢平原廣泛栽培的2個(gè)小麥品種鄭麥9023(耐漬型)和揚(yáng)麥20(敏感型)作為供試材料[21]。播種前撒施養(yǎng)分含量N∶P2O5∶K2O為18∶8∶15的復(fù)合肥750 kg/hm2,施肥后混勻20 cm表層土壤,返青期撒施尿素125 kg/hm2。2017年11月6日播種,播種量為135 kg/hm2,采用條播方式,行距為25 cm,每測(cè)坑9行。

設(shè)5、9、13和17 d共4個(gè)花后漬水處理。2018年4月10日開(kāi)始漬水,漬水處理為田間低洼處有明水,且土壤含水率保持在田間持水率的90%以上,達(dá)到設(shè)定漬澇時(shí)間后3 d將地下水位降到70 cm以下。以測(cè)坑內(nèi)土壤水分保持在田間持水率的70%~80%(即大田正常水分管理要求的土壤水分含量)為對(duì)照(CK)。非漬澇時(shí)期將80 cm處水閥打開(kāi),遇降水時(shí)地下水從該水閥排出,維持非漬澇時(shí)期測(cè)坑地下水埋深為80 cm,與大田地下水埋深基本一致,其余管理同大田管理一致。各漬澇處理和對(duì)照均重復(fù)6次(3個(gè)測(cè)坑用于取樣,3個(gè)測(cè)坑用于考種),采用隨機(jī)區(qū)組試驗(yàn)設(shè)計(jì)。

1.3 采樣方法

于冬小麥?zhǔn)⒒ㄆ?,每個(gè)取樣測(cè)坑挑選開(kāi)花日期相同、單穗大小基本一致的200單穗掛牌標(biāo)記,標(biāo)記時(shí)避開(kāi)邊行或有病蟲害的單穗?;ê? d開(kāi)始取樣,以后每5 d取樣1次,直至收獲,每次每測(cè)坑取標(biāo)記單穗10個(gè),手工剝?nèi)∽蚜#冉y(tǒng)計(jì)籽粒粒數(shù),再將籽粒置于烘箱中105 ℃殺青30 min,80 ℃烘干至恒質(zhì)量,稱量并折算千粒質(zhì)量。

冬小麥成熟后,剔除受邊際效應(yīng)影響的植株,每測(cè)坑隨機(jī)取生長(zhǎng)基本一致的植株20株,按常規(guī)方法考察穗粒數(shù)、千粒質(zhì)量、有效穗數(shù)。每測(cè)坑單獨(dú)收獲,曬干除雜后稱取質(zhì)量,作為每測(cè)坑的冬小麥籽粒實(shí)際產(chǎn)量。

1.4 數(shù)據(jù)處理

參照朱慶森等[22]方法用Richards方程對(duì)冬小麥籽粒灌漿進(jìn)程進(jìn)行擬合。Richards方程為

式中為開(kāi)花后天數(shù),d;為對(duì)應(yīng)的籽粒千粒質(zhì)量,g;為最終籽粒質(zhì)量,g;為初級(jí)參數(shù);為生長(zhǎng)速率參數(shù);為形狀參數(shù),反映灌漿庫(kù)容限制情況,若0<<1,說(shuō)明灌漿受庫(kù)容限制較大,即灌漿物質(zhì)來(lái)源相對(duì)充分;若>1,說(shuō)明灌漿受庫(kù)容限制較小,即灌漿物質(zhì)來(lái)源相對(duì)匱乏[19]。當(dāng)=1時(shí)為L(zhǎng)ogistic方程。

對(duì)Richards方程一階求導(dǎo),得籽粒灌漿速率方程。通過(guò)籽粒灌漿速率方程計(jì)算出以下籽粒灌漿特征參數(shù):活躍灌漿期天數(shù)(從達(dá)到的5%到95%的灌漿天數(shù)[16],,d)、籽粒最大灌漿速率出現(xiàn)時(shí)間(max,d)、單粒最大灌漿速率(max,mg/d)和單粒平均灌漿速率(ave,mg/d),其計(jì)算公式分別為

籽粒灌漿速率方程具有2個(gè)拐點(diǎn),求其對(duì)的二階導(dǎo)數(shù),并令其為0,可得2個(gè)拐點(diǎn)在坐標(biāo)上的值1(達(dá)到質(zhì)量5%時(shí)的灌漿時(shí)間)和2(達(dá)到質(zhì)量95%時(shí)的灌漿時(shí)間),其計(jì)算公式參照孟兆江等[23]方法。令達(dá)到質(zhì)量99%時(shí)的灌漿時(shí)間為3,依據(jù)Richards方程可得3。根據(jù)孟兆江等[23]的研究,確定灌漿時(shí)間小于1的階段為籽粒灌漿漸增期,其持續(xù)天數(shù)為1(d);1~2階段為籽粒灌漿快增期,其持續(xù)天數(shù)為2(d);2~3階段為籽粒灌漿緩增期,其持續(xù)天數(shù)3(d);各階段的單粒平均灌漿速率分別為1、2、3(mg/d)。

計(jì)算冬小麥減產(chǎn)率,公式如下:

減產(chǎn)率=(對(duì)照產(chǎn)量-處理產(chǎn)量)/對(duì)照產(chǎn)量×100% (6)

使用Microsoft Excel 2016進(jìn)行數(shù)據(jù)整理、作圖,使用DPS 18.10軟件進(jìn)行方差分析、回歸分析和Richards方程擬合,多重比較分析采用最小顯著差數(shù)法(Least Significant Difference,LSD)。

2 結(jié)果與分析

2.1 冬小麥產(chǎn)量及構(gòu)成因素分析

花后漬水對(duì)冬小麥產(chǎn)量及產(chǎn)量構(gòu)成因素的影響如表 1?;ê鬂n水使冬小麥極顯著減產(chǎn)(<0.01),花后漬水5、9、13和17 d,冬小麥鄭麥9023(耐漬型)分別減產(chǎn)10.84%、19.51%、25.93%和36.52%,冬小麥揚(yáng)麥20(敏感型)分別減產(chǎn)14.25%、25.84%、37.26%和47.84%。冬小麥籽粒減產(chǎn)率與花后漬水天數(shù)關(guān)系如圖2a,減產(chǎn)率與花后漬水天數(shù)呈極顯著一元一次方程關(guān)系(<0.01),花后漬水天數(shù)每增加1 d,冬小麥鄭麥9023(耐漬型)和揚(yáng)麥20(敏感型)減產(chǎn)率分別增加2.10%和2.69%,說(shuō)明花后漬水對(duì)敏感型冬小麥影響更大。就產(chǎn)量構(gòu)成要素而言,花后漬水對(duì)冬小麥單株有效穗數(shù)和每穗粒數(shù)無(wú)顯著性影響(表1),而漬水5 d兩品種冬小麥千粒質(zhì)量均顯著降低(<0.05),表明花后漬水導(dǎo)致冬小麥減產(chǎn)的主要原因是千粒質(zhì)量降低。冬小麥籽粒千粒質(zhì)量與花后漬水天數(shù)關(guān)系如圖2b,冬小麥千粒質(zhì)量與花后漬水天數(shù)呈極顯著線性負(fù)相關(guān)(<0.01),花后漬水天數(shù)每增加1 d,冬小麥鄭麥9023(耐漬型)和揚(yáng)麥20(敏感型)千粒質(zhì)量分別降低0.961和0.996 g。

表1 花后漬水對(duì)冬小麥產(chǎn)量及其構(gòu)成要素的影響

注:同列數(shù)值后不同字母表示同一品種不同處理間在<0.05水平上差異顯著;*:<0.05;**:<0.01;ns:不顯著,下同。V:品種;W:花后漬水天數(shù)。

Note: Different letters following the values within the same columns indicate significant differences among the different treatments for a variety at<0.05 level; *:<0.05; **:<0.01; ns: not significant, the same as below. V: variety; W: waterlogging days after anthesis.

2.2 Richards模型參數(shù)分析

利用Richards模型對(duì)冬小麥籽粒灌漿進(jìn)程進(jìn)行擬合,擬合方程參數(shù)及決定系數(shù)(2)如表2所示。由表2可知,各擬合方程的2均大于0.99,達(dá)到極顯著水平(<0.01),表明用Richards方程模擬花后漬水冬小麥籽粒灌漿過(guò)程是合適的。最終籽粒質(zhì)量(,g)隨花后漬水天數(shù)的增加呈顯著下降趨勢(shì)(<0.05),與實(shí)測(cè)千粒質(zhì)量的變化趨勢(shì)一致,且與實(shí)測(cè)千粒質(zhì)量的差值在0.14~2.80 g之間,表明用Richards模型擬合花后漬水冬小麥籽粒千粒質(zhì)量動(dòng)態(tài)過(guò)程是可行的?;ê鬂n水處理>1(鄭麥9023漬水5 d處理除外),說(shuō)明花后漬水冬小麥千粒質(zhì)量增長(zhǎng)速率受庫(kù)容限制較小,即灌漿物質(zhì)來(lái)源相對(duì)匱乏,且漬水天數(shù)越長(zhǎng),灌漿物質(zhì)來(lái)源越匱乏。

2.3 冬小麥灌漿特征參數(shù)分析

根據(jù)表2中Richards模型計(jì)算的冬小麥灌漿特征參數(shù),結(jié)果如表3所示。對(duì)于鄭麥9023(耐漬型),當(dāng)花后漬水達(dá)到9 d時(shí)活躍灌漿期(,d)顯著縮短(<0.05),最大灌漿速率出現(xiàn)時(shí)間(max,d)顯著前移,其縮短了5.008 d,max提前了0.771 d;花后漬水5 d后單粒最大灌漿速率(max,mg/d)顯著降低,但隨著漬水天數(shù)延長(zhǎng),max無(wú)顯著降低趨勢(shì),花后漬水13 d時(shí)單粒平均灌漿速率(ave,mg/d)才顯著降低。因此,花后漬水導(dǎo)致耐漬型冬小麥降低的主要原因是活躍灌漿期縮短,最大灌漿速率出現(xiàn)時(shí)間前移。對(duì)于揚(yáng)麥20(敏感型),花后漬水5 d其ave就顯著下降(<0.05),到花后漬水9 d時(shí)其max亦顯著下降,而花后漬水、max無(wú)規(guī)律性變化,表明花后漬水主要導(dǎo)致敏感型冬小麥灌漿速率降低,最終導(dǎo)致降低。

表2 花后漬水處理下冬小麥籽粒灌漿進(jìn)程的Richards模型模擬結(jié)果

注::開(kāi)花后天數(shù),d;:對(duì)應(yīng)的籽粒千粒質(zhì)量,g。

Note:: waterlogging days after anthesis, d;: the thousand-grain mass corresponding to, g.

表3 不同漬水處理下冬小麥籽粒灌漿特征參數(shù)

對(duì)兩個(gè)不同類型冬小麥的灌漿特征參數(shù)與漬水天數(shù)進(jìn)行分析,結(jié)果如表4所示。由表4可知,鄭麥9023(耐漬型)灌漿特征參數(shù)中與花后漬水天數(shù)(,d)呈極顯著線性關(guān)系(<0.01),max、ave與花后漬水天數(shù)呈顯著線性關(guān)系(<0.05),而max與花后漬水天數(shù)無(wú)顯著線性關(guān)系;揚(yáng)麥20(敏感型)灌漿特征參數(shù)中的max、ave與花后漬水天數(shù)呈極顯著線性關(guān)系(<0.01),而、max與花后漬水天數(shù)無(wú)顯著線性關(guān)系。從回歸關(guān)系式得出:花后漬水天數(shù)每增加1 d,擬合鄭麥9023(耐漬型)灌漿過(guò)程的Richards模型中的縮短0.827 d、max提前0.163 d、ave降低0.004 mg/d;擬合揚(yáng)麥20(敏感型)灌漿過(guò)程的Richards模型中的max降低0.046 mg/d、ave降低0.032 mg/d。

2.4 冬小麥各灌漿階段分析

根據(jù)表2中Richards模型計(jì)算冬小麥3階段籽粒灌漿持續(xù)時(shí)間和單粒平均灌漿速率,結(jié)果如表5所示。未漬水時(shí)兩個(gè)品種冬小麥的籽粒灌漿漸增期、快增期和緩增期灌漿進(jìn)程就存在差異,鄭麥9023(耐漬型)籽粒灌漿漸增期持續(xù)天數(shù)(1)較短,快增期持續(xù)天數(shù)(2)和緩增期持續(xù)天數(shù)(3)較長(zhǎng),2、3分別是1的2.09、2.93倍;而揚(yáng)麥20(敏感型)的各時(shí)期持續(xù)天數(shù)基本相同,為12 d左右?;ê鬂n水對(duì)鄭麥9023(耐漬型)1、2、3有明顯影響,花后漬水5 d時(shí)鄭麥9023(耐漬型)1顯著延長(zhǎng)0.421 d(<0.05),2和3顯著縮短0.510 d和1.952 d,2和3縮短天數(shù)之和超過(guò)了1延長(zhǎng)天數(shù),導(dǎo)致縮短;隨著花后漬水天數(shù)持續(xù)增加,1不再顯著延長(zhǎng),2和3仍呈顯著縮短趨勢(shì)。花后漬水條件下,揚(yáng)麥20(敏感型)1、2、3變化無(wú)明顯規(guī)律,而漸增期單粒平均灌漿速率(1)、快增期單粒平均灌漿速率(2)和緩增期單粒平均灌漿速率(3)隨著漬水天數(shù)增加呈顯著降低趨勢(shì)(<0.05),而鄭麥9023(耐漬型)在漬水條件下各灌漿階段的灌漿速率與CK相比基本無(wú)差異,即各階段灌漿速率受漬水影響不顯著。對(duì)于耐漬型冬小麥,花后漬水主要顯著縮短快增期和緩增期灌漿持續(xù)天數(shù),最終導(dǎo)致活躍灌漿期天數(shù)顯著縮短;對(duì)于敏感型冬小麥,花后漬水主要顯著降低漸增期、快增期和緩增期灌漿速率,從而使整個(gè)灌漿期平均灌漿速率顯著降低。

表4 籽粒灌漿特征參數(shù)與花后漬水天數(shù)回歸分析

注::籽粒灌漿特征參數(shù);:花后漬水天數(shù),下同。

Note:: grain fillingcharacteristic parameters;: waterlogging days after anthesis, the same as below.

表5 不同漬水處理下冬小麥籽粒各階段灌漿持續(xù)天數(shù)和灌漿速率

對(duì)兩個(gè)品種冬小麥的各階段籽粒灌漿特征參數(shù)與花后漬水天數(shù)進(jìn)行分析,結(jié)果如表6所示。由表6可知,鄭麥9023(耐漬型)1與花后漬水天數(shù)()呈極顯著線性正相關(guān)(<0.01),2、3與花后漬水天數(shù)呈極顯著線性負(fù)相關(guān),而1、2、3與花后漬水天數(shù)無(wú)顯著線性關(guān)系;揚(yáng)麥20(敏感型)1、2與花后漬水時(shí)間呈極顯著線性負(fù)相關(guān)(<0.01),3與花后漬水時(shí)間呈顯著線性負(fù)相關(guān)(<0.05),而1、2、3與花后漬水天數(shù)無(wú)顯著線性關(guān)系。從回歸關(guān)系式得出,漬水增加1 d,鄭麥9023(耐漬型)漸增期灌漿持續(xù)時(shí)間增加0.083 d,而快增期、緩增期灌漿持續(xù)時(shí)間分別減少0.492、0.963 d;揚(yáng)麥20漸增期、快增期和緩增期單粒灌漿速率分別降低0.011、0.040和0.010 mg/d。

表6 各階段籽粒灌漿參數(shù)與花后漬水天數(shù)回歸分析

3 討 論

冬小麥在不同生育期對(duì)漬水的敏感性不同,一般認(rèn)為生殖生長(zhǎng)階段漬水脅迫對(duì)冬小麥的影響大于營(yíng)養(yǎng)生長(zhǎng)階段,開(kāi)花期前后是冬小麥對(duì)漬水最為敏感的時(shí)期[7-8]?;ê鬂n水使冬小麥減產(chǎn)嚴(yán)重,吳啟俠等[24]研究認(rèn)為灌漿期漬澇5~15 d鄭麥9023產(chǎn)量下降7.6%~43.7%;丁錦峰等[25]研究認(rèn)為花后漬水5~15 d揚(yáng)輻麥4號(hào)籽粒產(chǎn)量下降15%~34%;本研究表明花后漬水5~17 d鄭麥9023減產(chǎn)10.84%~36.52%,揚(yáng)麥20減產(chǎn)14.25%~47.84%(表 1),與之前研究得出的花后漬水使小麥產(chǎn)量下降幅度基本一致。Araki等[26-27]研究認(rèn)為,花后漬水造成冬小麥產(chǎn)量下降的主要原因是千粒質(zhì)量降低;丁錦峰等[25,28]研究認(rèn)為,花后漬水顯著減低穗粒數(shù)和千粒質(zhì)量。雖然研究表述花后漬水造成產(chǎn)量下降的主要因素不盡一致,但均表明花后漬水造成冬小麥產(chǎn)量下降的主要因素之一是千粒質(zhì)量顯著下降。本試驗(yàn)結(jié)果表明,花后漬水使每穗粒數(shù)減少,但不是引起產(chǎn)量下降的主導(dǎo)因素,其主要因素是千粒質(zhì)量下降,與大多數(shù)研究結(jié)果一致。

小麥產(chǎn)量的80%~90%來(lái)自花后光合產(chǎn)物[16],花后是冬小麥增加單粒質(zhì)量,提高產(chǎn)量的關(guān)鍵生育期。大量研究表明冬小麥單粒質(zhì)量主要受籽粒灌漿速率和持續(xù)時(shí)間影響,這兩個(gè)性狀既受品種遺傳特性的影響,也受環(huán)境因素的影響。花后漬水主要是通過(guò)縮短灌漿周期,降低灌漿速率來(lái)降低千單粒質(zhì)量,且不同基因型小麥間存在一定差異[29-30]。高溫脅迫主要是通過(guò)降低灌漿速率來(lái)降低千單粒質(zhì)量,且對(duì)籽粒灌漿快增期的影響最為重要[31]。嚴(yán)重缺水顯著降低小麥籽粒灌漿速率,而適度干旱脅迫可促進(jìn)小麥籽粒灌漿速率[32]。由此可見(jiàn)不同環(huán)境因素影響小麥單粒質(zhì)量的因素具有差異化。本研究結(jié)果表明,花后漬水使冬小麥籽粒灌漿歷時(shí)縮短,灌漿速率降低,最終導(dǎo)致千粒質(zhì)量下降,產(chǎn)量降低。但不同基因型小麥間存在一定差異,花后漬水主要縮短耐漬型冬小麥活躍灌漿期天數(shù),最大灌漿速率出現(xiàn)時(shí)間前移,花后漬水天數(shù)每增加1 d,縮短0.827 d、max提前0.163 d;而對(duì)于敏感型冬小麥主要是降低灌漿速率,花后漬水天數(shù)每增加1 d,max降低0.046 mg/d、ave降低0.032 mg/d(表4)。其可能與2個(gè)品種的遺傳因素有關(guān),鄭麥9023單粒質(zhì)量?jī)H與籽粒灌漿持續(xù)期、平均灌漿速率和最大灌漿速率顯著相關(guān)[33],而揚(yáng)麥20千粒質(zhì)量與最大灌漿速率、平均灌漿速率以及籽粒灌漿漸增期、快增期和緩增期的灌漿速率均呈極顯著正相關(guān),而與灌漿持續(xù)時(shí)間長(zhǎng)短無(wú)顯著性關(guān)系[34]。

小麥籽粒灌漿過(guò)程主要分為漸增期、快增期、緩增期,大量研究表明小麥灌漿籽粒的物質(zhì)積累量主要集中在快增期[35-36],也有研究表明單粒質(zhì)量與灌漿持續(xù)時(shí)間(有效灌漿期和活躍灌漿期)、尤其灌漿中后期(快增期和緩增期)呈顯著正相關(guān)[33],總之小麥籽粒物質(zhì)積累主要集中在快增期和緩增期。本研究得出,對(duì)于耐漬型冬小麥,花后漬水縮短快增期和緩增期灌漿持續(xù)時(shí)間;對(duì)于敏感型小麥,花后漬水降低其漸增期、快增期和緩增期灌漿速率,且對(duì)快增期灌漿速率的影響大于緩增期和漸增期,從而降低小麥籽粒的千粒質(zhì)量,最終導(dǎo)致小麥減產(chǎn)。

4 結(jié) 論

1)花后漬水5、9、13和17 d鄭麥9023(耐漬型)分別減產(chǎn)10.84%、19.51%、25.93%和36.52%,揚(yáng)麥20(敏感型)分別減產(chǎn)14.25%、25.84%、37.26%和47.84%,減產(chǎn)的主要原因是千粒質(zhì)量降低,花后漬水天數(shù)每增加1 d,冬小麥鄭麥9023(耐漬型)和揚(yáng)麥20(敏感型)千粒質(zhì)量分別降低0.961和0.996 g。

2)對(duì)耐漬型冬小麥,花后漬水主要顯著縮短灌漿持續(xù)時(shí)間,且主要是顯著縮短籽粒灌漿快增期和緩增期的持續(xù)天數(shù);對(duì)敏感型冬小麥,花后漬水顯著降低籽粒灌漿三階段的灌漿速率。

3)花后漬水增加1 d,鄭麥9023籽?;钴S灌漿期縮短0.827 d,籽粒灌漿漸快增期、緩增期灌漿持續(xù)天數(shù)分別縮短0.492、0.963 d,揚(yáng)麥20籽粒單粒最大灌漿速率降低0.046 mg/d、單粒平均灌漿速率降低0.032 mg/d,籽粒灌漿漸增期、快增期和緩增期單粒灌漿速率分別降低0.011、0.040和0.010 mg/d。

[1] 國(guó)家統(tǒng)計(jì)局. 中國(guó)統(tǒng)計(jì)年鑒2020[M]. 北京:中國(guó)統(tǒng)計(jì)出版社,2020.

[2] Yang H S, Zhai S L, Li Y F, et al. Waterlogging reduction and wheat yield increase through long-term ditch-buried straw return in a rice-wheat rotation system[J]. Field Crops Research, 2017, 209: 189-197.

[3] 柳道明,賈文婕,王小燕,等. 噴施外源6-BA對(duì)小麥孕穗期漬害的調(diào)控效應(yīng)[J]. 作物雜志,2015(2):84-88.

Liu Daoming, Jia Wenjie, Wang Xiaoyan, et al. Effects of exogenous 6-BA on wheat with waterlogging at booting stage[J]. Crops, 2015(2): 84-88. (in Chinese with English abstract)

[4] 張佩,吳洪顏,江海東,等. 長(zhǎng)江中下游油菜春季濕漬害災(zāi)損風(fēng)險(xiǎn)評(píng)估研究. 氣象與環(huán)境科學(xué),2019,42(1):11-17.

Zhang Pei, Wu Hongyan, Jiang Haidong, et al. Risk assessment study on rapeseed suffering from spring wet damages in the middle and lower reaches of Yangtze River[J]. Meteorological and Environmental Sciences, 2019, 42(1): 11-17. (in Chinese with English abstract)

[5] 王小燕,高春保,盧碧林,等. 江漢平原小麥開(kāi)花前降水分布特點(diǎn)及同期漬害的產(chǎn)量效應(yīng)[J]. 長(zhǎng)江流域資源與環(huán)境,2013,22(12):1642-1647.

Wang Xiaoyan, Gao Chunbao, Lu Bilin, et al. Characteristics of rainfall before anthesis and corresponding effects of waterlogging on grain yield in Jianghan plain[J]. Resources and Environment in the Yangtze Basin, 2013, 22(12): 1642-1647. (in Chinese with English abstract)

[6] 吳洪顏,張佩,徐敏,等. 長(zhǎng)江中下游地區(qū)冬小麥春季澇漬害災(zāi)損風(fēng)險(xiǎn)時(shí)空分布特征[J]. 長(zhǎng)江流域資源與環(huán)境,2018,27(5):1152-1158.

Wu Hongyan, Zhang Pei, Xu min, et al. Spatial-temporal variations of the risk of winter wheat loss suffered from spring waterlogging disaster in the middle and lower Yangtze River reaches[J]. Resources and Environment in the Yangtze Basin, 2018, 27(5): 1152-1158. (in Chinese with English abstract)

[7] Shao G C, Lan J J, Yu S E, et al. Photosynthesis and growth of winter wheat in response to waterlogging at different growth stages[J]. Photosynthetica, 2013, 51(3): 429-437.

[8] Romina P, Abeledo L G, Miralles D J. Physiological traits associated with reductions in grain number in wheat and barley under waterlogging[J]. Plant and Soil, 2018, 429: 469-481.

[9] Tan W, Liu J, Dai T, et al. Alterations in photosynthesis and antioxidant enzyme activity in winter wheat subjected to post-anthesis waterlogging[J]. Photosynthetica, 2008, 46(1): 21-27

[10] 向永玲,方正武,趙記伍,等. 灌漿期澇漬害對(duì)弱筋小麥籽粒產(chǎn)量及品質(zhì)的影響[J]. 麥類作物學(xué)報(bào),2020,40(6):730-736.

Xiang Yongling, Fang Zhengwu, Zhao Jiwu, et al. Effect of waterlogging at grain filling stage on grain yield and quality of weak gluten wheat[J]. Journal of Triticeae Crops, 2020, 40(6): 730-736. (in Chinese with English abstract)

[11] Yan S C, Wu Y, Fan J L, et al. Effects of water and fertilizer management on grain filling characteristics, grain weight and productivity of drip-fertigated winter wheat[J]. Agricultural Water Management, 2019, 213: 983-995.

[12] Kumar A, Yadav R, Gupta S, et al. Identification of genotypes and marker validation for grain filling rate and grain filling duration in wheat under conservation agriculture[J]. Indian Journal of Genetics and Plant Breeding, 2018, 78(3): 309-316.

[13] Yadav G, Ellis R H. Effects of rain shelter or simulated rain during grain filling and maturation on subsequent wheat grain quality in the UK[J]. Journal of Agricultural Science, 2016, 155(2): 300-316.

[14] Thapa S, Jessup K E, Pradhan G P, et al. Canopy temperature depression at grain filling correlates to winter wheat yield in the U. S. Southern High Plains[J]. Field Crops Research, 2018, 217: 11-19.

[15] Tian L, Bi W, Liu X, et al. Effects of waterlogging stress on the physiological response and grain-filling characteristics of spring maize (L.) under field conditions[J]. Acta Physiologiae Plantarum, 2019, 41(5): 63-77.

[16] 楊麗麗,任建宏,劉溢建,等. 小麥花后水分虧缺和復(fù)水對(duì)同化物轉(zhuǎn)運(yùn)和籽粒灌漿的影響[J]. 西北植物學(xué)報(bào),2020,40(11):1909-1911.

Yang Lili, Ren Jianhong, Liu Yijian, et al. Effect of water deficit and rehydration on the post-flowering assimilate transport and grain filling in wheat[J]. Acta Botanica Boreali Occidentalia Sinica. 2020, 40(11): 1909-1911. (in Chinese with English abstract)

[17] 徐云姬,許陽(yáng)東,李銀銀,等. 干濕交替灌溉對(duì)水稻花后同化物轉(zhuǎn)運(yùn)和籽粒灌漿的影響[J]. 作物學(xué)報(bào),2018,44(4):544-568.

Xu Yunji, Xu Yangdong, Li Yinyin, et al. Effect of alternate wetting and drying irrigation on post-anthesis remobilization of assimilates and grain filling of rice[J]. Acta Agronomica Sinica, 2018, 44(4): 554-568. (in Chinese with English abstract)

[18] 苗永杰,閻俊,趙德輝,等. 黃淮麥區(qū)小麥主栽品種粒重與籽粒灌漿特性的關(guān)系[J]. 作物學(xué)報(bào),2018,44(2):260-267.

Miao Yongjie, Yan Jun, Zhao Dehui, et al. Relationship between grain filling parameters and grain weight in leading wheat cultivars in the Yellow and Huai Rivers Valley[J]. Acta Agronomica Sinica, 2018, 44(2): 260-267. (in Chinese with English abstract)

[19] 薛香,吳玉娥,陳榮江,等. 小麥籽粒灌漿過(guò)程的不同數(shù)學(xué)模型模擬比較[J]. 麥類作物學(xué)報(bào),2006,26(6):169-171.

Xue Xiang, Wu Yu′e, Chen Rongjiang, et al. Comparison of different mathematical equations for simulating the grain filling process of wheat[J]. Journal of Triticeae Crops, 2006, 26(6): 169-171. (in Chinese with English abstract)

[20] 姚素梅,康躍虎,呂國(guó)華,等. 噴灌與地面灌溉條件下冬小麥籽粒灌漿過(guò)程特性分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2011,27(7):13-17.

Yao Sumei, Kang Yuehu, Lü Guohua, et al. Analysis on grain filling characteristics of winter wheat under sprinkler irrigation and surface irrigation conditions[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(7): 13-17. (in Chinese with English abstract)

[21] 于晶晶,王小燕,段營(yíng)營(yíng),等. 江漢平原主推小麥品種抗?jié)n能力研究[J]. 湖北農(nóng)業(yè)科學(xué),2014,53(4),760.

Yu Jingjing, Wang Xiaoyan, Duan Yingying, et al. Studies on the waterlogging resistance of main wheat varieties in Jianghan Plain[J]. Hubei Agricultural Sciences, 2014, 53(4), 760. (in Chinese with English abstract)

[22] 朱慶森,曹顯祖,駱亦其. 水稻籽粒灌漿的生長(zhǎng)分析[J]. 作物學(xué)報(bào),1988(3):182-193.

Zhu Qingsen, Cao Xianzu, Luo Yiqi. Growth analysis on the process of grain filling in rice[J]. Acta Agronomica Sinica, 1988(3): 182-193. (in Chinese with English abstract)

[23] 孟兆江,孫景生,段愛(ài)旺,等. 調(diào)虧灌溉條件下冬小麥籽粒灌漿特征及其模擬模型[J]. 農(nóng)業(yè)工程學(xué)報(bào),2010,26(1):18-23. Meng Zhaojiang, Sun Jingsheng, Duan Aiwang, et al. Grain filling characteristics of winter wheat with regulated deficit irrigation and its simulation models[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(1): 18-23. (in Chinese with English abstract)

[24] 吳啟俠,朱建強(qiáng),楊威,等. 小麥對(duì)漬澇的響應(yīng)及排水指標(biāo)確定[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(16):91-98.

Wu Qixia, Zhu Jianqiang, Yang Wei, et al. Response of wheat to waterlogging and determination of drainage index[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(16): 91-98. (in Chinese with English abstract)

[25] 丁錦峰,蘇盛楠,梁鵬,等. 拔節(jié)期和花后漬水對(duì)小麥產(chǎn)量、干物質(zhì)及氮素積累和轉(zhuǎn)運(yùn)的影響[J]. 麥類作物學(xué)報(bào),2017,37(11):1473-1479.

Ding Jingfeng, Su Shengnan, Liang Peng, et al. Effect of waterlogging at elongation or after anthesis on grain yield and accumulation and remobilization of dry matter and nitrogen in wheat[J]. Journal of Triticeae Crops, 2017, 37(11): 1473-1479. (in Chinese with English abstract)

[26] Araki H, Hamada A, Hossain M A, et al. Waterlogging at jointing and/or after anthesis in wheat induces early leaf senescence and impairs grain filling[J]. Field Crops Research, 2012, 137: 27-36.

[27] Hossain M A, Araki H, Takahashi T. Poor grain filling induced by waterlogging is similar to that in abnormal early ripening in wheat in Western Japan[J]. Field Crops Research, 2011, 123(2): 100-108.

[28] 吳啟俠,朱建強(qiáng),程倫國(guó),等. 基于地下水埋深的江漢平原冬小麥防澇漬排水指標(biāo)確定[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(3):121-127.

Wu Qixia, Zhu Jianqiang, Chen Lunguo, et al. Determination of groundwater depth-based drainage index against waterlogging and submergence for winter wheat in Jianghan Plain[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(3): 121-127. (in Chinese with English abstract)

[29] 武文明,陳洪儉,李金才,等. 氮肥運(yùn)籌對(duì)孕穗期受漬冬小麥旗葉葉綠素?zé)晒馀c籽粒灌漿特性的影響[J]. 作物學(xué)報(bào),2012,38(6):1088-1096.

Wu Wenming, Chen Hongjian, Li Jincai, et al. Effects of nitrogen fertilization on chlorophyll fluorescence parameters of flag leaf and grain filling in winter wheat suffered waterlogging at booting stage[J]. Acta Agronomica Sinica 2012, 38(6): 1088-1096. (in Chinese with English abstract)

[30] 范雪梅,姜東,戴廷波,等. 花后干旱或漬水下氮素供應(yīng)對(duì)小麥光合和籽粒淀粉積累的影響[J]. 應(yīng)用生態(tài)學(xué)報(bào),2005,16(10):1883-1888.

Fan Xuemei, Jiang Dong, Dai Tingbo, et al. Effects of nitrogen supply on flag leaf photosynthesis and grain starch accumulation of wheat from its anthesis to maturity under drought or waterlogging[J]. Chinese Journal of Applied Ecology, 2005, 16(10): 1883-1888. (in Chinese with English abstract)

[31] 苗永杰. 高溫脅迫對(duì)小麥籽粒灌漿特性及主要品質(zhì)性狀的影響[D]. 北京:中國(guó)農(nóng)業(yè)科學(xué)院,2016.

Miao Yongjie. Effect of Wheat Stress on Grain Filling and Major Quality Traits of Common Wheat[D]. Beijing: Chinese Academy of Agricultural Sciences Dissertation, 2016. (in Chinese with English abstract)

[32] 梁海燕,劉迪迪,張娜,等. 干旱脅迫對(duì)不同基因型小麥籽粒灌漿及內(nèi)源激素的影響[J]. 西北農(nóng)業(yè)學(xué)報(bào),2015,24(5):41-47.

Liang Haiyan, Liu Didi, Zhang Na, et al. Effect of water stress on grain filling and endogenous hormone changes in wheat grains of different genotypes[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2015, 24(5): 41-47. (in Chinese with English abstract)

[33] 馬新明,張娟娟,熊淑萍,等. 氮肥用量對(duì)不同品質(zhì)類型小麥品種籽粒灌漿特征和產(chǎn)量的影響[J]. 麥類作物學(xué)報(bào),2005,25(6):72-77.

Ma Xinming, Zhang Juanjuan, Xiong Shuping, et al. Effect of different amounts of nitrogen application on grain filling and yield of wheat varieties with different qualities[J]. Journal of Triticeae Crops, 2005, 25(6): 72-77. (in Chinese with English abstract)

[34] 朱冬梅,王慧,劉大同,等. 小麥籽粒灌漿與脫水特性[J]. 中國(guó)農(nóng)業(yè)科學(xué),2019,52(23):4251-4261.

Zhu Dongmei, Wang Hui, Liu Datong, et al. Characteristics of grain filling and dehydration in wheat[J]. Scientia Agricultura Sinica, 2019, 52(23): 4251-4261. (in Chinese with English abstract)

[35] 楊金宇,李援農(nóng),王凱瑜,等. 控釋氮肥與普通尿素配施比例和方法對(duì)冬小麥灌漿特性的影響[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2020,26(3):442-452.

Yang Jinyu, Li Yuannong, Wang Kaiyu, et al. Effects of blending ratio and application method of controlled-release nitrogen fertilizer and common urea on grain-filling properties of winter wheat[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(3): 442-452. (in Chinese with English abstract)

[36] 趙凱男,常旭虹,張趙星,等. 地膜覆蓋對(duì)小麥土壤水熱狀況及灌漿特性的影響[J]. 麥類作物學(xué)報(bào),2018,38(10):1237-1245.

Zhao Kainan, Chang Xuhong, Zhang Zhaoxing, et al. Effect of mulching on the moisture and temperature of soil and grain-filling characteristics of wheat[J]. Journal of Triticeae Crops, 2018, 38(10): 1237-1245. (in Chinese with English abstract)

Effects of waterlogging after anthesis on the grain filling characteristics of winter wheat with different waterlogging tolerances

Wu Qixia1,2, Tan Jinghong1,2, Zhu Jianqiang1,2, Wang Wei1,2, Han Rui1,2, Zou Juan3※

(1.,,434025,;2.,,434025,; 3.,,430064,)

Frequent occurrence of waterlogging has posed a great threat to the production of the crops in the middle and late stages of winter wheat growth in the Jianghan Plain, even the middle and lower reaches of the Yangtze River in China. However, the impact of waterlogging on the grain filling process is still unclear during this time. Taking Zhengmai 9023 (tolerant genotype) and Yangmai 20 (sensitive genotype) as research objects, this study aims to explore the effects of water logging after anthesis on grain filling of winter wheat under different tolerances. A systematic experiment was conducted under 5, 9, 13, and 17 d of waterlogging duration after anthesis of winter wheat in the test-pit with a controllable irrigation and drainage system. The soil moisture was kept at 90% field capacity in the waterlogging treatments. Meanwhile, the treatment with soil moisture at 70%-80% field capacity was used as a control. The grain filling was firstly simulated for two varieties of wheat under waterlogging environment stress using the Richard model. Subsequently, the yield component parameters were quantitatively analyzed the dynamic influence on grain filling, further to explore the influence process after anthesis waterlogging on winter wheat yield. The results showed that the waterlogging for 5, 9, 13, and 17 d after anthesis reduced the yield of Zhengmai 9023 (tolerant genotype) by 10.84%, 19.51%, 25.93%, 36.52% and Yangmai 20 (sensitive genotype) by 14.25%, 25.84%, 37.26%, 47.84%, respectively. The main reason was attributed to the decrease of thousand-grain mass. When waterlogging increased by 1 d after anthesis, the thousand-grain mass of Zhengmai 9023 (tolerance genotype) and Yangmai 20 (sensitive genotype) decreased by 0.961 and 0.996 g, respectively. The Richards equation presented better to simulate the grain filling of waterlogged winter wheat after anthesis. Specifically, the determination coefficients of the fitting equation were all above 0.99. Furthermore, there was a different influence mechanism of waterlogging after anthesis on the grain filling of wheat under different waterlogging tolerance. In waterlogging-tolerant wheat, the waterlogging was greatly contributed to shortening significantly the active days of the grain filling after anthesis, and specially shortened significantly the duration days in grain-filling fast increase period and grain-filling slowly increase period. In the waterlogging-sensitive wheat, the waterlogging after anthesis was mainly contributed to significantly reducing the filling rate in three periods of grain filling. Specifically, the waterlogging increased by 1 d after anthesis, and the grain filling active days of Zhengmai 9023 was shortened by 0.827 d, among which the duration days in grain-filling fast increase period and grain-filling slowly increase period was shortened by 0.492 and 0.963 d, respectively. Correspondingly, waterlogging increased by 1 d after anthesis, the maximum grain-filling rate per kernel of Yangmai 20 decreased by 0.046 mg/d, and the mean grain-filling rate per kernel decreased by 0.032 mg/d, the grain-filling rate per kernel in grain-filling pyramid period, grain-filling fast increase period and grain-filling slowly increase the period of winter wheat decreased by 0.011, 0.040 and 0.010 mg/d, respectively. The finding can provide strong theoretical support for the prevention and control of waterlogging disasters in winter wheat.

irrigation; yield; waterlogging stress; Richards model; grain-filling characteristic parameters; winter wheat

吳啟俠,譚京紅,朱建強(qiáng),等. 花后漬水對(duì)不同耐漬型冬小麥籽粒灌漿特性的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(18):74-81.doi:10.11975/j.issn.1002-6819.2021.18.009 http://www.tcsae.org

Wu Qixia, Tan Jinghong, Zhu Jianqiang, et al. Effects of waterlogging after anthesis on the grain filling characteristics of winter wheat with different waterlogging tolerances[J].Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(18): 74-81. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.18.009 http://www.tcsae.org

2020-10-04

2021-09-06

國(guó)家重點(diǎn)研發(fā)計(jì)劃(2016YFD0300405);濕地生態(tài)與農(nóng)業(yè)利用教育部工程研究中心開(kāi)放基金(KFT201906);公益性行業(yè)(農(nóng)業(yè))科研專項(xiàng)(201203032)

吳啟俠,博士,高級(jí)實(shí)驗(yàn)師,研究方向?yàn)樽魑锷a(chǎn)水土環(huán)境調(diào)控。Email:qixiawu@yangtzeu.edu.cn

鄒娟,博士,副研究員,研究方向?yàn)樾←溫S產(chǎn)抗逆栽培。Email:zoujuan1010@163.com

10.11975/j.issn.1002-6819.2021.18.009

S275

A

1002-6819(2021)-18-0074-08

猜你喜歡
花后天數(shù)冬小麥
果實(shí)快速膨大期是杧果補(bǔ)肥的關(guān)鍵期
花前漬水鍛煉調(diào)控花后小麥耐漬性的生理機(jī)制研究
基于花后累積地上生物量比例的冬小麥動(dòng)態(tài)收獲指數(shù)估算
2022年山西省冬小麥春季田間管理意見(jiàn)
冬小麥田N2O通量研究
冬小麥的秘密
質(zhì)量管理工具在減少CT停機(jī)天數(shù)中的應(yīng)用
不誤農(nóng)時(shí)打好冬小麥春管“第一仗”
最多幾天?最少幾天?
我國(guó)霧霾天數(shù)影響因素分析
金华市| 乌拉特后旗| 新宁县| 红原县| 宝山区| 临武县| 南通市| 会泽县| 安达市| 东台市| 湘潭县| 凯里市| 青河县| 长宁区| 常熟市| 公主岭市| 会同县| 德庆县| 登封市| 阳信县| 曲周县| 旬阳县| 霞浦县| 育儿| 孝昌县| 射阳县| 华阴市| 上饶市| 巩留县| 竹溪县| 荃湾区| 新密市| 武山县| 襄樊市| 陆丰市| 宣城市| 腾冲县| 囊谦县| 喀什市| 泌阳县| 石首市|