吳迪 韓星 鐘自玲 鄭少川 瞿申紅
摘要:目的:討論并分析3D打印聚己內(nèi)酯(polycaprolactone ,PCL)和聚醚醚酮(Polyetheretherketone,PEEK)耳廓支架的溶血率,對比評價兩種生物材料的溶血性能。方法:通過3D建模設(shè)計(jì)聚己內(nèi)酯和聚醚醚酮的支架數(shù)據(jù),利用熔融沉積法(FDM)打印出制備浸提液所需的材料支架,分別測定了聚己內(nèi)酯和聚醚醚酮的細(xì)胞溶血率。溶血實(shí)驗(yàn):將浸提液、生理鹽水、蒸餾水分別加入兔抗凝血,測定溶血率。結(jié)果:聚己內(nèi)酯和聚醚醚酮材料支架溶血率的平均值分別為2.51%和4.32%,說明聚己內(nèi)酯材料和聚醚醚酮材料均無明顯溶血反應(yīng)(低于國家標(biāo)準(zhǔn)(5%)),而聚己內(nèi)酯的溶血率小于聚醚醚酮的溶血率 , 對比兩種材料結(jié)果可知PCL與PEEK在溶血率的比較上有統(tǒng)計(jì)學(xué)差異(t=-15.034,P<0.05),表明聚已內(nèi)酯相比聚醚醚酮具有更好的生物相容性。
關(guān)鍵詞:聚己內(nèi)酯;聚醚醚酮;溶血反應(yīng);耳廓畸形;3D打印耳廓支架
Abstract:Objective: To discuss and analyze the hemolysis rate of 3D printed PCL (polycaprolactone)and PEEK(Polyetheretherketone) auricle stents, and to evaluate the hemolysis performance of the two biomaterials. Methods: the data of PCL and PEEK scaffolds were designed by 3D modeling, and the material scaffolds needed to prepare the extract were printed by FDM (Fused Deposition Modelling). Hemolysis test: the extract, normal saline and distilled water were added to rabbit anticoagulant respectively to determine the hemolysis rate. Results: the average hemolysis rate of PCL and PEEK scaffolds was 2.51% and 4.32% respectively, which indicated that PCL and PEEK scaffolds had no obvious hemolysis reaction (lower than the national standard (5%), but the hemolysis rate of PCL was lower than that of PEEK, Comparing the results of the two materials, PCL and PEEK had significant difference in hemolysis rate (t = - 15.034, P < 0.05), indicating that PCL had better biocompatibility than PEEK.
key words: Polycaprolactone, Polyetheretherketone, hemolytic reaction, auricle deformity, 3D Printing ,auricle stent
【中圖分類號】R4 ?【文獻(xiàn)標(biāo)識碼】A ?【文章編號】1673-9026(2021)09-095-03
引言
耳廓由彈性軟骨支架和被覆皮膚及其附屬物組成的解剖復(fù)雜的三維結(jié)構(gòu),因此耳廓再造手術(shù)是重建外科中技術(shù)上極具挑戰(zhàn)性的手術(shù)之一[1]。目前耳廓再造主要以手術(shù)為主,其中異體支架植入被廣泛關(guān)注[1]。由于3D打印能利用醫(yī)學(xué)數(shù)據(jù)(如CT或MRI數(shù)據(jù))定制出針對不同患者的個性化和復(fù)雜的結(jié)構(gòu)而被廣泛應(yīng)用于醫(yī)學(xué)領(lǐng)域,同時隨著3D打印技術(shù)的不斷成熟和制造復(fù)雜結(jié)構(gòu)方面的進(jìn)步,對打印材料的要求也更加苛刻[3]。其中聚己內(nèi)酯(PCL)和聚醚醚酮(PEEK)憑借著良好的生物學(xué)性能在耳廓畸形再造領(lǐng)域有著巨大的應(yīng)用潛力[4, 5]。
PCL和PEEK作為一種新興起的植入材料,植入患者體內(nèi)會直接與體內(nèi)組織直接接觸,因此評價材料的生物相容性尤為重要。本實(shí)驗(yàn)成功制備了PCL和PEEK為材料的研究支架,通過測定兩種材料的溶血率來評價其體外溶血試驗(yàn),從而對比兩種材料的生物相容性。
支架作為細(xì)胞粘附生長的基本框架,為組織再生提供細(xì)胞微環(huán)境,是決定最終成敗的關(guān)鍵因素[6, 7]。理想的耳廓支架植入物的材料應(yīng)具備以下特點(diǎn):
1)生物相容性,即支架植入后能夠與人體組織長期相容共存不會產(chǎn)生排斥反應(yīng)和組織壞死、癌變等反應(yīng);[8, 9]
2)生物降解性和可吸收性,即支架植入后細(xì)胞可以生長入支架內(nèi)部,最終支架降解形成理想組織;
3)良好的力學(xué)性能和可塑性,在受到外力作用下?lián)碛凶銐虻膹?qiáng)度和彈性,變形后能夠迅速復(fù)原;
4)具備適宜尺寸的疏松多孔結(jié)構(gòu),利于細(xì)胞粘附與増殖,促進(jìn)組織生長融合和血管網(wǎng)形成;
而本試驗(yàn)著重從細(xì)胞溶血反應(yīng)方面研究對比PCL和PEEK的生物相容性。
1 材料和方法
1.1主要實(shí)驗(yàn)材料及儀器:
1.1.1 實(shí)驗(yàn)材料
本研究使用的試驗(yàn)材料PCL和PEEK理化性能如表1。
1.1.2實(shí)驗(yàn)儀器
3D打印機(jī)及相關(guān)3D數(shù)據(jù)設(shè)計(jì)軟件(INTAMSYS 快速成型系統(tǒng),上海遠(yuǎn)鑄智能技術(shù)有限公司,中國)
1.1.3 FDM工作原理
支架模型可以通過3D掃描儀、CT和MRI成像、各種3D軟件創(chuàng)建的模型數(shù)據(jù)中導(dǎo)出并輸入打印機(jī),打印機(jī)通過將打印材料通過進(jìn)料系統(tǒng)送入熱熔噴嘴,并在噴嘴中形成半熔融聚合物后在 XY 平面運(yùn)動擠出在工作臺上,逐層加工最終形成三維產(chǎn)品部件。圖1a和圖1b為FDM過程。[14] [15, 16]
1.2實(shí)驗(yàn)方法
溶血試驗(yàn)檢測支架溶血反應(yīng)
1.2.1實(shí)驗(yàn)動物
清潔級實(shí)驗(yàn)用成熟兔2只,雄性,體重2.0~2.5kg,由廣西醫(yī)科大學(xué)實(shí)驗(yàn)動物中心提供。
1.2.2. 實(shí)驗(yàn)試劑
水合氯醛,0.9%生理鹽水、蒸餾水、2%草酸鉀溶液。
1.2.3試驗(yàn)材料支架制備
為了制備PEEK、PCL植入支架,利用建模軟件(3Dmax),將支架數(shù)據(jù)設(shè)計(jì)為沿X軸、Y軸、Z軸的立體模型,然后將數(shù)據(jù)轉(zhuǎn)換為STL文件,通過切片軟件(IntamSuite)快速切片生成Gecode格式,用于控制FDM 3D打印機(jī),如圖2[17, 18]。用作打印材料的PEEK和PCL長絲通過進(jìn)料管進(jìn)入3D印刷機(jī),分別在480℃(PEEK 高溫噴頭)和60℃(PCL 低溫噴頭)熔融注入噴嘴,進(jìn)行逐層打?。?.1mm),將各層融合在一起形成植入支架,整個過程在數(shù)小時內(nèi)完成[11, 19]。
圖2 ?A.利用3Dmax軟件制作需要的支架模型或者利用3D掃描儀掃描實(shí)物獲取數(shù)據(jù),導(dǎo)出數(shù)據(jù)為Stl(立體光刻)格式;B.將Stl(立體光刻)格式數(shù)據(jù)導(dǎo)入切片軟件進(jìn)行水平層切片處理,使立體模型轉(zhuǎn)換成一層層的水平層,并生成能被3D打印機(jī)識別的Gecode格式文件;C.將文件導(dǎo)入至導(dǎo)入3D打印機(jī)內(nèi),調(diào)節(jié)打印機(jī)參數(shù),選擇PLA、PEEK打印材料,逐層打印植入支架。
1.2.4 ?用于制作浸提液支架的制備過程,如圖3
1.2.5 PEEK和PCL支架材料浸提液的制備:
首先將打印出的PCL和PEEK支架進(jìn)行滅菌處理,按浸提介質(zhì):表面積=1ml:3cm2 加入浸提介質(zhì)0.9%生理鹽水中。放入 37℃±1℃恒溫箱中 24 小時得到支架浸提液,用0.22μm微孔濾器過濾除菌,4℃冰箱保存?zhèn)溆肹20]。
1.2.6操作步驟
1)用 10%水合氯醛將實(shí)驗(yàn)用兔麻醉,注射器刺入心臟采血 20mL,加入2%草酸鉀2ml制成新鮮抗凝血,按新鮮抗凝血:生理鹽水=4:5的比例制成稀釋后的兔抗凝血。
2)將實(shí)驗(yàn)分為生理鹽水(陰性對照組)、蒸餾水組(陽性對照組)和0.9%生理鹽水制備的浸提液(實(shí)驗(yàn)組)三組溶液置于 37℃水浴鍋預(yù)熱 30min,三組溶液各取 10mL 于離心管中,分別加入稀釋后的兔抗凝血 0.2mL,混勻后繼續(xù)在 37℃水浴鍋 保溫1h。
3)2500r/min,離心5min,取上清液,檢測 545 nm 處檢測各組吸光度值。重復(fù)以上實(shí)驗(yàn) 3 次,并計(jì)算支架浸提液溶血率的平均值:
溶血率=(實(shí)驗(yàn)組值-陰性對照組值)/(陽性對照組值-陰性對照組值)×100%。(公式1)
1.2.7 統(tǒng)計(jì)學(xué)處理
實(shí)驗(yàn)中數(shù)據(jù)采用 SPSS27.0 統(tǒng)計(jì)軟件分析,計(jì)量資料采用均數(shù)±標(biāo)準(zhǔn)差()表示,按照上述溶血率計(jì)算公式得到三組溶血率,取均值對比兩種材料的溶血率。兩種材料之間的比較采用t檢驗(yàn),以 P<0.05為差異具有統(tǒng)計(jì)學(xué)意義。
2實(shí)驗(yàn)結(jié)果
本實(shí)驗(yàn)PEEK和PCL支架的溶血率根據(jù)公式1計(jì)算,計(jì)算結(jié)果見下表2和表3,兩種材料支架溶血率均小于 5%,所以本實(shí)驗(yàn)兩種材料符合國家生物材料安全評價標(biāo)準(zhǔn)。
溶血試驗(yàn)是以材料在體外接觸紅細(xì)胞時的紅細(xì)胞溶解程度和血紅蛋白解離程度作為依據(jù)。根據(jù)表2和表3溶血試驗(yàn)結(jié)果表明,PCL材料支架的溶血率為2.51%,PEEK材料支架的溶血率為4.32%,得出PCL的溶血率小于PEEK的溶血率 ,由表4得出結(jié)論:對比兩種材料結(jié)果可知PCL與PEEK在溶血率的比較上有統(tǒng)計(jì)學(xué)差異(t=-15.034,P<0.05),表明PCL相比PEEK具有更好的生物相容性。
3討論
3 D 打印技術(shù)是以數(shù)字模型為基礎(chǔ),將打印材料在三維層面逐層精確堆積,從而快速制造所需三維實(shí)體技術(shù),在本研究中成功地被應(yīng)用于制備用于制作浸提液的三維支架,3D打印的優(yōu)點(diǎn)在于可以最大程度滿足個性化需求。近年來在醫(yī)學(xué)領(lǐng)域被廣泛運(yùn)用,幾乎應(yīng)用于醫(yī)學(xué)的所有子專業(yè)[21],尤其在耳科重建領(lǐng)域有著更長遠(yuǎn)的意義。耳廓再造手術(shù)是耳科疾病中極具挑戰(zhàn)性的手術(shù)之一,近年來,臨床上治療耳廓缺損再造主要是以自體肋軟骨移植手術(shù)為主,雖然被廣泛接受,但同時也具有極大的局限性,而利用生物材料進(jìn)行3D打印個性化耳廓植入支架的應(yīng)用為耳廓重建提供一種新的選擇[22],Zhu Peng [23]等對20 例小兒畸形患者利用 3D 打印模型耳廓重建與傳統(tǒng)二維重建術(shù)后滿意度的進(jìn)行比較,得出前者取得了非常好的臨床效果。隨著3D打印技術(shù)在醫(yī)學(xué)領(lǐng)域的成熟運(yùn)用同時,醫(yī)用 3D 打印高分子材料也已經(jīng)取得了很大的進(jìn)展,但由于臨床對材料的各種性能有著非常高的要求,材料的安全性、生物相容性是必須考慮的因素[24, 25],良好的生物性能會使材料在植入機(jī)體后,更易于使機(jī)體受損的組織或器官得以修復(fù)或重建。在眾多的生物材料中,PCL和PEEK因具有良好的生物性能在臨床上被得到廣泛的應(yīng)用,通過制備兩種材料的浸提液進(jìn)行體外實(shí)驗(yàn)研究對比其溶血率,得出PCL相比于PEEK材料具有更低的溶血率,表明PCL具備更好的生物相容性,但是材料的選擇和利用受到多種因素的影響,單從溶血率比較篩選出某個材料更適合作為植入支架是不全面的,所以兩種植入材料在其他生物性能方面進(jìn)行進(jìn)一步研究對比,以求尋找到植入材料的不足從而避免對人體的造成不可逆的傷害。
參考文獻(xiàn):
[1]. Balaji, S.M., Two stage ear/microtia reconstruction using costal cartilage. Annals of Maxillofacial Surgery, 2015. 5(2): p. 163.
[2]. Park, J.Y., et al., Development of a 3D cell printed structure as an alternative to autologs cartilage for auricular reconstruction. J Biomed Mater Res B Appl Biomater, 2017. 105(5): p. 1016-1028.
[3]. Hempel, J.M., et al., Partial auricular reconstruction with porous polyethylene frameworks and superficial temporoparietal fascia flap. Eur Arch Otorhinolaryngol, 2014. 271(10): p. 2761-6.
[4]. Zhao, Y., et al., Cytocompatibility, osseointegration, and bioactivity of three-dimensional porous ?and nanostructured network on polyetheretherketone. Biomaterials, 2013. 34(37): p. 9264-77.
[5]. Tambralli, A., et al., A hybrid biomimetic scaffold composed of electrospun polycaprolactone nanofibers ?and self-assembled peptide amphiphile nanofibers. Biofabrication, 2009. 1(2): p. 025001.
[6]. Nayyer, L., et al., Tissue Engineering. Plastic and Reconstructive Surgery, 2012. 129(5): p. 1123-1137.
[7]. Do, A., et al., 3D Printing of Scaffolds for Tissue Regeneration Applications. Advanced Healthcare Materials, 2015. 4(12): p. 1742-1762.
[8]. Havla, J.B., et al., Cartilage tissue engineering for auricular reconstruction: In vitro evaluation of potential genotoxic and cytotoxic effects of scaffold materials. Toxicology in Vitro, 2010. 24(3): p. 849-853.
[9]. Bichara, D.A., et al., The Tissue-Engineered Auricle: Past, Present, and Future. Tissue Engineering Part B: Reviews, 2012. 18(1): p. 51-61.
[10]. Gu, R., et al., Biocompatibility of polyetheretherketone for the treatment of orbital bone defects. International journal of ophthalmology, 2020. 13(5): p. 725-730.
[11]. Feng, X., et al., Osteointegration of 3D-Printed Fully Porous Polyetheretherketone Scaffolds with Different Pore Sizes. ACS Omega, 2020. 5(41): p. 26655-26666.
[12]. Haryńska, A., et al., Medical-Grade PCL Based Polyurethane System for FDM 3D Printing—Characterization and Fabrication. Materials, 2019. 12(6): p. 887.
[13]. Chou, Y., et al., Development of a Three-Dimensional (3D) Printed Biodegradable Cage to Convert Morselized Corticocancellous Bone Chips into a Structured Cortical Bone Graft. International Journal of Molecular Sciences, 2016. 17(4): p. 595.
[14]. Zopf, D.A., et al., Computer Aided-Designed, 3-Dimensionally Printed Porous Tissue Bioscaffolds for Craniofacial Soft Tissue Reconstruction. Otolaryngology-Head and Neck Surgery, 2015. 152(1): p. 57-62.
[15]. Kang, H., C. Lin and S.J. Hollister, Topology optimization of three dimensional tissue engineering scaffold architectures for prescribed bulk modulus and diffusivity. Structural and Multidisciplinary Optimization, 2010. 42(4): p. 633-644.
[16]. Muwaffak, Z., et al., Patient-specific 3D scanned and 3D printed antimicrobial polycaprolactone wound dressings. International journal of pharmaceutics, 2017. 527(1-2): p. 161-170.
[17]. Haryńska, A., et al., Medical-Grade PCL Based Polyurethane System for FDM 3D Printing—Characterization and Fabrication. Materials, 2019. 12(6): p. 887.
[18]. Haryńska, A., et al., Fabrication and Characterization of Flexible Medical-Grade TPU Filament for Fused Deposition Modeling 3DP Technology. Polymers, 2018. 10(12): p. 1304.
[19]. Yao, Q., et al., Design, construction and mechanical testing of digital 3D anatomical data-based PCL-HA bone tissue engineering scaffold. Journal of Materials Science: Materials in Medicine, 2015. 26(1).
[20]. Wang, L., et al., Cytotoxicity and Hemolytic Properties of Nano-Hydroxyapatite/Polyetheretherketone Biocomposites. Materials Science Forum, 2016. 848: p. 567-572.
[21]. Galstyan, A., et al., Applications of 3D printing in breast cancer management. 3D Print Med, 2021. 7(1): p. 6.
[22]. Bos, E.J., et al., Developing a parametric ear model for auricular reconstruction: a new step towards patient-specific implants. J Craniomaxillofac Surg, 2015. 43(3): p. 390-5.
[23]. Zhu, P. and S. Chen, Clinical outcomes following ear reconstruction with adjuvant 3D template model. Acta Otolaryngol, 2016. 136(12): p. 1236-1241.
[24]. Deng, M., et al., Nanostructured polymeric scaffolds for orthopaedic regenerative engineering. IEEE Trans Nanobioscience, 2012. 11(1): p. 3-14.
[25]. Muwaffak, Z., et al., Patient-specific 3D scanned and 3D printed antimicrobial polycaprolactone wound dressings. Int J Pharm, 2017. 527(1-2): p. 161-170.
基金資助:2018年廣西科技計(jì)劃項(xiàng)目重點(diǎn)研發(fā)計(jì)劃(桂科AB1850010);2018年廣西醫(yī)療衛(wèi)生適宜技術(shù)開發(fā)與推廣應(yīng)用項(xiàng)目(S2018039)