潘峰,王磊,郭怡,沈金瀅,潘曉峰,鄭衛(wèi)新
2-碘-3-(對(duì)甲苯磺酰氧基)苯基醚的選擇性合成
潘峰,王磊,郭怡,沈金瀅,潘曉峰,鄭衛(wèi)新*
(杭州師范大學(xué)材料與化學(xué)化工學(xué)院,浙江 杭州 311121)
磺酰氧基鹵代芳基醚是一種多功能化合物,在眾多研究領(lǐng)域具有廣泛應(yīng)用價(jià)值。以2-碘間苯二酚為原料,經(jīng)化學(xué)計(jì)量的雙磺?;⑦x擇性單側(cè)水解及與溴化物的親核取代反應(yīng),合成系列2-碘-3-(對(duì)甲苯磺酰氧基)苯基醚。結(jié)果表明,雙磺?;a(chǎn)物的選擇性單側(cè)水解比2-碘間苯二酚通過單烴基化進(jìn)行原料中2個(gè)對(duì)稱羥基的選擇性官能化更有優(yōu)勢(shì)。以低成本堿為水解試劑,探索反應(yīng)時(shí)間、溫度等因素對(duì)2,6-雙(對(duì)甲苯基磺酰氧基)碘苯單側(cè)選擇性水解的影響,水解產(chǎn)物核磁純度>99%,為對(duì)甲苯磺酰氧基碘代芳基醚的合成提供一種操作簡(jiǎn)便、反應(yīng)條件溫和、成本低和選擇性高的方法。所有化合物結(jié)構(gòu)均經(jīng)1H-NMR、13C-NMR與高分辨質(zhì)譜等方法確定。
磺酰氧基碘代苯基醚;合成;選擇性水解
芳基醚是廣泛存在于許多天然產(chǎn)物[1-2]和藥物[3-5]分子中的重要骨架。芳環(huán)上官能團(tuán)的選擇性化學(xué)轉(zhuǎn)化是芳基醚官能化的重要策略,因此多官能化芳基醚的選擇性構(gòu)建在合成化學(xué)中具有重要意義。磺酰氧基碘代芳基醚是組建眾多具有生理活性分子的重要前體[6-10],其結(jié)構(gòu)式為
其中,相鄰的鹵素與磺酰氧基在芳基衍生化中發(fā)揮了重要作用[11-12]。鹵素與磺酰氧基的活性差異可為選擇性官能化提供有效途徑[13-17]。此外,該化合物是苯炔這一活性物種的重要供體,通過環(huán)加成反應(yīng)參與多種活性物質(zhì)的合成[6,18]。
磺酰氧基碘代芳基醚中因取代基性質(zhì)差異而擁有2種活性不同的C—O鍵,對(duì)應(yīng)苯二酚前體的選擇性反應(yīng)是該類化合物合成的主要策略,實(shí)現(xiàn)酚羥基高選擇性烴化與磺酰化是合成該化合物的關(guān)鍵。其合成方法主要有2種,一是先通過鹵代苯二酚的非完全烴化反應(yīng)進(jìn)行單側(cè)烴基化,再進(jìn)行磺酰化[19-22]合成;二是通過鹵代芳基二酚的磺?;?選擇性水解-衍生化合成。其中,三氟磺酰氧基的反應(yīng)較常見,例如1,6-雙(三氟磺酰氧基)碘苯可經(jīng)Cs2CO3作用脫去其中一個(gè)磺?;?3]。在常用磺?;?,對(duì)甲苯磺?;杀据^低,近年來在許多過渡金屬催化的偶聯(lián)反應(yīng)中表現(xiàn)出較好的活性和選擇性[24]。2,6-二羥基苯乙酮中的2個(gè)酚羥基可以通過控制計(jì)量的對(duì)甲苯磺酰氯進(jìn)行選擇性單磺?;?,繼而在未反應(yīng)的羥基鄰位發(fā)生碘代反應(yīng)生成碘代丁二酰亞胺(NIS)[25]。CLARK等[26]報(bào)道了3,5-雙磺酰氧基碘苯的單側(cè)選擇性水解。然而,對(duì)于磺酰氧基碘代芳基醚的合成前體,即2-鹵代雙對(duì)甲苯磺酰二苯酯的磺酰化或選擇性水解,至今未見文獻(xiàn)報(bào)道。
基于此,本文采用低成本堿高選擇性地實(shí)現(xiàn)2,6-雙對(duì)甲苯磺酰氧基2-碘苯的單側(cè)水解,經(jīng)親核取代反應(yīng)生成磺酰氧基碘代芳基醚,為磺酰氧基鹵代芳基醚的合成提供一種低成本、高效的方法。
Bruker Avance DMX500核磁共振儀,Bruker DMX300核磁共振儀,Shimadzu HRMS-EI-TOF型高分辨儀,顯微熔點(diǎn)儀X5。2-碘-1,3-苯二酚通過文獻(xiàn)[27]中方法合成。
在250 mL燒瓶中加入2-碘代-1,3-苯二酚(4.72 g,20 mmol)、對(duì)甲苯磺酰氯(8.77 g,46 mmol)、碳酸鉀(11.06 g,80 mmol)和丙酮(100 mL),室溫下攪拌,薄層色譜(TLC)跟蹤至反應(yīng)完全。抽濾,濾渣用二氯甲烷洗滌,合并的有機(jī)相用飽和食鹽水洗滌,經(jīng)無水硫酸鎂干燥,旋蒸濃縮。用乙酸乙酯和石油醚對(duì)粗產(chǎn)物重結(jié)晶,得到白色晶體2,6-雙(對(duì)甲苯基)磺酰氧基碘苯。
在1 L錐形瓶中加入2,6-雙磺酰氧基碘苯(23.3 g,42.8 mmol)和甲醇(100 mL),保持35 °C,滴加含KOH(5.0 g,89.1 mmol)的水-甲醇混合溶液(2.5 mL水,225 mL甲醇)。滴加完畢后保持溫度不變,攪拌3 h,升溫至45°C繼續(xù)攪拌15 min后冷卻至室溫,用水稀釋至總體積為800 mL,用濃度為5%的鹽酸中和,在4 °C下靜置2 d。過濾,將濾渣溶解在乙醚中,用10%的NaOH溶液萃取。分出的油狀物經(jīng)乙醚洗滌后用5%的鹽酸中和。混合物用乙醚萃取3次,合并的有機(jī)相經(jīng)硫酸鎂干燥,過濾,濃縮后得到2-碘-3-(對(duì)甲苯磺酰氧基)苯酚。
在250 mL燒瓶中加入2-碘-3-(對(duì)甲苯磺酰氧基)苯酚(7.80 g,20 mmol),鹵代烴(20 mmol),碳酸鉀(5.56 g,40 mmol)和乙腈(30 mL),室溫下攪拌,TLC跟蹤至反應(yīng)完全。加50 mL水稀釋,用乙酸乙酯萃取混合物,合并的有機(jī)相用飽和食鹽水洗滌,無水硫酸鎂干燥,過濾。用快速柱層析分離(石油醚()∶乙酸乙酯()=10∶1)粗產(chǎn)物,提純得到系列2-碘-3-(對(duì)甲苯磺酰氧基)苯基醚。
2-碘間苯二酚與芐溴的化學(xué)反應(yīng)方程式為
首先,選擇烴化反應(yīng)作為單側(cè)選擇性取代的起點(diǎn),室溫下將2-碘間苯二酚與堿在丙酮中混合,邊攪拌邊加入等物質(zhì)的量的芐溴。不同堿的反應(yīng)選擇性如表1所示。
表1 2-碘間苯二酚與芐溴的反應(yīng)
a:堿與2-碘間苯二酚的物質(zhì)的量之比為1.2∶1;b:以TLC跟蹤2-碘間苯二酚消失為準(zhǔn);c:核磁產(chǎn)率,括號(hào)內(nèi)產(chǎn)物比例由反應(yīng)混合物的1H-NMR確定,CH2Br2為內(nèi)標(biāo)。
由表1可知,在有機(jī)堿(Entry 4和5)作用下單取代產(chǎn)物1的產(chǎn)率高于無機(jī)堿(Entry 1~3)作用下產(chǎn)物1的產(chǎn)率,且可通過色譜柱分離產(chǎn)物1和2,但反應(yīng)選擇性無法滿足高效合成的需求。嘗試用2-碘間苯二酚與等物質(zhì)的量的對(duì)甲苯磺酰氯進(jìn)行選擇性單側(cè)磺酰化,依然未獲得成功。
碘代間苯二酚在K2CO3作用下與對(duì)甲磺酰氯以物質(zhì)的量之比為2∶1發(fā)生反應(yīng),計(jì)量生成2,6-雙磺酰氧基碘苯。該化合物在溶劑為甲醇,堿為NaOH[26]的條件下可實(shí)現(xiàn)單側(cè)水解,生成2-碘-3-(對(duì)甲苯磺酰氧基)苯酚,水解反應(yīng)方程式為
探索不同溫度下2,6-雙磺酰氧基碘苯的選擇性單側(cè)水解,結(jié)果見表2。
表2 2,6-雙磺酰氧基碘苯的選擇性單側(cè)水解
a:由于2,6-雙磺酰氧基碘苯不溶于反應(yīng)溶液,此處時(shí)間是指從堿溶液滴完至固體消失的時(shí)間。b:核磁產(chǎn)率,括號(hào)內(nèi)產(chǎn)物比例由反應(yīng)混合物的1H-NMR確定,CH2Br2為內(nèi)標(biāo)。
由表2可知,在室溫25 ℃下,反應(yīng)時(shí)間較長(zhǎng),即使2,6-雙磺酰氧基碘苯經(jīng)歷12 h,仍未反應(yīng)完全。溫度每升高10 ℃,反應(yīng)明顯加快,完全水解產(chǎn)物增加。因此,先將溫度調(diào)至35 ℃反應(yīng)3 h,然后升溫至45 ℃反應(yīng)15 min,經(jīng)后處理無須提純可獲得核磁純度>99%的2-碘-3-(對(duì)甲苯磺酰氧基)苯酚(產(chǎn)率達(dá)86%),如圖1所示。該產(chǎn)物可達(dá)到后續(xù)合成應(yīng)用的需求。
(ppm)
2.32-碘-3-(對(duì)甲苯磺酰氧基)苯酚的親核取代反應(yīng)
以乙腈為溶劑,2-碘-3-(對(duì)甲苯磺酰氧基)苯酚在K2CO3作用下與多種溴代烴發(fā)生親核取代反應(yīng),生成系列2-碘-3-(對(duì)甲苯磺酰氧基)苯基醚(產(chǎn)物5a~j),其中,產(chǎn)物5a為甲基-(3-對(duì)甲苯磺酰氧基-2-碘)苯基醚,產(chǎn)率為86%;產(chǎn)物5b為乙基-(3-對(duì)甲苯磺酰氧基-2-碘)苯基醚,產(chǎn)率為78%;產(chǎn)物5c為正丙基-(3-對(duì)甲苯磺酰氧基-2-碘)苯基醚,產(chǎn)率為79%;產(chǎn)物5d為異丙基-(3-對(duì)甲苯磺酰氧基-2-碘)苯基醚,產(chǎn)率為88%;產(chǎn)物5e為芐基-(3-對(duì)甲苯磺酰氧基-2-碘)苯基醚,產(chǎn)率為89%;產(chǎn)物5f為(2-苯基)乙基-(3-對(duì)甲苯磺酰氧基-2-碘)苯基醚,產(chǎn)率為88%;產(chǎn)物5g為(2’-溴)芐基-(3-對(duì)甲苯磺酰氧基-2-碘)苯基醚,產(chǎn)率為75%;產(chǎn)物5h為(2’-碘)芐基(3-對(duì)甲苯磺酰氧基-2-碘)苯基醚,產(chǎn)率為81%;產(chǎn)物5i為烯丙基-(3-對(duì)甲苯磺酰氧基-2-碘)苯基醚,產(chǎn)率為82%;產(chǎn)物5j為(3-對(duì)甲苯磺酰氧基-2-碘)苯氧基乙酸乙酯,產(chǎn)率為83%。產(chǎn)物5a~j的詳細(xì)數(shù)據(jù)請(qǐng)掃描右側(cè)二維碼。
親核取代反應(yīng)方程式為
產(chǎn)物5a~j的結(jié)構(gòu)式如下:
以2-碘間苯二酚為原料,經(jīng)磺?;⑦x擇性水解、親核取代反應(yīng),合成了系列磺酰氧基鹵代芳基醚。以低成本堿為水解試劑,實(shí)現(xiàn)2,6-雙(對(duì)甲苯基)磺酰氧基鹵代苯的單側(cè)選擇性水解,水解產(chǎn)物核磁純度>99%,為對(duì)甲苯磺酰氧基碘代芳基醚的合成提供了一種低成本、高效的方法。
[1]BRAD C, JOHN D F. Polybrominated diphenyl ethers from,and[J]. Tetrahedron, 1981, 37(13): 2335-2339. DOI:10.1016/s0040-4020(01)88886-4
[2]YAMADA T, TAKIGUCHI H, OHMORI K, et al. Total syntheses of pusilatins A-C, liverwort-derived macrocyclic bisbibenzyl dimers[J]. Organic Letters, 2018, 20(12): 3579-3582. DOI:10.1021/acs.orglett. 8b01366
[3]FUJIMOTO J, OKAMOTO R, NOGUCHI N, et al. Discovery of 3,5-diphenyl-4-methyl-1,3-oxazolidin-2-ones as novel, potent, and orally available delta-5 desaturase (D5D) inhibitors[J]. Journal Medicinal Chemistry, 2017, 60(21): 8963-8981. DOI:10.1021/acs.jmedchem.7b01210
[4]SINGER J M, WILSON M W, JOHNSON P D, et al. Synthesis and SAR of tolylamine 5-HT6 antagonists[J]. Bioorganic & Medicinal Chemistry Letters, 2009, 19(9): 2409-2412. DOI: 10.1016/j.bmcl.2009.03.077
[5]NORTON R S, CROFT K D, WELLS R J. Polybrominated oxydiphenol derivatives from the sponge dysidea herbacea[J]. Tetrahedron, 1981, 37(13): 2341-2349. DOI:10.1016/s0040-4020(01)88887-6
[6]MAMIKO N, YOSHIO A, FUMITAKA K, et al. Total synthesis of actinorhodin[J]. Angewandte Chemie International Edition, 2019, 58(13): 4264-4270. DOI:10.1002/anie.201814172
[7]BORGEL J, TANWAR L, BERGER F, et al. Late-stage aromatic C-H oxygenation[J]. Journal of the American Chemical Society, 2018, 140(47): 16026-16031.
[8]ARIYASU S, SAWA A, MORITA A, et al. Design and synthesis of 8-hydroxyquinoline-based radioprotective agents[J]. Bioorganic & Medicinal Chemistry, 2014, 22(15): 3891-905. DOI:10. 1016/j.bmc.2014.06.017
[9]BORGEL J, TANWAR L, BERGER F, et al. Late-stage aromatic C-H oxygenation[J]. Journal of the American Chemical Society, 2018, 140(47): 16026-16031.
[10]NING Y, FUKUDA T, IKEDA H, et al. Revisiting secondary interactions in neighboring group participation, exemplified by reactivity changes of iminylium intermediates[J]. Organic Biomolecular Chemistry, 2017, 15(6): 1381-1392. DOI:10.1039/c6ob02719a
[11]LIU Z, LI J, LI S, et al. SuFEx click chemistry enabled late-stage drug functionalization[J]. Journal of the American Chemical Society, 2018, 140(8): 2919-2925. DOI:10.1021/jacs.7b12788
[12]IQBAL J, EL-GAMAL M I, EJAZ S A, et al, Tricyclic coumarin sulphonate derivatives with alkaline phosphatase inhibitory effects: In vitro and docking studies[J]. Journal of Enzyme Inhibition and Medicinal Chemistry, 2018, 33(1): 479-484. DOI:10.1080/14756366.2018.1428193
[13]TRAN H, MCCALLUM T, MORIN M, et al. Homocoupling of iodoarenes and bromoalkanes using photoredox gold catalysis: A light enabled Au(III) reductive elimination[J]. Organic Letters, 2016, 18(17): 4308-4311. DOI:10.1021/acs.orglett.6b02021
[14]MONDAL S, DEBNATH S, DAS B. Synthesis of seven-membered fused sultones by reductive Heck cyclization: An investigation for stereochemistry through DFT study[J]. Tetrahedron, 2015, 71(3): 476-486. DOI:10.1016/j.tet.2014.11.068
[15]ALLEN P, BRAGG R A, CAFFREY M, et al. The synthesis of a tritium, carbon-14, and stable isotope-labeled cathepsin C inhibitors[J]. Journal of Labelled Compounds & Radiopharmaceuticals, 2017, 60(2): 124-129. DOI:10.1002/jlcr.3483
[16]STEINHARDT R C, O'NEILL J M, RATHBUN C M, et al. Design and synthesis of an alkynyl luciferin analogue for bioluminescence imaging[J]. European Journal of Organic Chemistry, 2016, 22(11): 3671-3675. DOI: 10.1002/chem.201503944
[17]LIN K, WILES R J, KELLY C B, et al. Haloselective cross-coupling via Ni/Photoredox dual catalysis[J]. ACS Catalysis, 2017, 7(8): 5129-5133. DOI: 10.1021/acscatal.7b01773
[18]JOSE? A, GARCíA L, MELIHA C?, et al. Synthesis of hindered biaryls via aryne addition and in situ dimerization[J]. Organic Letters, 2015, 17(11): 2649-2651. DOI: 10.1021/acs.orglett.5b01115
[19]WANG Z, LIU Z, LEE W, et al. Design, synthesis and docking study of 5-(substituted benzylidene) thiazolidine-2,4-dione derivatives as inhibitors of protein tyrosine phosphatase 1B[J]. Bioorganic & Medicinal Chemistry Letters, 2014, 24(15): 3337-3340. DOI:10.1016/j.bmcl.2014.05.099
[20]TAKAHASHI S, SUDA Y, NAKAMURA T, et al. Total synthesis of kehokorins A-E, cytotoxic-terphenyls[J]. The Journal of Organic Chemistry, 2017, 82(6): 3159-3166. DOI:10.1021/acs.joc. 7b00147
[21]BRACCA A, KAUFMAN T, CORTéS I, et al. Total synthesis and cytotoxic activity of 6,8-dimethoxy-1,3-dimethylisoquinoline isolated from ancistrocladus tectorius: A 6π-azaelectro-cyclization approach[J]. Synthesis, 2018, 51(2): 433-440. DOI:10.1055/s-0037-1610276
[22]ATTALURI S, IDEN C R, BONALA R R, et al. Total synthesis of the aristolochic acids, their major metabolites, and related compounds[J]. Chemical Research in Toxicology, 2014, 27(7): 1236-1242. DOI: 10.1021/tx500122x
[23]YOSHIDA S, MORITA T, HOSOYA T. Synthesis of diverse benzotriazoles from aryne precursors bearing an azido group via inter- and intramolecular cycloadditions[J]. Chemistry Letters, 2016, 45(7): 726-728. DOI:10.1246/cl.160349
[24]NERVIG C S, WALLER P J, KALYANI D. Palladium-catalyzed intramolecular C-H arylation of arenes using tosylates and mesylates as electrophiles[J]. Organic Letters, 2012, 14(18): 4838-4841. DOI:10.1021/ol302166n
[25]ALI R, GUAN Y, LEVEILLE A N, et al. Synthesis and anticancer activity of structure simplified naturally inspired dimeric chromenone derivatives[J]. European Journal of Organic Chemistry, 2019, 10(41): 6917-6929.
[26]CLARK C G, FLOUDAS G A, LEE Y J, et al.Molecularly tethered amphiphiles as 3-D supramolecular assembly platforms: Unlocking a trapped conformation[J]. Journal of American Chemical Society, 2009, 131(24): 8537-8547. DOI:10.1021/ja900999f
[27]TSUJIYAMA S I, SUZUKI K. Preparation of benzocyclobutenone derivatives based on an efficient generation of benzynes[J]Organic Syntheses, 2007, 84: 272-284. DOI:10.15227/orgsyn.084.0272
Selective synthesis of 2-iodophenyl-3-(-tosyloxy) 4-methylbenzenesulfonate
PAN Feng, WANG Lei, GUO Yi, SHEN Jinying, PAN Xiaofeng, ZHENG Weixin
(311121)
Halogenated sulfonyloxyaromatic ether has been regarded as the polyfunctionalized organic compound with wide applications in lots of fields. Using 2-iodoresorcinol as the starting material, series of iodonated alkyloxy 4-methylbenzenesulfonate were synthesized in high yields via stoichiometrical bissulfonylation, selective monohydrolysis of 2-iodo-1,3-phenylene bis(4-methylbenzenesulfonate) followed by nucleophilic substitution to various organobromides. Procedure for preparation of 3-hydroxy-2-iodophenyl-(4-methylbenzenesulfonate) was explored. It was found that the monodesulfonylation of bissulfonate was much more favorite than monohydrocarbylation for selective functionalization of the two symmetrical hydoxyls in 2-iodoresorcinol. Using low-cost alkali system, the reaction time, temperature of the monohydrolysis of the 2,6-bis(tosyloxy)iodobenzene had been investigated. The monohydrolysis product, 3-hydroxy-2-iodophenyl-(4-methylbenzenesulfonate), were obtained in the purity of above 99% in1H-NMR without further purification. This study provides a synthetic method of 3-alkyloxy-2-iodophenyl 4-methylbenzenesulfonate, which had the advantages of simple operation, mild reaction conditions, low cost and high selectivity. The structures of all the products were verified by1H-NMR,13C-NMR and HRMS, et al.
3-(-tosyloxy)-2-iodophenyl ether; synthesis; selective monohydrolysis
10.3785/j.issn.1008-9497.2021.05.009
O 627
A
1008?9497(2021)05?579?05
2020?01?01.
國(guó)家自然科學(xué)基金資助項(xiàng)目(20972037).
潘峰(1994—),ORCID: https://orcid.org/0000-0001-7016-2484,男,碩士研究生,主要從事導(dǎo)向金屬有機(jī)合成研究,E-mail: pfgz0419@163.com.
,ORCID: https://orcid.org/0000-0003-4149-8100,E-mail:wxzheng@hznu.edu.cn.