黃錫槿 程軍明 張康 梁衛(wèi)恒
廣東美芝精密制造有限公司 廣東佛山 528305
渦旋式壓縮機(jī)是繼活塞、轉(zhuǎn)子之后的第三代壓縮機(jī),具有容積效率高、體積小、振動(dòng)、噪音低等優(yōu)良特點(diǎn),廣泛應(yīng)用于暖通空調(diào)、冷凍冷藏、熱泵、汽車等領(lǐng)域。在高壓腔結(jié)構(gòu)渦旋壓縮機(jī)中,動(dòng)盤(pán)采用軸向浮動(dòng)技術(shù),在動(dòng)盤(pán)背部設(shè)置密封圈,將動(dòng)盤(pán)背部分割為背壓腔和高壓腔兩個(gè)區(qū)域,如圖1所示。背壓腔室與動(dòng)盤(pán)腔室某一位置貫通,將腔室中的壓力經(jīng)此貫通孔引入背壓腔,形成作用于動(dòng)盤(pán)背部,使動(dòng)盤(pán)向上浮動(dòng)的背壓力,以平衡動(dòng)盤(pán)軸向氣體力,減小甚至消除動(dòng)盤(pán)背部摩擦損失,并實(shí)現(xiàn)渦齒齒頂磨耗的自動(dòng)補(bǔ)償,確保壓縮機(jī)性能穩(wěn)定。
圖1 渦旋壓縮機(jī)3D圖
合理的背壓力設(shè)計(jì)是影響壓縮機(jī)性能與運(yùn)轉(zhuǎn)可靠性的核心技術(shù)點(diǎn)。渦旋壓縮機(jī)在運(yùn)轉(zhuǎn)過(guò)程中,動(dòng)靜盤(pán)齒頂總有間隙存在,即渦齒兩側(cè)通過(guò)齒頂間隙存在徑向內(nèi)泄漏,據(jù)研究表明[1],通過(guò)齒頂?shù)膹较蛐孤┝颗c齒頂間隙呈一次正比關(guān)系,背壓力太小,動(dòng)盤(pán)軸向浮動(dòng)量不足導(dǎo)致齒頂間隙增大,內(nèi)泄漏嚴(yán)重,性能低下;而較大的背壓力,容易導(dǎo)致動(dòng)靜盤(pán)之間摩擦力增大,功耗增加,性能降低,運(yùn)轉(zhuǎn)可靠性降低。
為解決齒頂徑向泄漏問(wèn)題,劉興旺[2]提出在渦旋齒頂開(kāi)設(shè)迷宮槽,對(duì)泄漏介質(zhì)造成能量衰減,以減小渦齒兩側(cè)的內(nèi)泄漏;有些公司在渦旋齒頂采用密封條以實(shí)現(xiàn)徑向泄漏通道的完全密封,但這種方式只是基于泄漏通道的封堵,并未考慮背壓力的影響因素,且隨著壓縮機(jī)長(zhǎng)期運(yùn)轉(zhuǎn),密封條自身磨耗增大,齒頂泄漏通道還是會(huì)逐漸增大,并不能徹底解決問(wèn)題。為進(jìn)一步明確背壓力與壓縮機(jī)性能之間的關(guān)系,邱凱[3]等人采集空調(diào)系統(tǒng)不同轉(zhuǎn)速工況下背壓力信號(hào),發(fā)現(xiàn)低轉(zhuǎn)速時(shí)背壓力呈現(xiàn)出接近于正弦的變化趨勢(shì),而當(dāng)壓縮機(jī)高轉(zhuǎn)速運(yùn)行時(shí),背壓力相對(duì)恒定,但背壓腔內(nèi)氣液兩相有劇烈的擾動(dòng),導(dǎo)致功率增大。劉興旺[4]等人采用數(shù)值解析的方式對(duì)電動(dòng)渦旋壓縮機(jī)不同轉(zhuǎn)速下背壓力進(jìn)行計(jì)算,發(fā)現(xiàn)背壓力隨著轉(zhuǎn)速升高而逐漸降低,而且呈現(xiàn)出接近于線性的變化趨勢(shì)。以上學(xué)者的研究?jī)H是從背壓力單因素研究渦旋壓縮機(jī)的性能,但是背壓力對(duì)動(dòng)盤(pán)運(yùn)轉(zhuǎn)可靠性,尤其是對(duì)于高頻運(yùn)轉(zhuǎn)時(shí)動(dòng)盤(pán)的運(yùn)轉(zhuǎn)穩(wěn)定性并未作綜合性的探討,且目前公開(kāi)報(bào)道的相關(guān)研究較少。
基于此,本文根據(jù)動(dòng)盤(pán)實(shí)際運(yùn)轉(zhuǎn)狀態(tài)建立動(dòng)盤(pán)運(yùn)轉(zhuǎn)穩(wěn)定性計(jì)算的數(shù)學(xué)模型,通過(guò)解析方法求解動(dòng)盤(pán)運(yùn)轉(zhuǎn)穩(wěn)定性;并通過(guò)試驗(yàn)探尋轉(zhuǎn)速與背壓力之間的相關(guān)性,并應(yīng)用其相關(guān)性反向二次驗(yàn)證動(dòng)盤(pán)運(yùn)轉(zhuǎn)穩(wěn)定性及背壓力設(shè)計(jì)的合理性,同時(shí)兼顧壓縮機(jī)性能和高轉(zhuǎn)速運(yùn)轉(zhuǎn)可靠性。
渦旋壓縮腔是由一對(duì)相互共軛嚙合的渦旋齒對(duì)插而成,形成一系列月牙形腔室,為防止動(dòng)盤(pán)自轉(zhuǎn),在動(dòng)盤(pán)背面設(shè)置十字滑環(huán)對(duì)其限位。隨著曲軸旋轉(zhuǎn),動(dòng)盤(pán)做周期性的公轉(zhuǎn)運(yùn)動(dòng),由內(nèi)而外,月牙形腔室逐漸縮小,完成介質(zhì)的吸氣、壓縮、排氣過(guò)程。在壓縮機(jī)運(yùn)轉(zhuǎn)過(guò)程中,受載于動(dòng)盤(pán)上的氣體力、離心力、重力、背壓力等各種作用力的大小、作用點(diǎn)位置、力矩都處于時(shí)變狀態(tài),且隨著壓縮機(jī)運(yùn)轉(zhuǎn),動(dòng)靜盤(pán)上嚙合點(diǎn)位置變化,動(dòng)盤(pán)各個(gè)作用力區(qū)域也隨之變化,是一個(gè)復(fù)雜的受力系統(tǒng)模型。為方便分析,首先將壓縮機(jī)運(yùn)轉(zhuǎn)狀態(tài)進(jìn)行理論上瞬時(shí)處理,即在動(dòng)盤(pán)運(yùn)轉(zhuǎn)整周期內(nèi),分別計(jì)算出不同壓縮角時(shí)刻的動(dòng)盤(pán)受力,再進(jìn)行數(shù)據(jù)匯總分析,得出整周期中動(dòng)盤(pán)運(yùn)轉(zhuǎn)受力狀態(tài)。
本文以壓縮角為0°時(shí)刻為例(即A腔吸氣閉合時(shí)刻,如圖2所示位置)對(duì)動(dòng)盤(pán)進(jìn)行受力分析,將動(dòng)盤(pán)上各作用力進(jìn)行法向和徑向分解。動(dòng)盤(pán)在多種作用力耦合作用下,運(yùn)轉(zhuǎn)是否穩(wěn)定,其本質(zhì)因素在于動(dòng)盤(pán)上止推反力(動(dòng)盤(pán)軸向合力)的作用點(diǎn)位置是否處于動(dòng)盤(pán)端板之內(nèi),若處于動(dòng)盤(pán)端板之內(nèi),則背壓力設(shè)計(jì)合理,動(dòng)盤(pán)運(yùn)轉(zhuǎn)穩(wěn)定;若處于動(dòng)盤(pán)端板以外,則動(dòng)盤(pán)運(yùn)轉(zhuǎn)存在傾覆的風(fēng)險(xiǎn)。由此,可將動(dòng)盤(pán)運(yùn)轉(zhuǎn)穩(wěn)定性問(wèn)題轉(zhuǎn)化為止推反力作用點(diǎn)求解的問(wèn)題。
圖2 動(dòng)靜盤(pán)嚙合狀態(tài)(壓縮角=0°)
當(dāng)渦盤(pán)型線參數(shù)確定之后,唯一能夠調(diào)整且能影響壓縮機(jī)運(yùn)轉(zhuǎn)穩(wěn)定的是背壓力,工程中,一般取背壓力為軸向氣體力的1.15~1.3倍左右[5],即:
式中:Fb為背壓力;Fa為動(dòng)盤(pán)所受軸向氣體力。
在動(dòng)盤(pán)運(yùn)轉(zhuǎn)穩(wěn)定計(jì)算過(guò)程中,背壓力首先需要按此關(guān)系求得,作為已知參數(shù),根據(jù)計(jì)算結(jié)果再進(jìn)行調(diào)整優(yōu)化。動(dòng)盤(pán)法向受力模型如圖3所示,在吸氣閉合瞬間,動(dòng)盤(pán)法向受力平衡,據(jù)此可得:
圖3 動(dòng)盤(pán)法向受力解析圖
式中:F1、F2為動(dòng)盤(pán)側(cè)十字滑環(huán)鍵部所受正壓力;θ為壓縮角;Fc為動(dòng)盤(pán)離心力;Fr為法向力;μk為十字滑環(huán)與動(dòng)盤(pán)鍵槽摩擦系數(shù);Fsbr為動(dòng)盤(pán)法向軸承反力;δ為動(dòng)盤(pán)鍵槽與中心連線的夾角;Fs為動(dòng)盤(pán)離心力。
如圖4所示,根據(jù)動(dòng)盤(pán)受力特點(diǎn),對(duì)動(dòng)盤(pán)中心取矩,并定義逆時(shí)針為正,則可得到動(dòng)盤(pán)法向力矩平衡方程為:
圖4 動(dòng)盤(pán)力矩平衡分析圖
式中:Ar為軸向氣體力在中心連線上的法向分量;Br為背壓力在中心連線上的法向分量;h為渦盤(pán)齒高;Fs為渦齒接觸力;Zm為動(dòng)盤(pán)軸向重心;Cr為止推面反力到動(dòng)盤(pán)中心的距離;Fsp為止推反力;d為動(dòng)盤(pán)板厚;b為滑環(huán)鍵高;Fw為動(dòng)盤(pán)重力。
對(duì)動(dòng)盤(pán)沿切向方向受力分析,如圖5所示,可獲得切向受力平衡方程為:
圖5 動(dòng)盤(pán)切向受力解析圖
式中:At為軸向氣體力在中心連線上的切向分量;Bt為背壓力在中心連線上的切向分量;Ft為切向力;Fsbt為動(dòng)盤(pán)切向軸承反力;Ct為止推反力距離動(dòng)盤(pán)中心的切向距離;μt動(dòng)靜盤(pán)止推面之間的摩擦系數(shù)。
動(dòng)盤(pán)切向力矩平衡方程:
動(dòng)盤(pán)實(shí)際運(yùn)轉(zhuǎn)過(guò)程中,除了以上所分析的法向和切向以外,動(dòng)盤(pán)自身還有周向自轉(zhuǎn)趨勢(shì),只是這種自轉(zhuǎn)趨勢(shì)被十字滑環(huán)所約束,為準(zhǔn)確計(jì)算動(dòng)盤(pán)運(yùn)轉(zhuǎn)特性,動(dòng)盤(pán)周向自轉(zhuǎn)也需建立數(shù)學(xué)模型。據(jù)此,沿周向方向?qū)?dòng)盤(pán)中心取矩,則可得到動(dòng)盤(pán)自轉(zhuǎn)力矩平衡方程為:
式中:β為切向力距離動(dòng)盤(pán)中心的距離;W1為動(dòng)盤(pán)側(cè)十字滑環(huán)鍵寬度;γ為法向力距離動(dòng)盤(pán)中心距離;Wt為作用點(diǎn)在切向上的位置分向量;Roy為十字滑環(huán)作用點(diǎn)距離動(dòng)盤(pán)中心法向向量;μb為動(dòng)盤(pán)偏心部與曲軸摩擦系數(shù);ε為曲軸偏心距。
上述所列關(guān)于動(dòng)盤(pán)的只有5個(gè)方程,據(jù)此,動(dòng)盤(pán)運(yùn)轉(zhuǎn)穩(wěn)定的解并不可求,需結(jié)合十字滑環(huán)受力特性,聯(lián)合求解。十字滑環(huán)對(duì)于動(dòng)盤(pán)是周向限位機(jī)構(gòu),在壓縮機(jī)運(yùn)轉(zhuǎn)過(guò)程中,十字滑環(huán)自身只是沿著鍵槽做往復(fù)運(yùn)動(dòng)。分別將滑環(huán)沿著主機(jī)架側(cè)鍵槽連線方向、動(dòng)盤(pán)側(cè)鍵槽連線方向進(jìn)行受力分解,如圖6,即可得到如下三個(gè)方程:
圖6 十字滑環(huán)受力分析圖
十字滑環(huán)受力(主機(jī)架側(cè))平衡方程:
式中:F3、F4為動(dòng)盤(pán)側(cè)十字滑環(huán)鍵部所受正壓力;m0為動(dòng)盤(pán)重量。
十字滑環(huán)受力(動(dòng)盤(pán)側(cè))平衡方程:
十字滑環(huán)自轉(zhuǎn)力矩平衡方程:
式中:Rox為十字滑環(huán)作用點(diǎn)距離動(dòng)盤(pán)中心法向向量;W2為主機(jī)架側(cè)十字滑環(huán)鍵部寬度。
上述式(2)~(9),其中只有十字滑環(huán)鍵部作用力、止推反力作用點(diǎn)位置、動(dòng)盤(pán)徑向承載力8個(gè)未知數(shù)待求解;其余參數(shù)均可采用其他方法求得;限于篇幅原因,對(duì)于這些參數(shù)的求解方法后續(xù)另做介紹。聯(lián)合求解以上8個(gè)方程,即可得到止推反力Fsp距離動(dòng)盤(pán)中心的法向距離Cr和切向距離Ct,則止推反力Fsp在動(dòng)盤(pán)上的實(shí)際作用點(diǎn)位置為:
由此,動(dòng)盤(pán)運(yùn)轉(zhuǎn)穩(wěn)定性的判定表達(dá)式可進(jìn)一步表述為:
式中:r為動(dòng)盤(pán)半徑;i是止推反力作用點(diǎn)位置距動(dòng)盤(pán)中心的距離與動(dòng)盤(pán)半徑的比值,是無(wú)量綱參數(shù)。
若i>1,則值止推反力作用點(diǎn)處于動(dòng)盤(pán)端板以外,動(dòng)盤(pán)運(yùn)轉(zhuǎn)不穩(wěn)定;若i≤1,則止推反力作用點(diǎn)位置處于動(dòng)盤(pán)端板上,動(dòng)盤(pán)運(yùn)轉(zhuǎn)穩(wěn)定。
以上是壓縮角等于零時(shí)的計(jì)算過(guò)程,按照同樣方法,分別計(jì)算出壓縮角為0°、90°、180°、270°、360°的動(dòng)盤(pán)運(yùn)轉(zhuǎn)穩(wěn)定值,即可得到壓縮角運(yùn)轉(zhuǎn)整周期過(guò)程中動(dòng)盤(pán)的穩(wěn)定狀態(tài)。本文以某排量的渦旋壓縮機(jī)為例,對(duì)額定轉(zhuǎn)速ARI工況下的動(dòng)盤(pán)運(yùn)轉(zhuǎn)穩(wěn)定性進(jìn)行求解,計(jì)算結(jié)果如圖7所示,在不同壓縮角時(shí),動(dòng)盤(pán)穩(wěn)定值i均是小于1的,說(shuō)明動(dòng)盤(pán)運(yùn)轉(zhuǎn)穩(wěn)定,不會(huì)發(fā)生傾覆;在壓縮角等于270°時(shí),安定值有較大的波動(dòng),這是由于當(dāng)壓縮角等于270°時(shí),接近于壓縮脫嚙排氣角,在排氣瞬間,壓縮腔與殼體高壓腔瞬間貫通,動(dòng)盤(pán)上所承載的切向力、軸向力都會(huì)發(fā)生較大變化,導(dǎo)致此刻動(dòng)盤(pán)穩(wěn)定性弱于其他壓縮角;當(dāng)排氣結(jié)束,動(dòng)盤(pán)穩(wěn)定值又隨之下降,這一過(guò)程也與實(shí)際情況相符合。
圖7 動(dòng)盤(pán)安定值理論計(jì)算結(jié)果
以上計(jì)算動(dòng)盤(pán)運(yùn)轉(zhuǎn)穩(wěn)定性,并未考慮轉(zhuǎn)速與背壓之間相互影響關(guān)系,即在同一工況下,動(dòng)盤(pán)背壓力是一恒定值,不隨轉(zhuǎn)速變化?;诖?,本文設(shè)計(jì)如圖8所示背壓力測(cè)試樣機(jī),在主殼體上設(shè)置與背壓腔連通的引壓通道,外接壓力表,分別測(cè)試ARI工況下,不同轉(zhuǎn)速背壓腔中的實(shí)際壓力值。
圖8 背壓試驗(yàn)測(cè)量樣機(jī)
實(shí)驗(yàn)結(jié)果表明,同樣工況下,隨著轉(zhuǎn)速升高,背壓力呈現(xiàn)出逐漸降低的趨勢(shì),且接近于線性關(guān)系逐漸降低,如圖9所示。分析壓縮機(jī)實(shí)際運(yùn)轉(zhuǎn)過(guò)程,隨著轉(zhuǎn)速提高,動(dòng)盤(pán)封堵背壓孔的頻次增加,壓縮腔室與背壓腔之間的有效貫通時(shí)間縮短,進(jìn)入背壓腔中的介質(zhì)減少,造成背壓力下降。
圖9 背壓-轉(zhuǎn)速關(guān)系曲線
背壓力大小不僅影響能效,更為重要的是其直接決定著動(dòng)盤(pán)運(yùn)轉(zhuǎn)穩(wěn)定性,首先將背壓設(shè)置成隨轉(zhuǎn)速變化的函數(shù),并采用前述理論計(jì)算方法,分別計(jì)算30 Hz、120 Hz時(shí)動(dòng)盤(pán)運(yùn)轉(zhuǎn)穩(wěn)定性情況。結(jié)果如圖10所示,在不同轉(zhuǎn)速下,背壓隨轉(zhuǎn)速變化時(shí),動(dòng)盤(pán)運(yùn)轉(zhuǎn)穩(wěn)定值計(jì)算值均大于背壓力恒定的穩(wěn)定值,且隨著轉(zhuǎn)速增大,兩者之間的差異也逐漸增大,即隨著壓縮機(jī)轉(zhuǎn)速的升高,背壓力下降,動(dòng)盤(pán)運(yùn)轉(zhuǎn)穩(wěn)定性也呈現(xiàn)出下降趨勢(shì),發(fā)生傾覆的風(fēng)險(xiǎn)增大;這與理論計(jì)算結(jié)果呈現(xiàn)出同樣趨勢(shì),證明計(jì)算模型準(zhǔn)確可靠。為兼顧壓縮機(jī)性能和高轉(zhuǎn)速運(yùn)轉(zhuǎn)的可靠性,在背壓力設(shè)計(jì)過(guò)程中,需對(duì)高轉(zhuǎn)速動(dòng)盤(pán)穩(wěn)定性的二次校核和優(yōu)化,采用前文介紹的計(jì)算方法,可直接計(jì)算出不同工況頻率下動(dòng)盤(pán)運(yùn)轉(zhuǎn)特性,且對(duì)動(dòng)盤(pán)運(yùn)轉(zhuǎn)穩(wěn)定性可做出理論判定,為渦旋壓縮機(jī)背壓力的合理設(shè)計(jì)提供支撐。
圖10 動(dòng)盤(pán)運(yùn)轉(zhuǎn)穩(wěn)定性對(duì)比計(jì)算結(jié)果
動(dòng)盤(pán)穩(wěn)定運(yùn)轉(zhuǎn)涉及軸向氣體力、傾覆力矩、背壓力等多種作用力的耦合,是瞬態(tài)復(fù)雜多變的過(guò)程,目前關(guān)于背壓力的設(shè)計(jì)更多依靠實(shí)驗(yàn),以尋找最優(yōu)背壓力。為簡(jiǎn)化設(shè)計(jì)過(guò)程,探尋背壓力最優(yōu)設(shè)計(jì)的理論方法,本文嘗試根據(jù)壓縮機(jī)運(yùn)轉(zhuǎn)過(guò)程中動(dòng)盤(pán)受力特性,對(duì)不同壓縮角下的動(dòng)盤(pán)、十字滑環(huán)進(jìn)行受力分析,推導(dǎo)出了整周期內(nèi)動(dòng)盤(pán)運(yùn)轉(zhuǎn)穩(wěn)定性的數(shù)學(xué)計(jì)算模型,將動(dòng)盤(pán)穩(wěn)定性運(yùn)轉(zhuǎn)問(wèn)題轉(zhuǎn)化為動(dòng)盤(pán)止推反力作用點(diǎn)求解的問(wèn)題,并提出了動(dòng)盤(pán)運(yùn)轉(zhuǎn)穩(wěn)定性的數(shù)學(xué)判定依據(jù),即止推反力的作用點(diǎn)位置處于動(dòng)盤(pán)端板以內(nèi),則判定動(dòng)盤(pán)運(yùn)轉(zhuǎn)穩(wěn)定;若作用點(diǎn)位置處于動(dòng)盤(pán)端板以外,則判定動(dòng)盤(pán)運(yùn)轉(zhuǎn)不穩(wěn)定,有發(fā)生傾覆的風(fēng)險(xiǎn)。同時(shí),在試驗(yàn)過(guò)程中,發(fā)現(xiàn)了背壓力隨轉(zhuǎn)速變化的實(shí)際現(xiàn)象,并通過(guò)本文介紹的動(dòng)盤(pán)運(yùn)轉(zhuǎn)穩(wěn)定性計(jì)算方法,分別對(duì)背壓力恒定、背壓力隨轉(zhuǎn)速變化兩種情況下的動(dòng)盤(pán)穩(wěn)定性進(jìn)行求解,結(jié)果顯示,考慮背壓變化的實(shí)際情況下,動(dòng)盤(pán)運(yùn)轉(zhuǎn)穩(wěn)定性更差,因此在背壓力設(shè)計(jì)過(guò)程中須考慮轉(zhuǎn)速的因素。