国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

CFRP鋼管混凝土軸壓承載力靈敏度分析

2021-09-08 11:43:18徐志純王坤云
人民珠江 2021年9期
關(guān)鍵詞:全局靈敏度鋼管

伍 劍,鄒 宏,徐志純,王坤云

(成都理工大學(xué)地質(zhì)災(zāi)害防治與地質(zhì)環(huán)境保護國家重點實驗室,四川 成都 610059)

CFRP鋼管混凝土是在鋼管混凝土外部纏繞碳纖維布的一種組合結(jié)構(gòu),它具有承載力高、韌性好、制作和施工方便、經(jīng)濟效果好等優(yōu)點。目前,國內(nèi)外一些學(xué)者已開展了相關(guān)研究。陶忠等[1]分別在圓形和矩形鋼管混凝土上測試了碳纖維增強復(fù)合材料的加固效果,并提出了一種計算CFRP包裹的圓形鋼管混凝土短柱極限強度的簡單模型。王慶利等[2]對32個CFRP鋼管混凝土進行了軸壓試驗研究,將試件的載荷-中截面撓度曲線分為彈性段、彈塑性段和軟化段3個階段,并用纖維模型法模擬了圓CFRP鋼管混凝土軸壓構(gòu)件的荷載-中截面撓度曲線,計算結(jié)果與試驗結(jié)果吻合良好,且偏于安全。顧威等[3]采用極限平衡法,推導(dǎo)出鋼管屈服時構(gòu)件承載力和碳纖維片拉斷時構(gòu)件極限承載力的解析計算式,并通過對8根CFRP-鋼管混凝土軸壓短柱的極限承載力進行試驗研究,驗證解析計算式的正確性。Li Na等[4]進行了長細(xì)比對碳纖維布約束鋼管混凝土柱性能的影響的試驗研究。Jai Woo Park等[5]以D/t(B/t)比、CFRP層數(shù)為試驗參數(shù),分別對CFRP加固圓形截面和矩形截面的鋼管混凝土結(jié)構(gòu)的性能進行了比較。王靜峰等[6]對軸壓作用下CFRP部分包裹圓鋼管混凝土短柱的力學(xué)性能進行了參數(shù)分析。

上述研究表明:使用CFRP包裹鋼管混凝土可以顯著提高鋼管混凝土的承載力。然而,CFRP鋼管混凝土的極限承載力與很多因素有關(guān),如鋼管厚度、混凝土強度、CFRP厚度等。傳統(tǒng)的極限承載力是通過理論計算、實驗和有限元模擬得到。實際上,由于材料制造、使用等原因,CFRP鋼管混凝土存在大量的不確定因素,這些不確定因素導(dǎo)致CFRP極限承載力實際并不是“一個值”,而是“一組值”。在判斷不同的不確定參數(shù)對CFRP鋼管混凝土極限承載力的影響程度時,采用靈敏度指標(biāo)更具有實際意義。

本文以CFRP鋼管混凝土為研究對象,使用ABAQUS分析確定參量系統(tǒng)的極限承載力,并對比試驗得到的極限承載力,驗證模型的可行性。然后考慮試件參數(shù)的不確定性,進一步探討不同隨機參量對極限承載力影響的局部靈敏度指標(biāo)和全局靈敏度指標(biāo)。研究結(jié)果可為CFRP鋼管混凝土的設(shè)計、優(yōu)化以及后期的加固提供參考和依據(jù)。

1 模型的建立及分析

1.1 材料本構(gòu)關(guān)系

某江流鋼管的本構(gòu)關(guān)系采用彈塑性模型中的五段式二次塑流模型[7]。其中鋼材的彈性模量為2.06×105MPa,泊松比為0.3。

核心混凝土的本構(gòu)關(guān)系采用文獻[7]提出的鋼管約束核心混凝土本構(gòu)關(guān)系模型。核心混凝土的抗壓應(yīng)力應(yīng)變曲線和抗拉應(yīng)力應(yīng)變曲線見圖1。其中混凝土軸心抗壓強度標(biāo)準(zhǔn)值為36.85 MPa,泊松比為0.2。

a)混凝土受壓應(yīng)力-應(yīng)變關(guān)系

CFRP只承受纖維方向的拉應(yīng)力,將其他方向的應(yīng)力值設(shè)為0.001 MPa,在斷裂失效前為線彈性材料,認(rèn)為纖維方向(鋼管環(huán)向)上CFRP的抗拉強度為斷裂強度,并滿足胡克定律:

σcf=Ecfεcf

(1)

式中σcf——CFRP的環(huán)向應(yīng)力;Ecf——CFRP的彈性模量;εcf——CFRP的環(huán)向應(yīng)變。

1.2 計算模型

CFRP鋼管混凝土模型見圖2,試件長度為400 mm、鋼管內(nèi)徑(半徑)為62 mm、鋼管壁厚為2.5 mm、CFRP厚度為0.17 mm。核心混凝土、鋼管均采用C3D8R單元,計算精度稍低,但相對于高次等參單元來說,它的自由度較少,可以節(jié)省計算成本的特點;CFRP采用M3D4R單元,它只傳遞面內(nèi)的力,不承受彎矩,即沒有彎曲剛度。

圖2 CFRP鋼管混凝土模型

采用掃掠網(wǎng)格劃分技術(shù)分別對核心混凝土、鋼管、CFRP進行網(wǎng)格劃分,經(jīng)試算當(dāng)網(wǎng)格尺寸取為模型1/30長度左右時,可在較短的時間內(nèi)取得滿意的計算效果。在CFRP鋼管混凝土柱模型中,存在多種接觸關(guān)系。核心混凝土與鋼管之間相互作用采用“表面對表面接觸”,法向行為定為“硬接觸”,切向行為定義為“罰”,摩擦系數(shù)設(shè)為0.6。CFRP與鋼管之間接觸方式設(shè)置為“綁定”。在計算模型中,底端和頂端各設(shè)一個參考點,分別與模型的底面和頂面進行耦合。通過參考點將構(gòu)件底端完全固定,頂端施加位移荷載。

1.3 承載力分析

為驗證上述建模方法的可行性和準(zhǔn)確性,試件的試驗和模擬的荷載-應(yīng)變曲線見圖3,可以看出,有限元模擬所得的荷載-應(yīng)變曲線與文獻中試驗得到荷載-位移曲線大致吻合,都具有相同的變化規(guī)律,在初始受力階段,曲線呈線性上升。隨著應(yīng)變的逐漸增加,荷載達到最大值(即極限承載力),繼續(xù)施加荷載,曲線發(fā)生驟降,這是因為CFRP發(fā)生了斷裂,之后曲線達到穩(wěn)定狀態(tài)。本次模擬得到的極限承載力為1 276 kN,試驗中的極限承載力為1 294 kN,模擬結(jié)果略小于試驗結(jié)果,相對誤差值為1.39%,表明本次有限元模擬過程較好。

圖3 試驗曲線與模擬曲線對比

2 靈敏度分析的實現(xiàn)

2.1 參數(shù)化建模

Abaqus腳本接口可以實現(xiàn)Abaqus/CAE中的所有功能[12]。使用者可以通過圖形用戶界面(GUI)窗口、命令行接口(CLI)和腳本(SCRIPT)來執(zhí)行相應(yīng)的命令,不過所用的命令都必須經(jīng)過Python解釋器后才能進入Abaqus/CAE中執(zhí)行,同時生成擴展名為.rpy的文件。再經(jīng)過求解器分析,最終得到輸出數(shù)據(jù)庫(ODB)文件。

Python語言是Abaqus軟件的標(biāo)準(zhǔn)設(shè)計語言,在Abaqus中的所有操作,都以Python語言的形式保存在工作路徑下的.rpy文件中。通過修改.rpy文件,提取需要參數(shù)化的變量,并編寫Python語句進行自動后處理,提取試件的承載力最大值。最后將修改后的.rpy文件保存名為“Input.py”的文件,即完成了腳本文件的創(chuàng)建。

2.2 靈敏度分析

文件批處理是實現(xiàn)腳本多次運行的基礎(chǔ)。建立批處理文件“run_abaqus.bat”,其內(nèi)容為:abaqus cae noGUI=Input.py。通過批處理文件自動調(diào)用Abaqus,運行腳本文件“Input.py”進行仿真計算。建立一個data.txt文件,用于存放需要計算的每一組參數(shù)值。提取每次計算的極限承載力(Max_RF)。分析各參數(shù)變化對極限承載力的影響程度,即靈敏度分析見圖4。

圖4 靈敏度分析流程

3 靈敏度分析方法

靈敏度分析主要是考察輸入變量對輸出不確定性的貢獻大小,對優(yōu)化模型具有重要的工程意義。本文中的靈敏度是指各參數(shù)變化對CFRP鋼管混凝土極限承載力的影響程度。靈敏度分析主要分為局部靈敏度和全局靈敏度。

3.1 局部靈敏度

局部靈敏度分析(LSA)是指模型響應(yīng)函數(shù)對輸入變量在名義值點的偏導(dǎo)[8],研究的是各個變量參數(shù)的單獨的變化對承載力所造成的影響,見式(2):

(2)

式中SLSAi——局部靈敏度指數(shù);ΔF——極限承載力的相對變化大??;ΔXi——初始斷面各個輸入變量的相對變化大小;X0——均值向量。

由于不同的輸入?yún)?shù)通常具有不同的維數(shù)和尺度,因此很難對同一框架下的輸入?yún)?shù)對輸出響應(yīng)的貢獻進行分析。因此定義局部相對靈敏度,即輸出響應(yīng)的相對變量率對輸入?yún)⒘康南鄬ψ兓省?/p>

(3)

式中SRLSAi——局部相對靈敏度指數(shù);F0——輸入變量為X0時的值,二者不能同時為0。

3.2 全局靈敏度

相對局部靈敏度是無量綱的,只能反映輸入?yún)?shù)在均值處輸出的局部梯度信息。全局靈敏度分析提供了隨機參數(shù)的變化對目標(biāo)函數(shù)在整個參數(shù)空間內(nèi)變化的詳細(xì)影響,以及參數(shù)與目標(biāo)函數(shù)之間的相互作用。

全局靈敏度分析方法主要基于Monte Carlo方法,考慮了參數(shù)的實際概率分布,所有變量都可以同時變化,變動范圍可以是整個設(shè)計空間。通過響應(yīng)的方差來衡量輸入?yún)?shù)的相對重要度[9]。然而,Monte Carlo法的一個主要缺點是需要對大量的模型輸出進行評估,從而使靈敏度指數(shù)的最終逼近足夠準(zhǔn)確??紤]到本次模型較為復(fù)雜,如果基于Monte Carlo法進行分析,則計算量非常龐大,可操作性大大受到限制,因此可以考慮借助非統(tǒng)計類方法進行研究。

(4)

式中R(x)——CFRP鋼管混凝土的極限承載力;X——輸入變量,二者不能同時為0;β——多項式的待定系數(shù);k——輸入變量個數(shù);ε——函數(shù)R(x)的誤差。

為了求解式中的待定系數(shù),使用最優(yōu)拉丁超立方設(shè)計方法(Optimal Latin Hypercube Design)生成多個采樣點,最優(yōu)拉丁超立方設(shè)計改進了隨機拉丁超立方設(shè)計的均勻性,使因子和響應(yīng)的擬合更加精確真實。并用確定性分析方法計算配點處的函數(shù)值,然后通過采樣點及其函數(shù)值擬合多項式中的待定系數(shù),即可得到函數(shù)的具體表達式,最后通過表達式可進一步計算系統(tǒng)輸出的統(tǒng)計特征值。

二階響應(yīng)面誤差見圖5,并結(jié)合響應(yīng)面的相關(guān)系數(shù)R2來評判擬合的精度,當(dāng)R2值越接近1,說明擬合和預(yù)測效果越好[10]。本次通過二階響應(yīng)面擬合響應(yīng)的R2值為0.97。表明所建立的近似模型擬合程度較好,可用于代替實際模型并進行全局靈敏度分析。其中,R2的表達式為:

圖5 二階響應(yīng)面近似模型誤差分析

(5)

在靈敏度分析方法方面,采用計算量較小,精度較高的基于方差分解的FAST法[11]計算CFRP鋼管混凝土的軸壓極限承載力的全局靈敏度指標(biāo),分析各個參量對極限承載力的貢獻大小。參量Pi的FAST靈敏度指標(biāo)Si計算表達式為:

(6)

式中Si——全局靈敏度指數(shù);E——均值;V——方差。

4 承載力的靈敏度分析

4.1 局部靈敏度分析

在局部靈敏度分析中,將CFRP鋼管混凝土長度、鋼管內(nèi)半徑、鋼管壁厚、CFRP厚度、混凝土抗壓強度、鋼材強度、CFRP強度、混凝土彈性模量、鋼管彈性模量、CFRP彈性模量作為輸入?yún)?shù),使其在各自均值的±15%范圍內(nèi)變化,參數(shù)均值見表1。

表1 參數(shù)的統(tǒng)計特性

各參數(shù)對承載力的局部相對靈敏度見圖6。圖中,斜率越大表明參數(shù)對響應(yīng)的影響程度越大。斜率為正說明參數(shù)對響應(yīng)呈正相關(guān),即隨著參數(shù)相對變化率的增加,響應(yīng)的相對變化率隨之增大,反之亦然。本次分析中,鋼管內(nèi)徑R1對響應(yīng)的影響最大并呈正相關(guān),試件長度L呈負(fù)相關(guān)。

圖6 極限承載力的相對局部靈敏度

表2給出局部靈敏度指標(biāo)和全局靈敏度指標(biāo)。其中第二列為各參數(shù)的局部相對靈敏度指數(shù),靈敏度指數(shù)較大的前5個參數(shù)排序為:鋼管內(nèi)徑(R1)>鋼管強度(fy)>鋼管壁厚(ts)>混凝土立方體抗壓強度(fcu)>CFRP極限抗拉強度(fcf)。其中R1的靈敏度指數(shù)最大,表明R1對響應(yīng)影響最大;L的靈敏度指數(shù)為負(fù),表明L對響應(yīng)的影響呈負(fù)相關(guān)。這與圖5得出的結(jié)論一致。

4.2 全局靈敏度分析

考慮到各參數(shù)的實際分布情況[13-15],均服從正態(tài)分布,其均值和變異系數(shù)見表2,對CFRP鋼管混凝土進行全局靈敏度分析。

各參數(shù)對承載力的FAST靈敏度直方圖見圖7,利用式(4)共計計算了3 221個數(shù)據(jù)點計算得到結(jié)果。從圖中可以看出,鋼管內(nèi)徑R1對響應(yīng)的影響最大。表2中的第三列給出了各參數(shù)的全局(FAST)靈敏度指數(shù),其中靈敏度指數(shù)較大的前5個參數(shù)排序為:鋼管內(nèi)徑(R1)>混凝土立方體抗壓強度(fcu)> 鋼管強度(fy)>鋼管壁厚(ts)>CFRP極限抗拉強度(fcf)。

表2 局部-全局靈敏度指數(shù)對比

圖7 極限承載力的FAST靈敏度指標(biāo)的直方

對比局部靈敏度分析和全局靈敏度分析,可以發(fā)現(xiàn),2種分析方法中都是鋼管內(nèi)徑對極限承載力的影響最大。但影響較大的前5個參數(shù)的重要性排序并不完全一致,在局部靈敏度分析中,混凝土立方體抗壓強度的靈敏度指數(shù)低于鋼管強度和鋼管壁厚的靈敏度指數(shù),而在全局靈敏度分析中,混凝土立方體抗壓強度的靈敏度指數(shù)高于鋼管強度和鋼管壁厚的靈敏度指數(shù)。這是混凝土立方體抗壓強度的變異系數(shù)遠遠大于其他參數(shù)的變異系數(shù)引起的。因此,基于參數(shù)的變異性和實際概率分布,且多個參數(shù)同時發(fā)生變化的全局靈敏度分析可以更準(zhǔn)確地找出對目標(biāo)函數(shù)最為敏感的設(shè)計變量。但全局靈敏度分析的計算量十分龐大,若各參數(shù)的變異性相差不大或參數(shù)都在小范圍內(nèi)變化,使用局部靈敏度分析更能快速得到理想的結(jié)果。

5 結(jié)語

a)使用ABAQUS有限元分析軟件建立CFRP鋼管混凝土軸壓短柱數(shù)值分析模型,提取荷載-應(yīng)變曲線并于試驗曲線對比,驗證模型的準(zhǔn)確性。通過ABAQUS的腳本語言Python,考慮了9個參數(shù)并生成參數(shù)的樣本點,對CFRP鋼管混凝土進行參數(shù)化建模,使用ABAQUS計算并提取CFRP鋼管混凝土的極限承載力。分析了極限承載力的局部靈敏度和全局靈敏度。在全局靈敏度分析中,針對Monte Carlo法分析復(fù)雜模型耗時長的問題,通過二階響應(yīng)面法擬合多項式函數(shù),從而進行全局靈敏度分析。

b)對比局部靈敏度分析和全局靈敏度分析,鋼管內(nèi)徑對極限承載力的影響最大,但是靈敏度指數(shù)大小排序并不一致。局部靈敏度考慮的是各參數(shù)在相同變化區(qū)間內(nèi)的梯度變化,每次只有一個參數(shù)變化;而全局靈敏度分析考慮了參數(shù)的變異性和實際概率分布,且多個參數(shù)同時發(fā)生變化。在各參數(shù)的變異性相差較小或參數(shù)都在小范圍內(nèi)變化時,使用局部靈敏度分析能快速得到理想的結(jié)果;若各參數(shù)變異性相差較大,使用考慮了參數(shù)變異性和實際概率分布的全局靈敏度分析更能得到準(zhǔn)確的結(jié)果。

猜你喜歡
全局靈敏度鋼管
Cahn-Hilliard-Brinkman系統(tǒng)的全局吸引子
量子Navier-Stokes方程弱解的全局存在性
微型鋼管樁在基坑支護工程中的應(yīng)用
淺探輸變電鋼管結(jié)構(gòu)的連接方法
導(dǎo)磁環(huán)對LVDT線性度和靈敏度的影響
落子山東,意在全局
金橋(2018年4期)2018-09-26 02:24:54
ACS6000中壓傳動系統(tǒng)在鋼管軋制中的應(yīng)用
電子制作(2018年10期)2018-08-04 03:24:26
地下水非穩(wěn)定流的靈敏度分析
穿甲爆破彈引信對薄弱目標(biāo)的靈敏度分析
基于PLC的鋼管TIG焊機控制系統(tǒng)
焊接(2015年9期)2015-07-18 11:03:53
绥棱县| 开鲁县| 浮梁县| 米易县| 台南市| 定州市| 左贡县| 临海市| 拜城县| 克东县| 柳江县| 新沂市| 株洲县| 类乌齐县| 玉山县| 元氏县| 土默特左旗| 罗平县| 平遥县| 文成县| 栾川县| 商河县| 东至县| 温州市| 凌海市| 栾城县| 泽库县| 平远县| 济源市| 汶上县| 龙海市| 南投县| 来宾市| 土默特右旗| 中江县| 孟连| 永定县| 万山特区| 凤城市| 突泉县| 游戏|