周岳強(qiáng), 董國(guó)軍, 許德如, 鄧 騰, 吳 俊, 王 翔, 高 磊, 陳孝剛
湖南黃金洞金礦床白鎢礦Sm-Nd年齡及其地質(zhì)意義
周岳強(qiáng)1,2,3, 董國(guó)軍3*, 許德如1,4, 鄧 騰4, 吳 俊3, 王 翔3, 高 磊5, 陳孝剛5
(1. 中國(guó)科學(xué)院 廣州地球化學(xué)研究所 礦物學(xué)與成礦學(xué)重點(diǎn)實(shí)驗(yàn)室, 廣東 廣州 510640; 2. 中國(guó)科學(xué)院大學(xué), 北京 100049; 3. 湖南省 地質(zhì)礦產(chǎn)勘查開發(fā)局 四〇二隊(duì), 湖南 長(zhǎng)沙 410004; 4. 東華理工大學(xué) 核資源與環(huán)境國(guó)家重點(diǎn)實(shí)驗(yàn)室, 江西 南昌 330013; 5. 湖南黃金洞礦業(yè)有限責(zé)任公司, 湖南 岳陽 414507)
黃金洞金礦床是江南造山帶上重要的金礦產(chǎn)地之一, 礦體賦存在新元古代的淺變質(zhì)巖中, 受東西向-北西西向構(gòu)造的嚴(yán)格控制。多年來, 黃金洞金礦床的成礦年齡一直存在著爭(zhēng)議。通過對(duì)黃金洞金礦區(qū)的白鎢礦開展詳細(xì)的野外調(diào)查、巖相學(xué)觀察和Sm-Nd同位素分析, 在147Sm/144Nd-143Nd/144Nd圖解中獲得白鎢礦的等時(shí)線年齡為(129.7±7.4) Ma (MSWD=1.0), 對(duì)應(yīng)的Nd()值為?8.21~ ?8.68。結(jié)合黃金洞礦區(qū)白鎢礦與含金硫化物的交切關(guān)系觀察、以及前人的成礦年代學(xué)和礦物學(xué)研究成果, 認(rèn)為白鎢礦的等時(shí)線年齡可作為黃金洞金礦床的成礦年齡。白鎢礦的Nd() 值大于賦礦地層新元古界冷家溪群和湘東北早白堊世花崗巖, 但小于新元古界倉溪巖群, 表明白鎢礦中的Nd部分來自新元古界冷家溪群和(或)湘東北早白堊世花崗巖, 部分來自新元古界倉溪巖群。綜合前人的研究, 認(rèn)為在江南造山帶的金銻鎢成礦作用中, 新元古界為礦源層, 區(qū)域變質(zhì)作用和巖漿作用共同促進(jìn)了金等成礦物質(zhì)的活化, 構(gòu)造活化為含礦熱液的運(yùn)移和沉淀提供了通道和空間。
金礦床; 白鎢礦; Sm-Nd同位素; 湘東北; 江南造山帶
在對(duì)金礦床定年時(shí), 最理想的方式是選取與金同期的礦物進(jìn)行直接定年[1]。然而, 熱液型金礦床中往往缺少可通過傳統(tǒng)方法直接定年的礦物。因此, 其成礦年齡的確定成為一個(gè)難以解決的問題[1–2]。近幾十年來, 人們發(fā)現(xiàn)很多金礦床中都有白鎢礦的出現(xiàn), 且這些白鎢礦與金關(guān)系密切, 常被作為重要的找礦標(biāo)志[3–6]。又由于白鎢礦中的Ca2+與Sm、Nd等稀土元素有著相似的半徑和電子結(jié)構(gòu)[7], 使得白鎢礦具有較高的稀土元素含量和Sm/Nd比值[1,8]。因此, 自20世紀(jì)80年代 Fryer.[3]首次成功實(shí)現(xiàn)Sm-Nd同位素定年以來, 白鎢礦Sm-Nd同位素定年逐漸被運(yùn)用于許多金礦床的研究中[1,9–12]。
江南造山帶是華南著名的金銻鎢銅鉛鋅多金屬成礦帶, 帶內(nèi)分布著數(shù)百個(gè)金-(銻)-(鎢)礦床(點(diǎn))。多年來, 前人針對(duì)江南造山帶上的金-(銻)-(鎢)礦床的成礦時(shí)代進(jìn)行了大量研究, 但得到的年齡大多為流體包裹體Rb-Sr等時(shí)線年齡[13–25]、黃鐵礦和方鉛礦等的Pb-Pb模式年齡[26–27]、石英裂變徑跡年齡[28]等類型。流體包裹體Rb-Sr等時(shí)線年齡極易受到次生流體包裹體的影響; Pb-Pb模式年齡則容易因?yàn)楹笃跓嵋夯顒?dòng)導(dǎo)致Pb的丟失而不準(zhǔn)確; 由于石英的U含量低且不均勻, 石英裂變徑跡年齡的準(zhǔn)確性也不高, 且所測(cè)的石英也可能為非成礦期的石英。因此, 這些年齡相互之間差異很大, 在很大程度上已制約著對(duì)江南造山帶金銻鎢成礦機(jī)理的深入研究。自2003年彭建堂等[11]通過白鎢礦的Sm-Nd同位素測(cè)試獲得沃溪金銻鎢礦床的成礦年齡開始, 一些學(xué)者[12,29–34]以白鎢礦、含金毒砂以及輝銻礦等與金銻鎢礦床的成礦階段密切相關(guān)的礦物為對(duì)象, 運(yùn)用Sm-Nd同位素、Re-Os同位素等可靠程度較高的測(cè)年方式, 獲得了江南造山帶西南段沃溪金銻鎢礦床、渣滓溪鎢銻礦床、板溪銻礦床、字溪金礦床、金井金礦床、龍山銻金礦床、平秋金礦床和八克金礦床的成礦年齡。
黃金洞金礦床位于江南造山帶中段的湘東北地區(qū), 是江南造山帶上最重要的幾個(gè)金礦床之一。前人曾獲得黃金洞金礦床的黃鐵礦Pb-Pb模式年齡為552~416 Ma[26], 流體包裹體Rb-Sr等時(shí)線年齡為(425±33) Ma[23]和(152±13) Ma[20]。由于這些測(cè)年方法存在著較大的局限性, 黃金洞金礦床目前仍缺乏可靠程度高的成礦年齡。在黃金洞金礦床的勘探開采過程中我們發(fā)現(xiàn), 礦區(qū)金品位較高的地段往往有白鎢礦出現(xiàn)?;诖? 本次研究擬對(duì)黃金洞金礦區(qū)的含白鎢礦礦石進(jìn)行詳細(xì)的野外和鏡下觀察, 并對(duì)白鎢礦進(jìn)行Sm-Nd同位素測(cè)試, 以獲得黃金洞金礦床的成礦年齡并探討白鎢礦中Nd的來源。在此基礎(chǔ)上, 結(jié)合前人的研究成果, 探討江南造山帶上金- (銻)-(鎢)礦床的成因。
江南造山帶位于揚(yáng)子陸塊與華夏陸塊的接合部位、揚(yáng)子陸塊的東南緣, 又被稱為“江南古陸”“江南古島弧”“江南隆起”[35–36](圖1), 以大面積出露元古宇(1.85~0.8 Ga)淺變質(zhì)火山碎屑巖為特征[20]。此外, 古生代和中生代的淺海相和陸相地層也有少量出露。中生代的陸相沉積多分布于一系列斷陷盆地之中[36,40]。
江南造山帶的構(gòu)造演化與新元古代以來揚(yáng)子陸塊與華夏陸塊的活動(dòng)緊密相關(guān)[41]。新元古代, 作為Rodinia大陸聚合的重要組成部分, 揚(yáng)子陸塊與華夏陸塊發(fā)生碰撞, 形成了江南造山帶[42]。之后, 江南造山帶在加里東期、印支期和燕山期經(jīng)歷了多期的構(gòu)造作用。早古生代, 南華裂谷盆地閉合, 揚(yáng)子和華夏陸塊之間再次發(fā)生碰撞, 拉開了加里東期陸內(nèi)造山作用的序幕。這次造山作用在江南造山帶前泥盆紀(jì)地層中形成了一系列北西?近東西向的韌性剪切帶、斷裂和褶皺構(gòu)造[43–44], 形成了大量的花崗巖、花崗閃長(zhǎng)巖和少量的火山巖[45], 并使得地層普遍發(fā)生綠片巖相?角閃巖相的變質(zhì)[41]。印支期的造山作用發(fā)生于早中生代, 它使得華南最終成為Pangea超大陸的一部分[46]。同時(shí), 它使得華南早三疊世以前的地層大量褶皺變形和形成逆沖推覆構(gòu)造, 并伴隨著區(qū)域變質(zhì)作用和巖漿活動(dòng)[47–48]。印支期巖漿巖規(guī)模較小, 以S型花崗巖為主。燕山期, 隨著古太平洋板塊向歐亞板塊的俯沖和回撤, 江南造山帶發(fā)育了一系列北東向的深大斷裂和斷陷盆地[49], 同時(shí)形成了大量的花崗巖、基性?超基性巖脈和基性?酸性火山巖[50–52]。
圖1 湘東北地質(zhì)及大地構(gòu)造位置圖
(a) 華南構(gòu)造劃分圖(據(jù)文獻(xiàn)[37]修改); (b) 湘東北地區(qū)構(gòu)造地質(zhì)圖(據(jù)文獻(xiàn)[38,39]修改)。
1–第四系; 2–白堊紀(jì)?第三紀(jì)砂巖和礫巖; 3–中泥盆世?中三疊世碳酸鹽巖、砂巖和泥巖; 4–震旦紀(jì)?志留紀(jì)砂巖、頁巖、礫巖和板巖; 5–新元古界板溪群碎屑沉積巖; 6–新元古界冷家溪群淺變質(zhì)濁積巖; 7–新元古界倉溪巖群片巖, 片麻巖; 8–燕山期花崗巖; 9–印支期花崗巖; 10–加里東期花崗巖; 11–元古宙花崗巖; 12–斷裂; 13–韌性剪切帶; 14–金礦床(點(diǎn)); 15–鈷礦點(diǎn); 16–錫礦化; 17–鎢礦化; 18–鈹?shù)V化; 19–鈮鉭礦化; 20–銅礦化; 21–鉛鋅礦化; 22–鎢錫礦化; 23–銅多金屬礦床(點(diǎn))。
(a) Tectonic framework of South China (modified after reference [37]); (b) geological and structural map of northeastern Hunan (modified after references [38,39]).
1–Quaternary; 2–Tertiary-Cretaceous sandstone and conglomerate; 3–Middle Triassic-Middle Devonian carbonate, sandstone and siltstone; 4–Silurian-Sinian sandstone, shale, conglomerate and slate; 5–clastic sediments of the Neoproterozoic Banxi Group; 6–low-grade metamorphosed turbidites of the Neoproterozoic Lengjiaxi Group; 7–schist and gneiss of the Neoproterozoic Lengjiaxi Group; 8–Yanshanian granitoids; 9–Indosinian granitoids; 10–Caledonian granitoids; 11–Proterozoic granit0ids; 12–fault; 13–ductile shear zone; 14–Au deposit or occurrence; 15–Co deposit; 16–Sn mineralization; 17–W mineralization; 18–Be mineralization; 19–Ni-Ta mineralization; 20–Cu mineralization; 21–Pb-Zn mineralization; 22–W-Sn mineralization; 23–Cu polymetallic deposit or occurrence
湘東北地區(qū)位于江南造山帶的中段(圖1a)。區(qū)內(nèi)出露的地層主要為新元古界、中生界白堊系及新生界第四系。新元古界主要分布于斷隆帶上, 由倉溪巖群、冷家溪群和板溪群組成。倉溪巖群主要由云母片巖和黑云母斜長(zhǎng)片麻巖組成。冷家溪群和板溪群為一套具有復(fù)理石建造的淺變質(zhì)火山碎屑巖和黏土巖。冷家溪群主要由板巖、(粉)砂質(zhì)板巖和變質(zhì)雜砂巖組成, 由老至新依次為雷神廟組、黃滸洞組、小木坪組和大藥姑組。冷家溪群與上覆板溪群呈角度不整合接觸[53]。新元古界的冷家溪群和板溪群富含Au、Sb和W等元素[54], 是金銻鎢礦床的主要賦礦地層[36]。其中, 冷家溪群含Au 0.5~44.2 ng/g, 是地殼克拉克值的1~8倍[38]; 含鎢5~15 μg/g, 局部高達(dá)0.18%[54]。白堊系和第四系主要分布于斷陷盆地。除此以外, 震旦紀(jì)至三疊紀(jì)的地層在區(qū)內(nèi)也有少量出露(圖1b)。
湘東北地區(qū)北東向深大斷裂發(fā)育。以這些斷裂為界, 湘東北被劃分為一系列相間分布的斷隆和斷陷盆地, 被稱為“盆?嶺式構(gòu)造”[41]。此外, 2004年肖擁軍等[55]根據(jù)構(gòu)造形跡和地球物理資料認(rèn)為, 湘東北地區(qū)還存在著三條近東西向的韌性剪切帶。新元古代、加里東期、印支期和燕山期巖漿巖在湘東北地區(qū)都有出露[56]。新元古代巖漿巖包括長(zhǎng)三背、葛藤嶺、大圍山和張邦源等巖體, 主要為S型花崗巖, 成巖年齡大多分布于833~816 Ma之間, 形成于同碰撞的構(gòu)造環(huán)境[35,57–61]。加里東期巖體包括張坊、板杉鋪和宏夏橋等, 成巖年齡為434~432 Ma,為I型花崗巖, 為加厚的中下地殼發(fā)生部分熔融而成[62–63]。印支期巖漿巖僅在湘東北的西南部有出露, 成巖年齡分布于250~233 Ma之間, 目前相關(guān)研究較少[64]。燕山期巖漿巖出露面積最大, 主要為S型花崗巖, 是伸展環(huán)境下加厚下地殼發(fā)生部分熔融的產(chǎn)物[65], 代表性巖體有連云山巖體、望湘巖體及金井巖體(圖1b)。其中, 連云山巖體主要由中細(xì)粒二云母花崗巖和中粗粒斑狀黑云母花崗巖組成, 為強(qiáng)過鋁質(zhì)S型花崗巖[39], 其成巖年齡分布于 155~130 Ma之間[49,56],常見綠泥石化、綠簾石化、高嶺土化及絹云母化。在連云山巖體周圍, 由近到遠(yuǎn)依次出現(xiàn)W-Sn-Nb- Ta-Be礦化帶、Cu-Pb-Zn礦化帶和Au礦化帶(圖1b)[38,39]。
湘東北地區(qū)是江南造山帶重要的金礦產(chǎn)地之一。區(qū)內(nèi)產(chǎn)出有大萬(大洞和萬古)、黃金洞和雁林寺等多個(gè)金礦床(點(diǎn)), 它們均分布于北東向深大斷裂長(zhǎng)平斷裂帶兩側(cè)新元古代冷家溪群的板巖之中(圖1b)。其中, 大萬和黃金洞金礦床均為大型?超大型金礦床。
黃金洞金礦床位于湘東北地區(qū)北東向長(zhǎng)沙?平江深大斷裂帶(簡(jiǎn)稱長(zhǎng)平斷裂帶)的SE側(cè)(圖1b)。區(qū)內(nèi)出露的地層主要為新元古界冷家溪群大藥姑組, 局部被第四系覆蓋。大藥姑組主要由粉砂質(zhì)板巖、砂質(zhì)板巖和絹云母板巖組成。巖石普遍經(jīng)受了區(qū)域淺變質(zhì)作用, 產(chǎn)生的蝕變主要為絹云母化, 其次為弱硅化及少量綠泥石化、黃鐵礦化和碳酸鹽化。礦區(qū)內(nèi)褶皺和斷裂都很發(fā)育。褶皺主要為倒轉(zhuǎn)背向斜, 褶皺樞紐呈北西(西)走向。區(qū)內(nèi)發(fā)育兩組斷裂, 分別為東西向?北西西向和北東向。東西向?北西西向斷裂的走向與褶皺樞紐方向大致平行。北東向斷裂主要為泥灣斷裂和許多近平行的次級(jí)斷裂。這些斷裂走向北北東, 傾向北西西, 傾角通常大于50°。礦區(qū)內(nèi)尚未發(fā)現(xiàn)有火成巖出露(圖2)。
截至2018年, 黃金洞金礦區(qū)已探明的金資源量(保有資源量+已開采資源量)達(dá)82 t, 平均品位約5 g/t[66]。礦區(qū)共發(fā)現(xiàn)19條金礦脈, 走向東西向至北西西向, 受東西向?北西西向斷裂控制。其中, 1號(hào)脈和3號(hào)脈的金資源量占整個(gè)礦區(qū)金資源量的50%以上。1號(hào)脈傾向北, 傾角20°~40°, 沿走向延伸長(zhǎng)約3200 m, 礦體厚0.46~2.16 m。3號(hào)脈傾向南, 傾角45°~70°, 沿走向延伸長(zhǎng)約3300 m, 礦體厚約0.74~ 3.65 m。礦石類型主要為石英脈型和蝕變巖型, 少量為構(gòu)造角礫巖型(圖3a~3c)。礦石礦物主要為毒砂和黃鐵礦, 少量為白鎢礦、輝銻礦、方鉛礦、閃鋅礦、黃銅礦和自然金等。脈石礦物主要為石英和方解石, 少量為綠泥石、絹云母和白云石等。金呈自然金、晶格金和納米級(jí)金顆粒三種形式存在。其中, 晶格金和納米級(jí)金顆粒主要賦存于毒砂和含砷黃鐵礦中[56,67,68]。近礦圍巖的蝕變類型多樣, 主要蝕變類型為硅化、黃鐵礦化和毒砂化, 可見少量的絹云母化和綠泥石化。局部圍巖可見輝銻礦化和葉臘石化。
根據(jù)野外和鏡下觀察到的穿插關(guān)系, 可將黃金洞金礦床的熱液作用劃分為四個(gè)階段(圖4): 第一階段以無礦石英(Qz1)為特征, 石英顆粒較大(圖3c); 第二階段以白鎢礦和石英(Qz2)為特征(圖3e); 第三階段為金多金屬硫化物階段, 形成石英(Qz3)、毒砂、黃鐵礦、方鉛礦和自然金礦物組合(圖3f); 第四階段由方解石、石英(Qz4)和少量黃鐵礦組成(圖3g~3h)。其中, 第三階段與金成礦有關(guān)。局部可觀察到第二階段的白鎢礦細(xì)脈切穿了第一階段形成的無礦石英(Qz1) (圖3c~3e), 同時(shí)又被第三階段形成的金多金屬硫化物細(xì)脈切穿(圖3c、3e和3f)。
本次研究的含白鎢礦礦石均采自3號(hào)礦脈(圖2), 詳細(xì)采樣位置見表1。礦區(qū)的白鎢礦通常為乳白色, 油脂光澤, 呈細(xì)脈狀、團(tuán)塊狀產(chǎn)出。
在詳細(xì)進(jìn)行野外和室內(nèi)觀察的基礎(chǔ)上, 首先將樣品碎至粒徑約0.25 mm (60目)。然后, 在雙目鏡下借助熒光燈挑選白鎢礦。在挑選過程中, 將混晶和雜質(zhì)剔除, 使白鎢礦的純度達(dá)到99%以上。最后, 將挑選出來的白鎢礦碎至粒徑約0.075 mm (200目)。白鎢礦Sm-Nd同位素的測(cè)定工作在中國(guó)地質(zhì)調(diào)查局武漢地質(zhì)調(diào)查中心的Triton熱電離質(zhì)譜儀上完成。詳細(xì)的操作流程參考李華芹[69]。樣品分析測(cè)試在超凈化實(shí)驗(yàn)室完成。通過同位素稀釋法得到Sm和Nd含量, 直接對(duì)提純的樣品分析得到Nd同位素比值, 質(zhì)譜分析過程中產(chǎn)生的質(zhì)量分餾采用146Nd/144Nd=0.7219進(jìn)行冪定律校正。在分析過程中,采用GBW04419、BCR-2和GSW標(biāo)準(zhǔn)物質(zhì)對(duì)全流程和儀器進(jìn)行監(jiān)控。GBW04419的測(cè)定結(jié)果為Sm=3.028 μg/g, Nd=10.08 μg/g,143Nd/144Nd= 0.512720±0.000005(1σ), 與其證書值(3.03±0.04、10.10±0.12、0.512725±0.000005(2σ))在誤差范圍內(nèi)一致; BCR-2的測(cè)定結(jié)果為Sm=6.54 μg/g, Nd=28.85 μg/g,143Nd/144Nd=0.512636±0.000008 (1σ), 與其推薦值(6.41~6.73、27.62~28.97、0.512618~0.512650)在誤差范圍內(nèi)一致; GSW的測(cè)定結(jié)果為143Nd/144Nd = 0.512433±0.000005(1σ), 與推薦值0.512438±6(2σ)在誤差范圍內(nèi)完全一致。標(biāo)準(zhǔn)全流程Sm、Nd空白分別為3.0×10?11g和2.0×10?11g, 對(duì)樣品分析結(jié)果的影響可忽略不計(jì)。Sm和Nd含量的分析誤差優(yōu)于1%,147Sm/144Nd的分析誤差為0.005%。Sm-Nd同位素年齡通過Isoplot程序分析處理[70]。計(jì)算時(shí)采用的147Sm衰變常數(shù)為6.54×10?12a?1, 球粒隕石均一儲(chǔ)庫(CHUR)現(xiàn)代的147Sm/144Nd和143Nd/144Nd值分別采用0.1967和0.512638[71]。
李達(dá)是中共一大的發(fā)起者、籌備者、召集者和組織者,他和夫人王會(huì)悟也是同時(shí)參加黨的一大的唯一一對(duì)夫妻。在中國(guó)共產(chǎn)黨早期領(lǐng)導(dǎo)人中,“還很少有像李達(dá)同志這樣勤奮、這樣有豐富的卓越的成就,這樣在任何困難危險(xiǎn)的環(huán)境下生命不息、戰(zhàn)斗不止的馬克思主義宣傳家、教育家,這樣堅(jiān)定勇敢而不斷追求進(jìn)步,力求達(dá)到當(dāng)代的最高水平的馬克思主義理論戰(zhàn)士”。他為中國(guó)共產(chǎn)黨的創(chuàng)立,為馬克思主義在中國(guó)的傳播,為豐富毛澤東哲學(xué)思想作出了重要貢獻(xiàn)。
圖2 黃金洞礦區(qū)地質(zhì)圖(據(jù)文獻(xiàn)[36]修改)
圖3 黃金洞礦區(qū)礦脈野外、手標(biāo)本及顯微鏡下照片
(a) 蝕變巖型礦石; (b) 構(gòu)造角礫巖型礦石; (c) 石英脈型礦石手標(biāo)本; (d) 紫外熒光燈照射下的石英脈型礦石手標(biāo)本; (e) 白鎢礦細(xì)脈切穿了無礦石英, 又被黃鐵礦、毒砂細(xì)脈切穿(正交偏光); (f) 金多金屬硫化物細(xì)脈切穿白鎢礦(反射光); (g) 和 (h) 石英和方解石的礦物組合(正交偏光)。Apy–毒砂; Au–自然金; Cal–方解石; Gn–方鉛礦; Py–黃鐵礦; Qz–石英; Sch–白鎢礦。
(a) Altered rock type ore; (b) tectonic breccia type ore; (c) quartz vein type ore; (d) quartz vein type ore irradiated by the ultraviolet fluorescent lamp; (e) vein of scheelite crosscutting barren quartz and crosscutted by vein of pyrite and arsenopyrite (cross-polarized light); (f) vein of Au polymetallic sulfide crosscutting vein of scheelite (reflected-light); (g) and (h) quartz and calcite (cross-polarized light). Apy–arsenopyrite; Au–native gold; Cal–calcite; Gn–galena; Py–pyrite; Qz–quartz; Sch–scheelite
圖4 黃金洞金礦床的成礦階段和礦物組合
黃金洞礦區(qū)3號(hào)脈采集的5件樣品中白鎢礦的Sm和Nd含量以及同位素組成如表1所示。白鎢礦Sm和Nd的含量分別為0.5517~5.1330 μg/g和0.5854~ 3.5100 μg/g,147Sm/144Nd比值分布于0.5702~1.1130之間,143Nd/144Nd比值分布于0.512521~0.512979之間。在143Nd/144Nd-147Sm/144Nd圖解中, 5個(gè)白鎢礦樣品表現(xiàn)出良好的線性關(guān)系(圖5)。運(yùn)用Isoplot程序求得白鎢礦的等時(shí)線年齡(129.7±7.4) Ma, MSWD為1.0, (143Nd/144Nd)i值為0.512040±0.000038 (圖5), 對(duì)應(yīng)的Nd()值為?8.21 ~ ?8.68 (表1)。由于所有樣品均采自黃金洞礦區(qū)3號(hào)礦脈, 是同源同期熱液活動(dòng)的產(chǎn)物, 本次獲得的年齡(129.7±7.4) Ma可代表白鎢礦的真實(shí)形成年齡。
白鎢礦在江南造山帶以及世界上其他地區(qū)的很多金礦床中都有產(chǎn)出[36,72]。這些白鎢礦與自然金同時(shí)形成或形成于自然金之前[36,72–75], 大多與金有著成因上的聯(lián)系[75–76]。因此, 白鎢礦Sm-Nd同位素定年被廣泛用于金礦床的成礦年齡限定[1,9–12]。
在黃金洞金礦區(qū), 白鎢礦出現(xiàn)的地段金的品位往往較高, 甚至有明金出現(xiàn)。根據(jù)黃金洞金礦床的階段劃分結(jié)果, 金形成于第三階段。這一階段的含金硫化物細(xì)脈切穿了第二階段的白鎢礦(圖3f), 且白鎢礦的Sm-Nd等時(shí)線年齡為(129.7±7.4) Ma。因此, 推測(cè)黃金洞金成礦的年齡晚于(129.7±7.4) Ma。而目前尚未在白堊系中發(fā)現(xiàn)金礦化的現(xiàn)象表明(圖1b), 黃金洞金礦床的成礦年齡應(yīng)早于白堊系的沉積年齡。此外, 長(zhǎng)平斷裂帶通常被認(rèn)為是黃金洞等金礦床的導(dǎo)礦構(gòu)造[56,77]。長(zhǎng)平斷裂帶上產(chǎn)出的大巖金礦化點(diǎn)(圖1b)與黃金洞金礦床相鄰, 礦物組合石英?毒砂?黃鐵礦與黃金洞金礦床成礦階段(第三階段)的礦物組合類似, 這表明大巖金礦化點(diǎn)和黃金洞金礦床可能為同一期金成礦事件的產(chǎn)物。前人[56]已通過鋯石U-Pb定年和白云母Ar-Ar定年得到大巖金礦化點(diǎn)的成礦年齡為(142~130) Ma。根據(jù)以上論述, 黃金洞金礦床的成礦年齡應(yīng)為130 Ma左右, 與白鎢礦的Sm-Nd等時(shí)線年齡近似。白鎢礦的年齡(129.7±7.4) Ma可大致作為成礦年齡。
表1 黃金洞金礦床中白鎢礦的Sm-Nd同位素組成
圖5 湖南黃金洞金礦床白鎢礦Sm-Nd等時(shí)線圖
由于白鎢礦從流體中結(jié)晶時(shí), Nd同位素不會(huì)受到影響[78], 白鎢礦的Nd同位素被廣泛運(yùn)用于源區(qū)示蹤的工作[1,11,30,78,79]。本次測(cè)得黃金洞金礦床中白鎢礦的Nd()值位于?8.21~?8.68之間, 表明Nd同位素為殼源。根據(jù)毛景文等[38]的Sm-Nd同位素?cái)?shù)據(jù), 重新計(jì)算得賦礦地層冷家溪群的Nd(129.7 Ma)值分布于?10.30 ~ ?13.86之間, 小于白鎢礦的Nd()值。礦區(qū)外圍出露的時(shí)代更老的倉溪巖群的Nd(129.7 Ma)值分布于?5.80 ~ ?8.06之間[80], 大于白鎢礦的Nd()值。同時(shí), 湘東北地區(qū)早白堊世的S型花崗巖的Nd(129 Ma)值分布于?10.02 ~ ?10.36之間(中南大學(xué)未發(fā)表數(shù)據(jù)) (圖6)。這表明, 白鎢礦中的Nd可能部分來自于冷家溪群和(或)湘東北早白堊世的花崗巖, 部分來自于新元古界倉溪巖群。
在黃金洞金礦區(qū), 切穿第一階段無礦石英的白云母的Ar-Ar年齡為397~399 Ma[81], 表明東西向?北西西向的賦礦構(gòu)造形成于加里東期或更早。同樣賦存于東西向?北西西向賦礦構(gòu)造中的第二階段白鎢礦的Sm-Nd等時(shí)線年齡為(129.7±7.4) Ma, 表明賦礦構(gòu)造在燕山期發(fā)生了活化。前人研究表明, 向華南板塊俯沖的古太平洋板塊發(fā)生后撤, 進(jìn)而導(dǎo)致整個(gè)華南地區(qū)的應(yīng)力體系由擠壓向伸展轉(zhuǎn)換的時(shí)間也為130 Ma左右[52,82], 與黃金洞金礦床的成礦年齡在誤差范圍內(nèi)一致。因此, 可能是這次構(gòu)造事件導(dǎo)致了湘東北地區(qū)構(gòu)造的活化, 從而為黃金洞金礦床的成礦流體提供了運(yùn)移的通道和成礦的空間。
圖6 黃金洞金礦區(qū)白鎢礦與湘東北各地質(zhì)體εNd(t)值對(duì)比圖
新元古界倉溪巖群的Nd() (=129.7 Ma)根據(jù)文獻(xiàn)[80]重新計(jì)算; 新元古界冷家溪群的Nd() (=129.7 Ma)根據(jù)文獻(xiàn)[38]重新計(jì)算; 湘東北早白堊世花崗巖的Nd() (=129 Ma)數(shù)據(jù)引自中南大學(xué)未發(fā)表數(shù)據(jù)
Nd() (=129.7 Ma) for the Neoproterozoic Cangxiyan Group was calculated according to reference [80];Nd() (=129.7 Ma) for the Neoproterozoic Lengjiaxi Group was calculated according to reference [38], whileNd() (=129 Ma) for early Cretaceous granites in northeastern Hunan was cited from unreleased data of Central South University
在江南造山帶上, 絕大多數(shù)金銻鎢礦床賦存于新元古界地層之中[36,77]。S和Pb同位素分析結(jié)果表明, 這些礦床的成礦物質(zhì)主要來源于賦礦的新元古界(文獻(xiàn)[36]及其參考文獻(xiàn))。同時(shí), 元素含量分析結(jié)果表明, 新元古界(尤其是冷家溪群)的Au、Sb和W的含量高于地殼豐度值[38,54]。因此, 江南造山帶上絕大多數(shù)金銻鎢礦床的礦源層應(yīng)為新元古界, 各個(gè)礦床成礦時(shí)代不一致可能是因?yàn)槌傻V物質(zhì)被活化、遷移、沉淀成礦的時(shí)間不同所導(dǎo)致的。
關(guān)于引起礦源層中成礦元素活化的因素, 有學(xué)者認(rèn)為是大規(guī)模的造山作用[25,93–96]和(或)區(qū)域變質(zhì)作用[97–100]。針對(duì)江南造山帶金銻鎢礦床的成礦年代學(xué)研究結(jié)果顯示, 不論是加里東期、印支期還是燕山期, 在江南造山帶的西南段、中段和北東段通常都有相近的年齡(不論是成礦年齡還是無礦的熱液活動(dòng)年齡)出現(xiàn)(表2, 圖7)。因此, 大規(guī)模的造山作用和(或)區(qū)域變質(zhì)作用在引發(fā)江南造山帶熱液活動(dòng)方面發(fā)揮了重要作用。江南造山帶大部分金銻鎢礦床的成礦流體主要為變質(zhì)水[25,95,99,101–109]的現(xiàn)象也支持這個(gè)觀點(diǎn)。
表2 江南造山帶已報(bào)道和本文中的金銻鎢礦床年齡統(tǒng)計(jì)表
(續(xù)表2)
粗體的年齡數(shù)據(jù)為“較可靠”的年齡; 其余為“較不可靠”的年齡?!拜^可靠”的年齡和“較不可靠”的年齡的定義見圖7的說明。
圖7 江南造山帶北東段、中段、西南段年齡對(duì)比圖(年齡數(shù)據(jù)來自表2)
圖中“較可靠”的年齡指對(duì)應(yīng)的定年礦物的成因明確, 且與成礦階段/無礦階段的關(guān)系明確的年齡; “較不可靠”的年齡指對(duì)應(yīng)的定年礦物成因不明, 或與成礦階段/無礦階段的關(guān)系不明的年齡。
Robust ages in the figure represent ages that were dated by minerals with specific genesis and relationship with ore-forming stage/barren stage;Less robust ages represent ages that were dated by minerals without specific genesis or relationship with ore-forming stage/barren stage.
同時(shí), 江南造山帶上的金銻鎢礦床大多在空間上與巖漿巖相聯(lián)系。部分礦區(qū)有巖體或巖脈出露(如龍山金銻礦床[12]); 部分礦區(qū)盡管沒有巖體露頭, 但被認(rèn)為深部存在隱伏巖體(如大萬金礦床[110]), 或其附近的北東向深大斷裂沿線有巖體產(chǎn)出(如大萬金礦床、黃金洞金礦床(圖1b)和沃溪金銻鎢礦床)。金銻鎢礦床的成礦年齡通常與這些鄰近巖體的年齡相近或稍晚。例如, 黃金洞金礦床的年齡((129.7±7.4) Ma)、大巖金礦化點(diǎn)的年齡(130 Ma)[56]略晚于長(zhǎng)平斷裂帶沿線燕山期巖體的年齡(155~130 Ma)[49,56]; 龍山金銻礦床的年齡((210±2) Ma)[12]和渣滓溪銻鎢礦床的年齡((227.3±6.2) Ma)[30]與附近晚三疊世巖體的年齡(228~201 Ma)[111]大致相等。氫氧同位素分析結(jié)果顯示, 江南造山帶金銻鎢礦床的成礦流體中除了變質(zhì)水外, 通常還有少量巖漿水的參與[102,104,106,107]。在湘東北地區(qū), 還可觀察到以連云山巖體為中心, 由近到遠(yuǎn)依次出現(xiàn)高溫、中溫和低溫的成礦元素分帶[38,39](圖1)。以上這些證據(jù)表明, 巖漿作用也在成礦物質(zhì)的活化過程中發(fā)揮了重要作用, 可能其提供的熱能或帶來的某些流體或物質(zhì)有利于礦源層中成礦物質(zhì)的活化。
此外,江南造山帶上的金銻鎢礦床大多受構(gòu)造的控制, 產(chǎn)出于北東向深大斷裂兩側(cè)的次級(jí)斷裂中[41,77]。平秋[29,31]、金井[29,34]和黃金洞[81]等礦床同時(shí)存在著兩個(gè)或多個(gè)年齡(表2)的現(xiàn)象表明, 控礦構(gòu)造在形成后可能再次活化[36], 構(gòu)造的活化可能為含礦流體的運(yùn)移和沉淀成礦提供了通道和空間。
綜上所述, 礦源層中金等成礦物質(zhì)的活化可能是造山作用及其相關(guān)的區(qū)域變質(zhì)作用和巖漿作用共同作用的結(jié)果, 而構(gòu)造活化可能為含礦流體的運(yùn)移和沉淀成礦提供了通道和空間。在某個(gè)特定的時(shí)期, 之所以部分地區(qū)成礦而部分地區(qū)不成礦, 一方面可能是不成礦地區(qū)區(qū)域變質(zhì)作用和(或)巖漿作用的影響程度較低導(dǎo)致礦源層中的成礦物質(zhì)沒有被活化, 另一方面可能是不成礦地區(qū)缺乏構(gòu)造活化提供的成礦流體運(yùn)移的通道和沉淀成礦的空間。
本次研究表明, 在江南造山帶的金銻鎢成礦作用中, 新元古界地層是礦源層, 區(qū)域變質(zhì)作用、巖漿作用和構(gòu)造活化在成礦物質(zhì)的活化、遷移和沉淀過程中起到了重要作用。因此, 在江南造山帶的找礦工作中, 可將新元古界地層、火成巖和活化的構(gòu)造作為重要的預(yù)測(cè)要素。
(1) 黃金洞金礦床的成礦年齡為(129.7±7.4) Ma;
(2) 黃金洞金礦床白鎢礦中的Nd部分來自新元古界冷家溪群和(或)湘東北早白堊世的花崗巖, 部分來自新元古界倉溪巖群;
(3) 在江南造山帶上, 新元古界地層為金銻鎢礦床的礦源層, 區(qū)域變質(zhì)作用和巖漿作用的綜合作用可能為新元古界地層中金等成礦物質(zhì)的活化提供了必要條件, 構(gòu)造的活化可能為含礦熱液提供了運(yùn)移通道的和沉淀成礦的空間。
中國(guó)地質(zhì)大學(xué)(武漢)蔣少涌教授和中國(guó)地質(zhì)科學(xué)院地質(zhì)研究所周利敏副研究員對(duì)本文的初稿提出了寶貴的修稿意見, 在此表示衷心的感謝!
[1] Bell K, Anglin C D, Franklin J M. Sm-Nd and Rb-Sr isotope systematics of scheelites: Possible implications for the age and genesis of vein-hosted gold deposits[J]. Geology, 1989, 17(6): 500–504.
[2] 陸松年, 李懷坤, 李惠民. 成礦地質(zhì)事件的同位素年代學(xué)研究[J]. 地學(xué)前緣, 1999, 6(2): 335–342.
Lu Song-nian, Li Huai-kun, Li Hui-min. Research on isotopic geochronology of mineralization events[J]. Geosci Front, 1999, 6(2): 335–342 (in Chinese with English abstract).
[3] Fryer B J, Taylor R P . Sm-Nd direct dating of the Collins Bay hydrothermal uranium deposit, Saskatchewan[J]. Geology, 1984, 12(8): 479–482.
[4] Surya Prakash Rao K, Sastry R S N, Raju S V. Scheelite as a prospecting tool for gold in the Ramagiri greenstone belt, Andhra Pradesh, India[J]. J Geochem Explor, 1989, 31(3): 307–317.
[5] Ghaderi M, Palin J M, Campbell I H, Sylvester P J. Rare earth element systematics in scheelite from hydrothermal gold deposits in the Kalgoorlie-Norseman region, Western Australia[J]. Econ Geol, 1999, 94(3): 423–437.
[6] Boyle R W. The geochemistry of gold and its deposits[J]. Geol Surv Can Bull, 1979, 280: 579–584.
[7] Raimbault L, Baumer A, Dubru M, Benkerrou C, Croze V, Zahm A. REE fractionation between scheelite and apatite in hydrothermal conditions[J]. Am Mineral, 1993, 78: 1275–1285.
[8] Brugger J L, Etschmann B, Pownceby M, Liu W, Grundler P, Brewe D. Oxidation state of europium in scheelite: Tracking fluid-rock interaction in gold deposits[J]. Mineral Mag, 2008, 257(1/2): 0–33.
[9] Anglin C D, Jonasson I R, Franklin J M. Sm-Nd dating of scheelite and tourmaline; implications for the genesis of Archean gold deposits, Val d’Or, Canada[J]. Econ Geol, 1996, 91(8): 1372–1382.
[10] Darbyshire D P F, Pitfield P E J, Campbell S D G. Late Archean and Early Proterozoic gold-tungsten mineralization in the Zimbabwe Archean craton: Rb-Sr and Sm-Nd isotope constraints[J]. Geology, 1996, 24(1): 19–22.
[11] 彭建堂, 胡瑞忠, 趙軍紅, 符亞洲, 林源賢. 湘西沃溪Au-Sb-W礦床中白鎢礦Sm-Nd和石英Ar-Ar定年[J]. 科學(xué)通報(bào), 2003, 48(18): 1976–1981.
Peng Jian-tang, Hu Rui-zhong, Zhao Jun-hong, Fu Ya-zhou, Lin Yuan-xian. Scheelite Sm-Nd dating and quartz Ar-Ar dating from the Woxi Au-Sb-W deposit, western Hunan China[J]. Chinese Sci Bull, 2003, 48(18): 1976–1981 (in Chinese).
[12] Zhang Z Y, Xie G Q, Mao J W, Liu W G, Olin P, Li W. Sm-Nd Dating and in-situ LA-ICP-MS trace element analyses of scheelite from the Longshan Sb-Au deposit, Xiangzhong metallogenic province, South China[J]. Minerals, 2019, 9: doi: 10.3390/ min9020087
[13] 史明魁, 傅必勤, 靳西祥. 湘中銻礦[M]. 長(zhǎng)沙: 湖南科技出版社, 1994: 1–151.
Shi Ming-kui, Fu Bi-qin, Jin Xi-xiang. Antimony metallogeny in central part of Hunan Province [M]. Changsha: Hunan Science and Technology Press, 1994: 1–151 (in Chinese with English abstract).
[14] 張金春. 江西金山韌性剪切型金礦成礦地球化學(xué)研究[D]. 南京: 南京大學(xué), 1994.
Zhang Jin-chun. Metallogenic and geochemistry of Jinshan ductile shear-type gold deposit, Jiangxi Province [D]. Nanjing: Nanjing University, 1994 (in Chinese with English abstract).
[15] 陳好壽, 徐步臺(tái). 浙江璜山金礦床同位素地球化學(xué)研究[J]. 浙江地質(zhì), 1996, 12(1): 74–82.
Chen Hao-shou, Xu Bu-tai. Isotope geochemical study on the Huangshan gold deposit, Zhejiang[J]. Geol of Zhejiang, 1996, 12(1): 74–82 (in Chinese with English abstract).
[16] 彭建堂, 戴塔根. 雪峰地區(qū)金礦成礦時(shí)代問題的探討[J]. 地質(zhì)與勘探, 1998, 34(4): 37–41.
Peng Jian-tang, Dai Ta-gen. On the mineralization epoch of the Xuefeng gold metallogenic province[J]. Geol Prosp, 1998, 34(4): 37–41 (in Chinese with English abstract).
[17] 王秀璋, 梁華英, 單強(qiáng), 程景平, 夏萍. 金山金礦成礦年齡測(cè)定及華南加里東成金期的討論[J]. 地質(zhì)論評(píng), 1999, 45(1): 19–25.
Wang Xiu-zhang, Liang Hua-ying, Shan Qiang, Cheng Jing-ping, Xia Ping. Metallogenic age of the Jinshan gold deposit and Caledonian gold mineralization in South China[J]. Geol Rev, 1999, 45(1): 19–25 (in Chinese with English abstract).
[18] 朱笑青, 王甘露, 盧煥章, 吳學(xué)益, 陳文益. 黔東南金礦形成時(shí)代的確定兼論湘黔加里東金礦帶[J]. 中國(guó)地質(zhì), 2006, 33(5): 1092–1099.
Zhu Xiao-Qing, Wang Gan-lu, Lu Huan-zhang, Wu Xue-yi, Chen Wen-yi. Determination of the age of gold deposits in southeastern Guizhou: With a discussion of the Caledonian Hunan-Guizhou gold ore belt[J]. Chinese Geol, 2006, 33(5): 1092–1099 (in Chinese with English abstract).
[19] 陳富文, 戴平云, 梅玉萍, 李華芹, 王登紅, 蔡紅. 湖南雪峰山地區(qū)沈家埡金礦成礦學(xué)及年代學(xué)研究[J]. 地質(zhì)學(xué)報(bào), 2008, 82(7): 906–911.
Chen Fu-wen, Dai Ping-yun, Mei Yu-ping, Li Hua-qin, Wang Deng-hong, Cai Hong. Metallogenetic and isotopic chronological study on the Shenjiaya gold deposit in Xuefeng Mountains, Hunan Province[J]. Acta Geol Sinica, 2008, 82(7): 906–911 (in Chinese with English abstract).
[20] 董國(guó)軍, 許德如, 王力, 陳廣浩, 賀轉(zhuǎn)利, 符鞏固, 吳俊, 王智琳. 湘東地區(qū)金礦床礦化年齡的測(cè)定及含礦流體來源的示蹤——兼論礦床成因類型[J]. 大地構(gòu)造與成礦學(xué), 2008, 32(4): 482–491.
Dong Guo-jun, Xu De-ru, Wang Li, Chen Guang-hao, He Zhuan-li, Fu Gong-gu, Wu Jun, Wang Zhi-lin. Determination of mineralizing ages on gold ore deposits in the eastern Hunan province, south China and isotopic tracking on ore-forming fluids re-discussing gold ore deposit type[J]. Geotecton Metallogen, 2008, 32(4): 482–491 (in Chinese with English abstract).
[21] 李華芹, 王登紅, 陳富文, 梅玉萍, 蔡紅. 湖南雪峰山地區(qū)鏟子坪和大坪金礦成礦作用年代學(xué)研究[J]. 地質(zhì)學(xué)報(bào), 2008, 82(7): 900–905.
Li Hua-qin, Wang Deng-hong, Chen Fu-wen, Mei Yu-ping, Cai Hong. Study on chronology of the Chanziping and Daping gold deposit in Xuefeng Mountains, Hunan Province[J]. Acta Geol Sinica, 2008, 82(7): 900–905 (in Chinese with English abstract).
[22] 毛光周, 華仁民, 龍光明, 陸慧娟. 江西金山金礦成礦時(shí)代探討——來自石英流體包裹體Rb-Sr年齡的證據(jù)[J]. 地質(zhì)學(xué)報(bào), 2008, 82(4): 532–539.
Mao Guang-zhou, Hua Ren-min, Long Guang-ming, Lu Hui-juan. Rb-Sr age of gold-bearing pyrite in the Jinshan gold deposit, Jiangxi Province[J]. Acta Geol Sinica, 2008, 82(4): 532–539 (in Chinese with English abstract).
[23] 韓鳳彬, 常亮, 蔡明海, 劉孫泱, 張?jiān)妴? 陳艷, 彭振安, 徐明. 湘東北地區(qū)金礦成礦時(shí)代研究[J]. 礦床地質(zhì), 2010, 29(3): 563–571.
Han Feng-bin, Chang Liang, Cai Ming-hai, Liu Sun-yang, Zhang Shi-qi, Chen Yan, Peng Zhen-an, Xu Ming. Ore-forming epoch of gold deposits in northeastern Hunan[J]. Mineral Deposits, 2010, 29(3): 563–571 (in Chinese with English abstract).
[24] 盧新哲. 遂昌治嶺頭金礦礦床地質(zhì)特征和成礦作用研究[D]. 合肥: 合肥工業(yè)大學(xué), 2014.
Lu Xin-zhe. Study on Suichang Zhilingtou deposit geological feature and mineralization [D]. Hefei: Hefei University of Technology, 2014 (in Chinese with English abstract).
[25] Ni P, Wang G G, Chen H, Xu Y F, Guan S J, Pan J Y, Li L. An Early Paleozoic orogenic gold belt along the Jiang-Shao Fault, South China: Evidence from fluid inclusions and Rb-Sr dating of quartz in the Huangshan and Pingshui deposits[J]. J Asian Earth Sci, 2015, 103: 87–102.
[26] 羅獻(xiàn)林. 論湖南前寒武紀(jì)系金礦床的形成時(shí)代[J]. 桂林冶金地質(zhì)學(xué)院學(xué)報(bào), 1989, 9(1): 25–34.
Luo Xian-lin. On the epoch of the formation of Precambrian gold deposits in Hunan Province[J]. J Guilin Colleg Geol, 1989, 9(1): 25–34 (in Chinese with English abstract).
[27] 葉有鐘, 葉桂順, 趙關(guān)連, 柏慶如. 浙江諸暨璜山地區(qū)金(銀)礦成礦時(shí)代探討[J]. 浙江地質(zhì), 1993, 9(2): 10–14.
Ye You-zhong, Ye Gui-shun, Zhao Guan-lian, Bai Qing-ru. Discussion on mineralization period of gold (silver) deposits in Huangshan district of Zhuji, Zhejiang Province[J]. Geol of Zhejiang, 1993, 9(2): 10–14 (in Chinese with English abstract).
[28] 胡瑞英, 程景平, 郭士倫, 郝秀紅. 裂變徑跡法在金礦研究中的應(yīng)用[J]. 地球化學(xué), 1995, 24(2): 188–192.
Hu Rui-ying, Cheng Jing-ping, Guo Shi-lun, Hao Xiu-hong. Application of fission track technique to study of gold deposits[J]. Geochimica, 1995, 24(2): 188–192 (in Chinese with English abstract).
[29] 王加昇, 溫漢捷, 李超, 丁偉, 張錦讓. 黔東南石英脈型金礦毒砂Re-Os同位素定年及其地質(zhì)意義[J]. 地質(zhì)學(xué)報(bào), 2011, 85(6): 955–964.
Wang Jia-sheng, Wen Han-jie, Li Chao, Ding Wei, Zhang Jin-rang. Re-Os isotope dating of arsenopyrite from the quartz vein-type gold deposit, southeastern Guizhou Province, and its geological implications[J]. Acta Geol Sinica, 2011, 85(6): 955–964 (in Chinese with English abstract).
[30] 王永磊, 陳毓川, 王登紅, 徐玨, 陳鄭輝. 湖南渣滓溪W-Sb礦床白鎢礦Sm-Nd測(cè)年及其地質(zhì)意義[J]. 中國(guó)地質(zhì), 2012, 39(5): 1339–1344.
Wang Yong-lei, Chen Yu-chuan, Wang Deng-hong, Xu Yu, Chen Zheng-hui. Scheelite Sm-Nd dating of the Zhazixi W-Sb deposit in Hunan and its geological significance[J]. Chinese Geol, 2012, 39(5): 1339–1344 (in Chinese with English abstract).
[31] 顧尚義, 杜定全, 付勇, 孫士軍, 李超. 江南造山帶西南緣石英脈型金礦中毒砂Re-Os同位素定年研究[J]. 巖礦測(cè)試, 2016, 35(5): 542–549.
Gu Shang-yi, Du Ding-quan, Fu Yong, Sun Shi-jun, Li Chao. Re-Os isotopic dating of arsenopyrite from auriferous quartz vein-type gold deposits in the southwestern margin of Jiangnan Orogen[J]. Rock Mineral Anal, 2016, 35(5): 542–549 (in Chinese with English abstract).
[32] Li H, Wu Q H, Evans N J, Zhou Z K, Lin Z W. Geochemistry and geochronology of the Banxi Sb deposit: Implications for fluid origin and the evolution of Sb mineralization in central-western Hunan, South China[J]. Gondw Res, 2017, 55: 112–134.
[33] Wang C, Shao Y J, Evans N J, Li H, Zhou H D, Huang K X, Liu Z F, Chen Y, Lai C, Liu Q Q. Genesis of Zixi gold deposit in Xuefengshan, Jiangnan Orogen (South China): Age, geology and isotopic constraints[J]. Ore Geol Rev, 2020, 117: 103301. doi: 10.1016/j.oregeorev.2019.103301
[34] Wang J S, Wen H J, Li C, Zhang J R, Ding W. Age and metal source of orogenic gold deposits in Southeast Guizhou Province, China: Constraints from Re-Os and He-Ar isotopic evidence[J]. Geosci Front, 2019, 10(2): 581–593.
[35] Deng T, Xu D, Chi G, Zhu Y, Wang Z, Chen G, Li Z, Zhang J, Ye T, Yu D. Revisiting the ca. 845–820-Ma S-type granitic magmatism in the Jiangnan Orogen: new insights on the Neoproterozoic tectono-magmatic evolution of South China[J]. International Geology Review, 2019, 61(6): 383–403.
[36] Xu D R, Deng T, Chi G X, Wang Z L, Zou F H, Zhang J L, Zou S H. Gold mineralization in the Jiangnan Orogenic Belt of South China: Geological, geochemical and geochronological characteristics, ore deposit-type and geodynamic setting[J]. Ore Geology Reviews, 2017, 88: 565–618.
[37] Sun W D, Yang X Y, Fan W M, Wu F Y. Mesozoic large scale magmatism and mineralization in South China: Preface[J]. Lithos, 2012, 150(Complete): 1–5.
[38] 毛景文, 李紅艷, 徐鈺, 羅福庭. 湖南萬古地區(qū)金礦地質(zhì)與成因[M]. 北京: 原子能出版社, 1997.
Mao Jing-wen, Li Hong-yan, Xu Yu, Luo Fu-ting. Geology and genesis of the Wangu gold deposit in Hunan province, China[M]. Beijing: Atomic energy press, 1997 (in Chinese with English abstract).
[39] 許德如, 鄧騰, 董國(guó)軍, 寧鈞陶, 王智琳, 張俊嶺, 鄒鳳輝, 周岳強(qiáng), 陳根文, 周永章, 林舸. 湘東北連云山二云母二長(zhǎng)花崗巖的年代學(xué)和地球化學(xué)特征: 對(duì)巖漿成因和成礦地球動(dòng)力學(xué)背景的啟示[J]. 地學(xué)前緣, 2017, 24(2): 104–122.
Xu De-ru, Deng Teng, Dong Guo-jun, Ning Jun-tao, Wang Zhi-lin, Zhang Jun-ling, Zou Feng-hui, Zhou Yue-qiang, Chen Gen-wen, Zhou Yong-zhang, Lin Ge. Zircon U-Pb geochronological and geochemical characteristics of the Lianyunshan two-mica monzogranites in northeastern Hunan Province: implications for petrogenesis and tectonic setting associated with polymetallic mineralization[J]. Geoscience Frontiers, 2017, 24(2): 104–122 (in Chinese with English abstract).
[40] 舒良樹, 王德滋. 北美西部與中國(guó)東南部盆嶺構(gòu)造對(duì)比研究[J]. 高校地質(zhì)學(xué)報(bào), 2006, 12(1): 1–13.
Shu Liang-shu, Wang De-zi. Comparative study on basin and range structure in western North America and eastern China[J]. Geological Journal of China Universities, 2006, 12(1): 1–13 (in Chinese with English abstract).
[41] 許德如, 鄒鳳輝, 寧鈞陶, 鄧騰, 王智琳, 陳根文, 張建嶺, 董國(guó)軍. 湘東北地區(qū)地質(zhì)構(gòu)造演化與成礦響應(yīng)探討[J]. 巖石學(xué)報(bào), 2017, 33(3): 695–715.
Xu De-ru, Zou Feng-hui, Ning Jun-tao, Deng Teng, Wang Zhi-lin, Chen Gen-wen, Zhang Jian-ling, Dong Guo-jun. Discussion on geological and structural characteristics and associated metallogeny in northeastern Hunan province, South China[J]. Acta Petrologica Sinica, 2017, 33(3): 695–715 (in Chinese with English abstract).
[42] Ye M F, Li X H, Li W X, Liu Y, Li Z X. SHRIMP zircon U–Pb geochronological and whole-rock geochemical evidence for an early Neoproterozoic Sibaoan magmatic arc along the southeastern margin of the Yangtze Block[J]. Gondwana Research, 2007, 12(1): 144–156.
[43] Faure M, Shu L S, Wang B, Charvet J, Choulet F, Monie P. Intracontinental subduction: a possible mechanism for the Early Palaeozoic Orogen of SE China[J]. Terra Nova, 2009, 21(5): 360–368.
[44] Xu X B, Li Y, Tang S, Xue D J, Zhang Z J. Neoproterozoic to Early Paleozoic polyorogenic deformation in the southeastern margin of the Yangtze Block: Constraints from structural analysis and 40Ar/39Ar geochronology[J]. Journal of Asian Earth Sciences, 2015, 98: 141–151.
[45] 孫濤. 新編華南花崗巖分布圖及其說明[J]. 地質(zhì)通報(bào), 2006, 25(3): 332–335.
Sun Tao. A new map showing the distribution of granites in South China and its explanatory notes[J]. Geological Bulletin of China, 2006, 25(3): 332–335 (in Chinese with English abstract).
[46] Wang Y J, Fan W M, Sun M, Liang X Q, Zhang Y H, Peng T P. Geochronological, geochemical and geothermal constraints on petrogenesis of the Indosinian peraluminous granites in the South China Block: A case study in the Hunan Province[J]. Lithos, 2007, 96(3-4): 475–502.
[47] Li Z X. Tectonic History of the Major East Asian Lithospheric Blocks Since the Mid-Proterozoic — A Synthesis[M]. Washington: American Geophysical Union, 1998: 221–243.
[48] 王岳軍, 范蔚茗, 梁新權(quán), 彭頭平, 石玉若. 湖南印支期花崗巖SHRIMP鋯石U-Pb年齡及其成因啟示[J]. 科學(xué)通報(bào), 2005, 50(12): 101–108.
Wang Yue-jun, Fan Wei-ming, Liang Xin-quan, Peng Tou-ping, Shi Yu-ruo. SHRIMP zircon U-Pb geochronology of Indosiniangranites in Hunan Province and its petrogenetic implications[J]. Chinese Science Bulletin, 2005, 50(12): 101–108 (in Chinese with English abstract).
[49] Li J H, Dong S W, Zhang Y Q, Zhao G C, Johnston S T, Cui J J, Xin Y J. New insights into Phanerozoic tectonics of south China: Part 1, polyphase deformation in the Jiuling and Lianyunshan domains of the central Jiangnan Orogen[J]. Journal of Geophysical Research Solid Earth, 2016, 121(4): 3048–3080.
[50] Chen C H, Lee C Y, Shinjo R. Was there Jurassic paleo-Pacific subduction in South China?: Constraints from 40Ar/39Ar dating, elemental and Sr–Nd–Pb isotopic geochemistry of the Mesozoic basalts[J]. Lithos, 2008, 106(1-2): 83–92.
[51] Jiang Y H, Jiang S Y, Dai B Z, Liao S Y, Zhao K D, Ling H F. Middle to late Jurassic felsic and mafic magmatism in southernHunan province, southeast China: Implications for a continental arc to rifting[J]. Lithos, 2009, 107(3-4): 185–204.
[52] Li J H, Zhang Y Q, Dong S W, Johnston S T. Cretaceous tectonic evolution of South China: A preliminary synthesis[J]. Earth-Science Reviews, 2014, 134(1): 98–136 (in Chinese with English abstract).
[53] 柏道遠(yuǎn), 鐘響, 賈朋遠(yuǎn), 熊雄, 黃文義, 姜文. 雪峰造山帶及鄰區(qū)構(gòu)造變形和構(gòu)造演化研究新進(jìn)展[J]. 華南地質(zhì)與礦產(chǎn), 2015, 31(04): 3–25.
Bai Dao-yuan, Zhong Xiang, Jia Peng-yuan, Xiong Xiong, Huang wen-yi, Jiang Wen. Progresses in the deformations and tectonic evolutions of the Xuefeng Orogenic Belt and its adjacent areas[J]. Geology and Mineral Resources of South China, 2015, 31(04): 3–25 (in Chinese with English abstract).
[54] 朱炎齡, 李崇佑, 林運(yùn)淮. 贛南鎢礦地質(zhì)[M]. 南昌: 江西人民出版社, 1981.
Zhu Yan-ling, Li Chong-you, Lin Yun-huai. Geology of Tungsten deposit[M]. Nanchang: Jiangxi People's Publishing House, 1981 (in Chinese with English abstract).
[55] 肖擁軍, 陳廣浩. 湘東北大洞-萬古地區(qū)金礦構(gòu)造成礦定位機(jī)制的初步研究[J]. 大地構(gòu)造與成礦學(xué), 2004, 28(1): 38–44.
Xiao Yong-jun, Chen Guang-hao. Preliminary study on the tectono-metallogenic orientation mechanism of the Dadong-Wangu gold deposit zone, northeastern Hunan province[J]. Geotectonica et Metallogenia, 2004, 28(1): 38–44 (in Chinese with English abstract).
[56] Deng T, Xu D R, Chi G X, Wang Z L, Jiao Q Q, Ning J T, Dong G J, Zou F H. Geology, geochronology, geochemistry and ore genesis of the Wangu gold deposit in northeastern Hunan Province, Jiangnan Orogen, South China[J]. Ore Geology Reviews, 2017, 88: 619–637.
[57] Li X H, Li Z X, Ge W C, Zhou H W, Li W X, Liu Y. U-Pb zircon ages of the Neoproterozoic granitoids in South China and their tectonic implications[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2001, 20(4): 271-273.
[58] 鐘玉芳, 馬昌前, 佘振兵, 林廣春, 續(xù)海金, 王人鏡, 楊坤光, 劉強(qiáng). 江西九嶺花崗巖類復(fù)式巖基鋯石 SHRIMP U-Pb年代學(xué)[J]. 地球科學(xué), 2005, 030(6): 685–691.
Zhong Yu-fang, Ma Chang-qian, She Zhen-bing, Lin Guang-chun, Xu Hai-jin, Wang Ren-jing, Yang Kun-guang, Liu Qiang. SHRIMP U-Pb Zircon Geochronology of the Jiuling Granitic Complex Batholith in Jiangxi Province[J]. Earth Science, 2005, 30(6): 685–691 (in Chinese with English abstract).
[59] 馬鐵球, 陳立新, 柏道遠(yuǎn), 周柯軍, 李綱, 王先輝. 湘東北新元古代花崗巖體鋯石SHRIMP U-Pb年齡及地球化學(xué)特征[J]. 中國(guó)地質(zhì), 2009, 36(1): 65–73.
Ma Tie-qiu, Chen Li-xin, Bai Dao-yuan, Zhou Ke-jun, Li Gang, Wang Xian-hui. Zircon SHRIMP dating and geochemical characteristics of Neoproterozoic granites in southeastern Hunan[J]. Chinese Geology, 2009, 36(1): 65–73 (in Chinese with English abstract).
[60] Wang X L, Zhou J C, Qiu J S, Gao J F. Geochemistry of the Meso- to Neoproterozoic basic-acid rocks from Hunan Province, South China: implications for the evolution of the western Jiangnan orogen[J]. Precambrian Research, 2004, 135(1): 79–103.
[61] 李鵬春, 陳廣浩, 許德如, 賀轉(zhuǎn)利, 符鞏固. 湘東北新元古代過鋁質(zhì)花崗巖的巖石地球化學(xué)特征及其成因討論[J]. 大地構(gòu)造與成礦學(xué), 2007, 31(1): 126–136.
Li Peng-chun, Chen Guang-hao, Xu De-ru, He Zhuan-li, Fu Gong-gu. Petrological and geochemical characteristics and petrogenesis of Neoproterozoic peraluminous granites in northeastern Hunan Province[J]. Geotectonica et Metallogenia, 2007, 31(1): 126–136 (in Chinese with English abstract).
[62] 關(guān)義立, 袁超, 龍曉平, 王毓婧, 張運(yùn)迎, 黃宗瑩. 華南地塊東部早古生代的陸內(nèi)造山作用: 來自I型花崗巖的啟示[J].大地構(gòu)造與成礦學(xué), 2013, 37(4): 698–720.
Guang Yi-li, Yuan Chao, Long Xiao-ping, Wang Yu-jin, Zhang Yun-ying, Huang Zong-ying. Early Paleozoic Intracontinental Orogeny of the Eastern South China Block: Evidence from I-type Granitic Plutons in the SE Yangtze Block[J]. Geotectonicaet Metallogenia, 2013, 37(4): 698–720 (in Chinese with English abstract).
[63] 許德如, 陳廣浩, 夏斌, 李鵬春, 賀轉(zhuǎn)利. 湘東地區(qū)板杉鋪加里東期埃達(dá)克質(zhì)花崗閃長(zhǎng)巖的成因及地質(zhì)意義[J]. 高校地質(zhì)學(xué)報(bào), 2006, 12(4): 507–521.
Xu De-ru, Chen Guang-hao, Xia Bin, Li Peng-chun, He Zhuan-li. The Caledonian Adakite-Like Granodiorites in Banshanpu Area, Eastern Hunan Province, South China: Petrogenesis and Geological Significance[J]. Geological Journal of China Universities, 2006, 12(4): 507–521 (in Chinese with English abstract).
[64] 鄧騰. 湘東北地區(qū)陸內(nèi)構(gòu)造-巖漿活化及其對(duì)金成礦作用的控制[D]. 廣州: 中國(guó)科學(xué)院廣州地球化學(xué)研究所, 2018.
Deng Teng. Introcontinental tectono-magmatic reactivation and its control over gold mineralization in Northeastern Hunan Province, South China[D]. Guangzhou: Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 2018 (in Chinese with English abstract).
[65] 李鵬春. 湘東北地區(qū)顯生宙花崗巖巖漿作用及其演化規(guī)律[D]. 廣州: 中國(guó)科學(xué)院廣州地球化學(xué)研究所, 2006.
Li Peng-chun. Magmatism of Phanerozoic granitoids in southeastern Hunan Province, China and its evolution regularity[D]. Guangzhou: Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 2006 (in Chinese with English abstract).
[66] Zhang L, Groves D I, Yang L Q, Sun S C, Weinberg R F, Wang J Y, Wu S G, Gao L, Yuan L L, Li R H. Utilization of pre-existing competent and barren quartz veins as hosts to later orogenic gold ores at Huangjindong gold deposit, Jiangnan Orogen, southern China[J].Mineralium Deposita, 2019.
[67] 劉英俊, 孫承轅, 崔衛(wèi)東, 季峻峰. 湖南黃金洞金礦床毒砂中金的賦存狀態(tài)的研究[J]. 地質(zhì)找礦論叢, 1989, 4(1): 42–49.
Liu Ying-jun, Sun Cheng-yuan, Cui Wei-dong, Ji Jun-feng. Study of the occurrence of gold in arsenopyrite of Huangjindong gold deposit in Hunan Province[J]. Contributions To Geology and Mineral Resources Research, 1989, 4(1): 42–49 (in Chinese with English abstract).
[68] 張文蘭, 胡文宣, 胡受奚, 周順之, 陳鋼. 湖南黃金洞金礦毒砂中Au賦存狀態(tài)的電子探針研究[J]. 高校地質(zhì)學(xué)報(bào), 1997, 3(3): 17–23.
Zhang Wen-lan, Hu Wen-xuan, Hu Shou-xi, Zhou Shun-zhi, Chen Gang. Study of the mode of gold in arsenopyrite from Huangjindong gold deposit, Hunan, by using electron probe microanalysis[J]. Geological Journal of China Universities, 1997, 3(3): 17–23 (in Chinese with English abstract).
[69] 李華芹. 新疆北部有色貴金屬礦床成礦作用年代學(xué)[M]. 北京: 地質(zhì)出版社, 1998: 1–266.
Li Hua-qin. Geochronology of mineralization of nonferrous and precious metal deposits in Northern Xinjiang[M]. Beijing: Geological Publishing House, 1998: 1–266 (in Chinese with English abstract).
[70] Ludwig K R. Isoplot 3.0–A Geochronological Toolkit for Microsoft Excel[M]. Berkeley, CA, USA: Berkeley Geochronology Center Special Publication, 2003.
[71] Steiger R H, Jager E. Subcommission on geochronology: Convention on the use of decay constants in geo- and cosmochronology[J]. Earth and Planetary Science Letters, 1977.
[72] Goldfarb R J, Baker T, Dubé B, Groves D I, Hart C J, Gosselin P. Distribution, Character, and Genesis of Gold Deposits in Metamorphic Terranes[J]. Economic Geology, 2005, Economic Geology 100th Anniversary Volume: 407–450.
[73] Mueller A G. The Savage Lode magnesian skarn in the Marvel Loch gold–silver mine, Southern Cross greenstone belt, WesternAustralia[J]. Canadian Journal of Earth Sciences, 1991, 62(28): 659–685.
[74] Beaudoin G, Pitre D. Stable isotope geochemistry of the Archean Val-d‘Or (Canada) orogenic gold vein field[J]. Mineralium Deposita, 2005, 40(1): 59–75.
[75] Graupner T, Niedermann S, Rhede D, Kempe U, Seltmann R, Williams C T, Klemd R. Multiple sources for mineralizing fluids in the Charmitan gold(-tungsten) mineralization (Uzbekistan)[J]. Mineralium Deposita, 2010, 45(7): 667–682.
[76] Kempe U O T. Physical and geochemical characteristics of scheelite from gold deposits: A reconnaissance study[M]. Rotterdam: Brookfield, 1997.
[77] Zhang L, Yang L Q, Groves D I, Sun S C, Liu Y, Wang J Y, Li R H, Wu S G, Gao L, Guo J L, Chen X G, Chen J H. An overview of timing and structural geometry of gold, gold-antimony and antimony mineralization in the Jiangnan Orogen, southern China[J]. Ore Geology Reviews, 2019: doi: https: //doi.org/10. 1016/j.oregeorev.2019.103173.
[78] Voicu G, Bardoux M, Stevenson R, Jébrak M. Nd and Sr isotope study of hydrothermal scheelite and host rocks at Omai, Guiana Shield: Implications for ore fluid source and flow path during the formation of orogenic gold deposits[J]. Mineralium Deposita, 2000, 35(4): 302–314.
[79] Kempe U, Belyatsky B, Krymsky R, Kremenetsky A, Ivanov P. Sm–Nd and Sr isotope systematics of scheelite from the giant Au(–W) deposit Muruntau (Uzbekistan): implications for the age and sources of Au mineralization[J]. Mineralium Deposita, 2001, 36(5): 379–392.
[80] 唐曉珊, 賈寶華, 黃建中, 彭和求, 郭樂群, 何江南. 湖南早前寒武紀(jì)變質(zhì)結(jié)晶基底的Sm-Nd同位素年齡[J]. 華東地質(zhì), 2004, 25(1): 55–63.
Tang Xiao-shan, Jia Bao-hua, Huang Jian-zhong, Peng Qiu-he, Guo Le-qun, He Jiang-nan. The Sm-Nd isochron ages of the early Precambrian metamorphic crystalline basement in Hunan[J]. Resources Survey and Environment, 2004, 25(1): 55–63 (in Chinese with English abstract).
[81] Deng T, Xu D R, Chi G X, Wang Z L, Chen G W, Zhou Y Q, Li Z H, Ye T W, Yu D S. Caledonian (Early Paleozoic) veins overprinted by Yanshanian (Late Mesozoic) gold mineralization in the Jiangnan Orogen: A case study on gold deposits in northeastern Hunan, South China[J]. Ore Geology Reviews, 2018.
[82] Zhou X M, Li W X. Origin of Late Mesozoic igneous rocks in Southeastern China: Implications for lithosphere subduction and underplating of mafic magmas[J]. Tectonophysics, 2000, 326(3): 269–287.
[83] 呂赟珊, 解國(guó)愛, 倪培, 劉家潤(rùn), 趙葵東, 董偉明. 贛東北金山金礦床構(gòu)造變形特征及其區(qū)域構(gòu)造意義[J]. 大地構(gòu)造與成礦學(xué), 2012, 36(4): 504–517.
Lv Yun-shan, Xie Guo-ai, Ni Pei, Liu Jia-run, Zhao Kui-dong, Dong Wei-ming. Structural deformation in the Jinshan gold deposit and its implication to the Tectonic evolution of the northeastern Jiangxi Province[J]. Geotectonica et Metallogenia, 2012, 36(4): 504–517 (in Chinese with English abstract).
[84] 李曉峰, 華仁民, 楊鳳根, 高劍峰. 金山金礦K-Ar年齡及其對(duì)贛東北構(gòu)造演化的指示意義[J]. 巖石礦物學(xué)雜志, 2002, 21(1): 49–54.
Li Xiao-feng, Hua Ren-min, Yang Feng-gen, Gao Jian-feng. K-Ar age of illite in Jinshan gold deposit and its implication to the tectonic evolution of northeastern Jiangxi Province[J]. Acta Petrologica et Mineralogica, 2002, 21(1): 49–54 (in Chinese with English abstract).
[85] 韋星林. 江西金山韌性剪切帶型金礦地質(zhì)特征[J]. 江西地質(zhì), 1996, (1): 52–64.
Wei Xinglin. The geological characteristics of Jinshan shear ductile shear zone type gold deposit in Jiangxi province[J]. Jiangxi Geology, 1996, (1): 52–64 (in Chinese with English abstract).
[86] 李曉峰, 陳文, 毛景文, 王春增, 謝桂青, 馮佐海. 江西銀山多金屬礦床蝕變絹云母40Ar-39Ar年齡及其地質(zhì)意義[J]. 礦床地質(zhì), 2006, 25(1): 17–26.
Li Xiao-feng, Chen Wen, Mao Jing-wen, Wang Chun-zeng, Xie Gui-qing, Feng Zuo-hai.40Ar-39Ar dating of sericite from altered dacite porphyry and quartz porphyry inYinshan polymetallic deposit of Jiangxi Province and its geological significance[J]. Mineral Deposits, 2006, 25(1): 17–26 (in Chinese with English abstract).
[87] 黃誠(chéng), 樊光明, 姜高磊, 羅亮, 徐增連. 湘東北雁林寺金礦構(gòu)造控礦特征及金成礦ESR測(cè)年[J]. 大地構(gòu)造與成礦學(xué), 2012, 36(1): 78–86.
Huang Cheng, Fan Guang-ming, Jiang Gao-lei, Luo Liang, Xu Zeng-lian. Structural ore-controlling characteristics and electron spin resonance dating of the Yanlinsi gold deposit in north-eastern Hunan province[J]. Geotectonica et Metallogenia, 2012, 36(1): 78–86 (in Chinese with English abstract).
[88] 萬嘉敏. 湘西西安白鎢礦礦床的地球化學(xué)研究[J]. 地球化學(xué), 1986, 15(2): 183–192.
Wan Jia-min. Geochemical studies of the Xi’an tungsten ore deposit, west Hunan, China[J]. Geochemica, 1986, 15(2): 183–192 (in Chinese with English abstract).
[89] 彭建堂, 戴塔根. 雪峰地區(qū)金礦成礦時(shí)代問題的探討[J]. 地質(zhì)與勘探, 1998, (4): 37–41.
Peng Jian-tang, Dai Ta-gen. On the mineralization epoch of the Xuefeng gold metallogenic province[J]. Geology and Prospecting, 1998, (4): 37–41 (in Chinese with English abstract).
[90] 付山嶺, 胡瑞忠, 陳佑緯, 駱金誠(chéng). 湘中龍山大型金銻礦床成礦時(shí)代研究——黃鐵礦Re-Os和鋯石U-Th/He定年[J]. 巖石學(xué)報(bào), 2016, 32(11): 3507–3517.
Fu Shan-ling, Hu Rui-zhong, Chen You-wei, Luo Jin-cheng. Chronology of the Longshan Au-Sb deposit in central Hunan Province: Constraints from pyrite Re-Os and zircon U-Th/He isotopic dating[J]. Acta Petrologica Sinica, 2016, 32(11): 3507–3517 (in Chinese with English abstract).
[91] 張志遠(yuǎn), 謝桂青, 李惠純, 李偉. 湖南龍山銻金礦床白云母40Ar-39Ar年代學(xué)及其意義初探[J]. 巖石學(xué)報(bào), 2018, 34(09): 37–49.
Zhang Zhi-yuan, Xie Gui-qing, Li Hui-chun, Li Wei. Preliminarystudy on muscovite40Ar-39Ar geochronology and its significance of the Longshan Sb-Au deposit in Hunan Province[J]. Acta Petrologica Sinica, 2018, 34(9): 37–49 (in Chinese with English abstract).
[92] 王瑞湖, 張青技. 桂北地下熱水溶濾金礦床地質(zhì)特征及成因[J]. 南方國(guó)土資源, 1997, (2): 25–36.
Wang Rui-hu, Zhang Qing-ji. Geological features and geneses of geothermal fluid leaching type gold deposits in northern Guangxi[J]. Land and resources of southern china, 1997, (2): 25–36 (in Chinese with English abstract).
[93] Pirajno F, Bagas L. Gold and silver metallogeny of the South China Fold Belt: A consequence of multiple mineralizing events?[J]. Ore Geology Reviews, 2002, 20(3): 109–126.
[94] 賀轉(zhuǎn)利, 許德如, 陳廣浩, 夏斌, 李鵬春, 符鞏固. 湘東北燕山期陸內(nèi)碰撞造山帶金多金屬成礦地球化學(xué)[J]. 礦床地質(zhì), 2004, 23(1): 39–51.
He Zhuan-li, Xu De-ru, Chen Guang-hao, Xia Bin, Li Peng-chun, Fu Gong-gu. Gold-polymetallic ore-forming geochemistry of Yanshanian Introcontinental Collision Orogen, northeastern Hunan Province[J]. Mineral Deposits, 2004, 23(1): 39–51 (in Chinese with English abstract).
[95] Zhao C, Ni P, Zhao C, Ni P, Wang G G, Ding J Y, Chen H, Zhao K D, Cai Y T, Xu Y F. Geology, fluid inclusion, and isotope constraints on ore genesis of the Neoproterozoic Jinshan orogenic gold deposit, South China[J]. Geofluids, 2013, 13(4): 506–527.
[96] Deng J, Wang Q F. Gold mineralization in China: Metallogenicprovinces, deposit types and tectonic framework[J]. Gondwana Research, 2016, 36: S1342937X15002427.
[97] 羅獻(xiàn)林. 論湖南前寒武系金礦床的成礦物質(zhì)來源[J]. 桂林冶金地質(zhì)學(xué)院學(xué)報(bào), 1990, 10(1): 13–26.
Luo Xian-lin. Discussion on the material sources of gold deposits in Precambrian strata in Hunan[J]. Journal of Guilin Institute of Metallurgical Geology. 1990, 10(1): 13–26 (in Chinese with English abstract).
[98] 毛光周, 華仁民, 高劍峰, 趙葵東, 龍光明, 陸慧娟, 姚軍明. 江西金山金礦床含金黃鐵礦的稀土元素和微量元素特征[J]. 礦床地質(zhì), 2006, 25(4): 412–426.
Mao Guang-zhou, Hua Ren-min, Gao Jian-feng, Zhao Kui-dong, Long Guang-ming, Lu Hui-juan, Yao Jun-ming. REE composition and trace element features of gold-bearing pyrite in Jianshan gold deposit, Jiangxi Province[J]. Mineral Deposits, 2006, 25(4): 412–426 (in Chinese with English abstract).
[99] 何明勤, 龍成雄, 王甘露. 黔東南錦屏平秋金礦床成礦流體來源研究[J]. 礦物學(xué)報(bào), 2015, (4): 80–84.
He Ming-qin, Long Cheng-xiong, Wang Gan-lu. Origin of ore-forming fluids of Pingqiu Au ore deposit in Jinping County, Southeast Guizhou Province, China[J]. Acta mineralogical Sinica, 2015, (4): 80–84 (in Chinese with English abstract).
[100] 潘燦軍, 鮑振襄, 包覺敏. 湘西符竹溪金礦地質(zhì)特征及成礦作用[J]. 地質(zhì)找礦論叢, 2015, 30(1): 53–59.
Pan Can-jun, Bao Zhen-xiang, Bao Jue-min. Geological characteristics and metellogenesis of Fuzhuxi gold deposit in the west Hunan Province[J]. Contributions to Geology and Mineral Resources reserching, 2015, 30(1): 53–59 (in Chinese with English abstract).
[101] 羅獻(xiàn)林. 論湖南黃金洞金礦床的成因及成礦模式[J]. 桂林冶金地質(zhì)學(xué)院學(xué)報(bào), 1988, (3): 225–240.
Luo Xian-lin. On the genesis and metallogenic model of the Huangjindong gold deposit from Hunan[J]. Journal of Guiling college of geology, 1988, (3): 225–240 (in Chinese with English abstract).
[102] 毛景文, 李紅艷. 江南古陸某些金礦床成因討論[J]. 地球化學(xué), 1997, 26(5): 71–81.
Mao Jing-wen, Li Hong-yan. Research on genesis of the gold deposits in the Jiangnan terrain[J]. Geochimica, 1997, 26(5): 71–81 (in Chinese with English abstract).
[103] 李傳明, 陳小惠. 江西石塢金礦床成礦特征及找礦方向[J]. 地質(zhì)與勘探, 2005, 41(4): 10–17.
Li Chuan-ming, Chen Xiao-hui. Metallogenic Characteristic and ore prospecting direction of Shiwu gold deposit, Jiangxi[J]. Geology and Prospecting, 2005, 41(4): 10–17 (in Chinese with English abstract).
[104] 吳文明. 黔東錦屏縣主要金礦流體包裹體特征研究[D]. 貴陽: 貴州大學(xué), 2009.
Wu Wen-ming. Study on the characteristics of fluid inclusions of main gold deposits in Jinping County, eastern Guizhou[D]. Guiyang: Guizhou University, 2009 (in Chinese with English abstract).
[105] 李杰, 陳必河, 安江華, 譚仕敏, 張孝國(guó), 姚宇軍. 湖南黃金洞金礦成礦流體包裹體特征[J]. 華南地質(zhì)與礦產(chǎn), 2011, (2): 163–168.
Li Jie, Chen Bi-he, An Jiang-hua, Tan Shi-min, Zhang Xiao-guo, Yao Yu-jun. Characteristics of fluid inclusion of the Huangjindong gold deposit, Hunan Province[J]. Geology and Mineral Resources of South China, 2011, (2): 163–168 (in Chinese with English abstract).
[106] 孫銘聰. 黔東南黎平古幫金礦床地質(zhì)特征及礦石礦物學(xué)特征研究[D]. 北京: 中國(guó)地質(zhì)大學(xué)(北京), 2011.
Sun Ming-cong. Study on the geological characteristics and ore mineralogy of the Gubang gold deposit in Liping, Southeastern Guizhou[D]. Beijing: China University of geosciences (Beijing), 2011 (in Chinese with English abstract).
[107] 曹亮, 段其發(fā), 彭三國(guó), 周云. 雪峰山鏟子坪金礦床流體包裹體特征及地質(zhì)意義[J]. 地質(zhì)與勘探, 2015, 51(2): 212–224.
Cao Liang, Duan Qi-fa, Peng San-guo, Zhou Yun. Characteristics of fluid inclusions in the Chanziping gold deposit in Xuefeng Mountins and their geological implications[J]. Geology and Prospecting, 2015, 51(2): 212–224 (in Chinese with English abstract).
[108] 龍成雄, 秦琴, 周玲玲. 貴州錦屏縣平秋璧澤金礦成礦流體氫氧同位素地球化學(xué)研究[J]. 資源信息與工程, 2015, 30(3): 18–19.
Long Cheng-xiong, Qin Qin, Zhou Ling-ling. Guizhou Jinping County Pingqiu Bize gold metallogenic fluid hydrogen and oxygen isotope geochemistry[J]. Resource Information and Engineering, 2015, 30(3): 18–19 (in Chinese with English abstract).
[109] Peng J T, Zhu Y N. Infrared microthermometric and noble gas isotope study of fluid inclusions in ore minerals at the Woxi orogenic Au-Sb-W deposit, western Hunan, South China[J]. Ore Geology Reviews, 2015, 65(1): 55–69.
[110] 文志林, 鄧騰, 董國(guó)軍, 鄒鳳輝, 許德如, 王智琳, 林舸, 陳根文. 湘東北萬古金礦床控礦構(gòu)造特征與控礦規(guī)律研究[J]. 大地構(gòu)造與成礦學(xué), 2016, 40(2): 281–294.
Wen Zhi-lin, Deng Teng, Dong Guo-jun, Zou Feng-hui, Xu De-ru, Wang Zhi-lin, Lin Ge, Chen Gen-wen. Study on the characters and rules of the ore-controlling structures of the Wangu gold deposit in northeastern Hunan Province[J]. Geotectonica et Metallogenia, 2016, 40(2): 281–294 (in Chinese with English abstract).
[111] Xie G Q, Mao J W, Bagas L, Fu B, Zhang Z Y. Mineralogy and titanite geochronology of the Caojiaba W deposit, Xiangzhong metallogenic province, southern China: Implications for a distal reduced skarn W formation[J]. Mineralium Deposita, 2019, 54(3): 459–472.
Scheelite Sm-Nd age of the Huangjindong Au deposit in Hunan and its geological significance
ZHOU Yue-qiang1,2,3, DONG Guo-jun3*, XU De-ru1,4, DENG Teng4, WU Jun3, WANG Xiang3, GAO Lei5and CHEN Xiao-gang5
1. Key Laboratory of Mineral and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640,China;2. University of Chinese Academy of Sciences, Beijing 100049, China; 3. Team 402, Hunan Geology and Mineral Resources Exploration and Development Bureau, Changsha 410014, China; 4. State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, China; 5. Huangjindong Mining Industry Limited Company of Hunan, Yueyang 414507, China
The Huangjindong gold deposit is one of the most important Au reserve in the Jiangnan Orogenic Belt. Its orebodies are strictly controlled by a series of E- to WNW-trending faults developed in low-grade metamorphic Neoproterozoic strata. However, the mineralization age of the Huangjindong deposit has not been constrained. Detailed field surveys, petrographic observations and Sm-Nd isotopic analyses have been carried out on scheelites in the Huangjindong deposit area. The scheelites yield an isochron age of 129.7±7.4 Ma (MSWD=1.0) on the143Nd/144Nd versus147Sm/144Nd plot, with correspondingNd() values varying from ?8.21 to ?8.68. Based on the crosscutting relationship of the scheelite vein and Au-bearing sulfide vein in the Huangjindong deposit, and the previous studies on geochronology and mineralogy, the isochron age of scheelites is considered to be the mineralization age of the Huangjindong gold deposit. TheNd() values of scheelites are higher than those of the ore-bearing Neoproterozoic Lengjiaxi Group and early Cretaceous granitoids in northeastern Hunan but lower than those of the Neoproterozoic Cangxiyan Group, indicating that Nd in the scheelites partly originate from the Neoproterozoic Lengjiaxi Group and/or the early Cretaceous granitoids in northeastern Hunan, and partly from the Neoproterozoic Cangxiyan Group. Combined with previous research, ore materials of the Au-Sb-W deposits in the Jiangnan Orogenic belt are interpreted to be sourced from the Neoproterozoic strata owing to regional metamorphism and magmatic activities are interpreted to have facilitated the reactivation of ore-forming materials such as Au. Structural reactivation was interpreted as the source of channels and space for ore-fluids during the Au-Sb-W ore-forming process in the Jiangnan Orogenic Belt.
Au deposit; scheelite; Sm-Nd isotope; northeastern Hunan; Jiangnan Orogenic Belt
P597.1; P619.51
A
0379-1726(2021)04-0381-17
10.19700/j.0379-1726.2021.04.005
2019-11-15;
2020-04-15;
2020-07-21
國(guó)家自然科學(xué)基金項(xiàng)目(41930428, 42002090)、湖南省自然資源廳科技項(xiàng)目(2020-13)、湖南省礦產(chǎn)資源深部探測(cè)研究中心(DK402–2019–PT01)和國(guó)家重點(diǎn)研發(fā)計(jì)劃(2016YFC0600401, 2017YFC0602302)
周岳強(qiáng)(1985–), 男, 博士, 高級(jí)工程師, 構(gòu)造地質(zhì)學(xué)專業(yè)。E-mail: 271164104@qq.com
DONG Guo-jun, E-mail: dgj402@163.com; Tel: +86-731-85596782