魯 玲,康寧波,劉貴珊,賀曉光,李 娟
真空預(yù)冷結(jié)合微孔膜包裝對(duì)鮮枸杞貯藏品質(zhì)的影響
魯 玲,康寧波※,劉貴珊,賀曉光,李 娟
(寧夏大學(xué)食品與葡萄酒學(xué)院,銀川 750021)
為了延長(zhǎng)鮮枸杞貯藏保鮮期,該研究通過(guò)真空預(yù)冷結(jié)合微孔膜包裝對(duì)鮮枸杞的貯藏品質(zhì)進(jìn)行研究,設(shè)置不同預(yù)冷終溫(2、4、6 ℃)和終壓(800~1 000、1 000~1 200、1 200~1 500 Pa)對(duì)鮮枸杞進(jìn)行真空預(yù)冷處理,通過(guò)比較真空預(yù)過(guò)程中鮮枸杞失重率、蠟質(zhì)層和呼吸強(qiáng)度指標(biāo)來(lái)確定較優(yōu)工藝參數(shù);之后將真空預(yù)冷較優(yōu)工藝參數(shù)下的鮮枸杞用微孔膜包裝后在(-1±0.5 ℃)的冷庫(kù)中進(jìn)行貯藏,以微孔膜包裝處理和未經(jīng)任何處理的鮮枸杞作為對(duì)照組,比較貯藏過(guò)程中硬度、可溶性固形物(Total Soluble Solids,TSS)、色差、呼吸強(qiáng)度、過(guò)氧化氫酶(Catalase,CAT)活性指標(biāo)來(lái)綜合分析不同處理對(duì)鮮枸杞貯藏品質(zhì)的影響。結(jié)果表明:終溫6 ℃和終壓800~1 000 Pa對(duì)鮮枸杞失重率影響較??;終溫6 ℃和終壓1 200~1 500 Pa對(duì)鮮枸杞內(nèi)表皮結(jié)構(gòu)損傷較小;終溫2 ℃和終壓800~1 000 Pa鮮枸杞呼吸強(qiáng)度最低,綜合考慮3個(gè)指標(biāo),終溫6 ℃,終壓1 200~1 500 Pa為鮮枸杞真空預(yù)冷較優(yōu)工藝參數(shù);在貯藏期間,真空預(yù)冷結(jié)合微孔膜包裝與其他兩組相比較,可有效延緩鮮枸杞硬度和TSS下降,降低呼吸強(qiáng)度,抑制色差變化和CAT活性的下降(<0.05)。該研究為鮮枸杞貯藏保鮮提供新方法。
貯藏;品質(zhì)控制;真空預(yù)冷;微孔膜包裝;鮮枸杞;
真空預(yù)冷可以快速除去果蔬采后田間熱,使其中心溫度降至接近儲(chǔ)藏所需溫度,有效延長(zhǎng)產(chǎn)品貨架期,是近年來(lái)使用比較廣泛的一種保鮮技術(shù)。在較佳時(shí)間進(jìn)行預(yù)冷不僅可以延長(zhǎng)采摘后果蔬的品質(zhì)和新鮮度,而且還會(huì)保證果蔬的營(yíng)養(yǎng),減少采后損失,起到一定的環(huán)保作用[1]。為獲得高品質(zhì)的果蔬,真空預(yù)冷已作為果蔬采摘后的第一道工序[2]。與其他冷卻方式相比,真空預(yù)冷具有降溫速度快、冷卻均勻和清潔等特點(diǎn)[3]。
國(guó)內(nèi)外專家學(xué)者在果蔬的真空預(yù)冷對(duì)品質(zhì)方面的影響做了很多研究。Kongwong 等[4]發(fā)現(xiàn)真空預(yù)冷可有效延緩抗壞血酸和總?cè)~綠素含量的損失,抗氧化活性和酚類物質(zhì)的含量都得到了較好的保留,是延長(zhǎng)小萵苣貨架期和品質(zhì)較有效的方式。Tian等[5]發(fā)現(xiàn)真空預(yù)冷可維持西蘭花的葉綠素、維生素C和還原糖水平,改善西蘭花的感官品質(zhì)。張曉娟等[6]研究真空預(yù)冷對(duì)采后毛豆貯藏特性的影響,發(fā)現(xiàn)真空預(yù)冷可有效保持貯藏過(guò)程中毛豆的營(yíng)養(yǎng)品質(zhì)以及延緩其呼吸速率和硬度的變化,延長(zhǎng)貨架期。安容慧等[7]探究真空預(yù)冷及不同流通方式對(duì)上海青貨架期品質(zhì)的影響,發(fā)現(xiàn)真空預(yù)冷及低溫流通可以更有效地保持上海青葉綠素、抗壞血酸、可滴定酸和葉酸等含量在較高水平,抑制亞硝酸鹽的積累,提高貯藏品質(zhì),延長(zhǎng)貨架期。田全明等[8]研究真空預(yù)冷結(jié)合氮?dú)馓幚韺?duì)新疆小白杏采后品質(zhì)的影響,發(fā)現(xiàn)真空預(yù)冷結(jié)合N2熏蒸能夠延緩小白杏采后果實(shí)硬度的下降,減少果實(shí)的腐爛率和細(xì)胞膜透性的上升。
新鮮果蔬采后的呼吸作用、蒸騰作用造成過(guò)早熟化、組織軟化和腐爛,嚴(yán)重影響其感官價(jià)值、營(yíng)養(yǎng)價(jià)值和商品價(jià)值。采后果蔬的呼吸速率比較高,對(duì)于特定的果蔬氣調(diào)包裝是有效的貯藏保鮮技術(shù)之一,而市場(chǎng)現(xiàn)有的氣調(diào)包裝薄膜的透氣率無(wú)法滿足呼吸躍變型果蔬的呼吸要求,容易造成膜內(nèi)氧氣濃度過(guò)低和二氧化碳濃度過(guò)高而造成果蔬無(wú)氧呼吸和二氧化碳中毒,最終損失果蔬的營(yíng)養(yǎng)價(jià)值[9]。微孔膜是指在普通塑料膜上進(jìn)行物理打孔或運(yùn)用特殊的化學(xué)工藝在膜上形成微孔的一種包裝薄膜材料,通??讖讲淮笥?00m[10-11]。它具有高透氣性和較好的保濕性能,設(shè)計(jì)好孔徑規(guī)格可以滿足高呼吸果蔬的貯藏需求。微孔膜包裝在雙孢蘑菇[12]、鴨梨[13]、枇杷[14]等果蔬保鮮領(lǐng)域已取得了良好的保鮮效果,而且成本低易制作,具有很好的推廣前景。
鮮枸杞為呼吸躍變型果實(shí),呼吸率高,采后生理活動(dòng)十分活躍,后熟中果柄易脫落,使枸杞汁液流出,易發(fā)生霉菌污染,在常溫條件下,保鮮期2~3 d,且損果率很高[15-16]。鮮枸杞保鮮加工中有效的預(yù)冷、貯藏包裝技術(shù)的缺乏嚴(yán)重影響鮮枸杞產(chǎn)業(yè)的快速發(fā)展[17]。目前,鮮枸杞貯藏保鮮方式多采用冷庫(kù)預(yù)冷、低溫貯藏、殼聚糖涂膜[18]、冰溫結(jié)合塑料盒包裝[19]、酸性氧化電位水結(jié)合氣調(diào)包裝[20]等保鮮方法,但是保鮮效果沒(méi)有達(dá)到商業(yè)保鮮要求。目前已有學(xué)者和企業(yè)將真空預(yù)冷技術(shù)應(yīng)用到鮮枸杞預(yù)冷和生產(chǎn)中來(lái)[21],同時(shí)取得了明顯的預(yù)冷效果,但是缺乏鮮枸杞真空預(yù)冷技術(shù)的基礎(chǔ)研究,真空預(yù)冷對(duì)鮮枸杞貯藏特性的作用機(jī)理不明確,在生產(chǎn)過(guò)程中參照蔬菜真空預(yù)冷工藝技術(shù)導(dǎo)致鮮枸杞預(yù)冷效果不穩(wěn)定,嚴(yán)重影響貯藏保鮮效果和貨架期。微孔膜保鮮是一種目前較為理想保鮮方法,但中國(guó)有關(guān)微孔膜包裝對(duì)鮮枸杞保鮮方面的研究尚未見(jiàn)報(bào)道。針對(duì)鮮枸杞真空預(yù)冷對(duì)品質(zhì)影響機(jī)理不明確、貯藏中呼吸的調(diào)控問(wèn)題,本研究采用真空預(yù)冷結(jié)合微孔膜包裝,探討不同預(yù)冷條件對(duì)鮮枸杞失重率、蠟質(zhì)層、呼吸強(qiáng)度的影響以及貯藏期間真空預(yù)冷結(jié)合微孔膜包裝對(duì)鮮枸杞硬度、可溶性固形物(Total Soluble Solids,TSS)、色差、呼吸強(qiáng)度、過(guò)氧化氫酶(Catalase,CAT)等理化指標(biāo)的影響,以未經(jīng)任何處理和微孔膜包裝處理的鮮枸杞作為對(duì)照,研究適用于鮮枸杞真空預(yù)冷結(jié)合微孔膜貯藏保鮮的生產(chǎn)工藝,為鮮枸杞貯藏保鮮技術(shù)提供新方法。
帶柄鮮枸杞采自寧夏中寧縣早康枸杞股份有限公司種植基地。挑選無(wú)病蟲(chóng)害,大小均勻,無(wú)機(jī)械損傷,八成熟,果柄無(wú)脫落的果實(shí)作為試驗(yàn)材料。采摘后運(yùn)回實(shí)驗(yàn)室立即進(jìn)行真空預(yù)冷試驗(yàn)。
微孔膜:鮮枸杞在(-1±0.5) ℃貯藏條件下呼吸強(qiáng)度(以CO2計(jì),下同)為152.10 mg/(kg·h),前期試驗(yàn)確定鮮枸杞在相同貯藏溫度氣調(diào)貯藏的較佳氣體比例:8%CO2,15%O2,77%N2。委托Amcor(安姆科軟包裝有限公司)根據(jù)鮮枸杞貯藏期間的較佳氣體比例以及呼吸速率采用專業(yè)設(shè)備制備微孔膜,材質(zhì)為20 cm×25 cm的PE保鮮膜(50m厚),孔徑約100m,孔數(shù)為6個(gè),O2滲透系數(shù)為1.25×10-12(mol·m)/(m2·h·kPa),CO2滲透系數(shù)為7.47×10-12(mol·m)/(m2·h·kPa)。
過(guò)氧化氫酶(CAT)活性檢測(cè)試劑盒,北京索萊寶生物技術(shù)有限公司。
TD-45數(shù)顯糖度計(jì),浙江托普云農(nóng)科技股份有限公司;STEPS果實(shí)硬度計(jì),北京博普特科技有限公司;QCSC113977冷庫(kù),東莞市科美斯科技實(shí)業(yè)有限公司;JY10002電子天平,上海舜宇恒平科學(xué)儀器有限公司;T6 紫色分光光度計(jì),上海嘉標(biāo)測(cè)試儀器有限公司;5804R離心機(jī),湘儀離心機(jī)儀器有限公司;CM-2300色差計(jì),日本柯尼卡美能達(dá)控股公司;XZD-300移動(dòng)式真空預(yù)冷機(jī),東莞市科美斯科技實(shí)業(yè)有限公司;11 000數(shù)字探針溫度計(jì),美國(guó)DELTATRAK公司;3051H 果蔬呼吸測(cè)定儀,浙江托普云農(nóng)科技股份有限公司;光學(xué)顯微鏡,上海蔡康光學(xué)儀器有限公司。
1.3.1 真空預(yù)冷階段
挑選無(wú)病蟲(chóng)害,大小均勻,無(wú)機(jī)械損傷,八成熟,果柄無(wú)脫落的果實(shí)分為7組,每組質(zhì)量為200 g。6組真空預(yù)冷組分別為:終溫(2、4、6 ℃)和終壓(800~1 000、1 000~1 200、1 200~1 500 Pa),對(duì)照組不進(jìn)行預(yù)冷處理。依次將6組置于真空室中進(jìn)行真空預(yù)冷處理,將熱電偶布置在帶柄鮮枸杞表皮、中心和果柄處,并用數(shù)據(jù)采集儀實(shí)時(shí)記錄真空預(yù)冷過(guò)程中枸杞表皮、中心和果柄處的溫度變化;預(yù)冷結(jié)束后,分別測(cè)定其失重率,蠟質(zhì)層結(jié)構(gòu)和呼吸強(qiáng)度,通過(guò)比較真空預(yù)冷過(guò)程中鮮枸杞失重率、蠟質(zhì)層和呼吸強(qiáng)度指標(biāo)來(lái)確定較優(yōu)工藝參數(shù)。由于果蔬蠟質(zhì)層是存在于果蔬最外層的、與外界環(huán)境直接接觸的一層保護(hù)屏障,對(duì)果蔬內(nèi)部生理和抵御外部環(huán)境的傷害有重要意義[22]。蠟質(zhì)層損傷會(huì)導(dǎo)致枸杞被病菌侵入和某些昆蟲(chóng)蠶食,所以3個(gè)指標(biāo)對(duì)枸杞影響程度排序由大到小為:蠟質(zhì)層、呼吸強(qiáng)度、失重率。
1.3.2 貯藏階段
真空預(yù)冷階段結(jié)束后,將較優(yōu)工藝參數(shù)下真空預(yù)冷過(guò)的鮮枸杞經(jīng)微孔膜包裝后在(-1±0.5) ℃的冷庫(kù)中進(jìn)行貯藏。再次挑選枸杞果實(shí),分為2組,每組200 g,一組直接用微孔膜包裝處理,另一組不做任何處理,置于相同貯藏條件的冷庫(kù)中貯藏,比較貯藏過(guò)程中硬度、可溶性固形物、色差、呼吸強(qiáng)度、CAT活性指標(biāo)來(lái)綜合分析不同處理對(duì)鮮枸杞貯藏特性的影響。貯藏期間每4 d測(cè)定生理相關(guān)指標(biāo)。
失重率:采用稱量法測(cè)定,鮮枸杞真空預(yù)冷前初始質(zhì)量1(g),真空預(yù)冷后測(cè)定質(zhì)量2(g),試驗(yàn)重復(fù)3次。失重率公式如下
蠟質(zhì)層:采用光學(xué)顯微鏡進(jìn)行觀察,參照羅文煌[23]的方法。用刀片將樣品的側(cè)面切成平面,將表皮撕下,放于載玻片上,用水進(jìn)行封片,切片在40倍的光學(xué)顯微鏡下觀察細(xì)胞及組織的整體形態(tài)和結(jié)構(gòu)的變化,并進(jìn)行拍照記錄。
硬度:采用硬度計(jì)(探頭直徑1.1 mm)測(cè)定,選取枸杞赤道面依次均勻用力,將硬度計(jì)探頭垂直壓入枸杞體內(nèi)3 mm,此時(shí)記下讀數(shù),每組處理隨機(jī)選取6個(gè)樣品,取其平均值即為鮮枸杞的硬度。
可溶性固形物:使用手持式折光儀測(cè)定枸杞可溶性固形物含量。鮮枸杞擠出果汁,倒入折光儀中,結(jié)果以%表示,重復(fù)6次,結(jié)果取平均值。
色差:采用色差計(jì)進(jìn)行測(cè)定,在每盒樣品中隨機(jī)選取枸杞果實(shí),色差計(jì)經(jīng)白板校準(zhǔn)后,測(cè)量孔完全覆蓋枸杞果實(shí)赤道線部位進(jìn)行測(cè)定。每組樣品進(jìn)行8次重復(fù)。測(cè)試采用國(guó)際標(biāo)準(zhǔn)CIE-***顏色系統(tǒng),總色差計(jì)算公式如下
式中000為標(biāo)準(zhǔn)樣品值。L為亮度;a為紅度;b為黃度。
呼吸強(qiáng)度:預(yù)冷、貯藏結(jié)束后立刻采用果蔬呼吸測(cè)定儀測(cè)定,每組樣品取6組數(shù)據(jù),求取平均值。計(jì)算公式為
過(guò)氧化氫酶(CAT)活性:稱取約0.1 g枸杞組織放入研缽,加入1 mL提取液進(jìn)行研碎并置于離心管。8 000 r/min 4 ℃離心 10 min,取上清液待測(cè)。采用北京索萊寶生物技術(shù)有限公司生產(chǎn)的試劑盒產(chǎn)品測(cè)定。以每分鐘240 nm處吸光值變化0.01 nm為一個(gè)酶活力單位(U),重復(fù)3次。
采用IBM SPSS Statistics 23進(jìn)行數(shù)據(jù)差異顯著性分析,采用Origin 2018和excel 2010進(jìn)行繪圖。
2.1.1 鮮枸杞在真空預(yù)冷過(guò)程中溫度和艙內(nèi)壓力變化
圖1 a~f分別是不同預(yù)冷條件下鮮枸杞表皮溫度、中心溫度、果柄溫度以及艙內(nèi)壓力的變化情況。由圖1可知,在終溫2、4、6 ℃條件下,艙內(nèi)壓力先保持不變,之后急速下降,最終分別在400、800、900 Pa結(jié)束。同時(shí),鮮枸杞的表皮溫度、中心溫度和果柄溫度均呈下降趨勢(shì),且預(yù)冷終溫越低,鮮枸杞所需的預(yù)冷時(shí)間越長(zhǎng);在3個(gè)終壓條件下,艙內(nèi)壓力在0~180 s內(nèi)保持在20.4 kPa不變,之后急速下降,最終保持恒定。鮮枸杞的表皮溫度、中心溫度、果柄溫度均呈下降趨勢(shì),且在不同預(yù)冷終壓下,均為果柄溫度下降最快。這由于是鮮枸杞表面覆蓋有蠟質(zhì)層,阻礙了果實(shí)內(nèi)部水分向外蒸發(fā),而果柄處有氣孔,在真空預(yù)冷過(guò)程中內(nèi)部水分從果柄處蒸發(fā),不斷吸收熱量,從而導(dǎo)致果柄處溫度快速下降[24-25]。預(yù)冷壓力為800~1 000、1 000~1 200、1 200~1 500 Pa時(shí),鮮枸杞果柄處由初始溫度分別降到3.6 、5.4 、6.0 ℃,說(shuō)明在相同的時(shí)間里預(yù)冷壓力越低,預(yù)冷結(jié)束時(shí)鮮枸杞的溫度越低。
真空預(yù)冷有冷卻均勻的優(yōu)點(diǎn),但在實(shí)際降溫過(guò)程中各部分仍存在一定的溫差,這可能是由于枸杞果實(shí)表皮覆蓋有一層致密的蠟質(zhì)層,嚴(yán)重阻礙果實(shí)內(nèi)部水分的蒸發(fā)[26],所以,冷卻過(guò)程中各部位有一定的溫差。
2.1.2 不同終溫和終壓對(duì)預(yù)冷前后鮮枸杞失重率的影響
鮮枸杞為呼吸躍變型果實(shí),含水率高,呼吸作用強(qiáng),極易腐敗變質(zhì),果蔬呼吸代謝導(dǎo)致其失水,因此失重率的變化是衡量果蔬新鮮程度的主要指標(biāo)[27]。在真空預(yù)冷過(guò)程中,枸杞中的水分在真空室中蒸發(fā),帶走枸杞中的熱量,導(dǎo)致枸杞溫度下降,從而達(dá)到真空預(yù)冷的目的。表1為不同預(yù)冷條件下對(duì)枸杞失重率的影響。在終溫2、4、6 ℃和終壓800~1 000、1 000~1 200、1 200~1 500 Pa下,失重率分別為0.85%,0.63%,0.54%,0.67%,0.70%,0.81%,差異顯著(<0.05)。由于終溫2 ℃的預(yù)冷時(shí)間相對(duì)4 ℃和6 ℃的預(yù)冷時(shí)間長(zhǎng),所以,枸杞在終溫2 ℃的預(yù)冷條件下失重較嚴(yán)重,故預(yù)冷終溫越低,枸杞失重越嚴(yán)重,并且不合理的預(yù)冷終溫設(shè)置也會(huì)影響到真空預(yù)冷處理后的產(chǎn)品品質(zhì);過(guò)低的終溫使得產(chǎn)品過(guò)度失重,并且有可能產(chǎn)生凍害;過(guò)高的終溫設(shè)置達(dá)不到冷卻要求,貯藏過(guò)程中的枸杞呼吸作用依舊活躍[28]。此外,隨著預(yù)冷壓力的升高,枸杞的失重率增加,由此可見(jiàn),預(yù)冷壓力越高,枸杞失重率大。
表1 鮮枸杞在不同預(yù)冷條件下的失重率和呼吸強(qiáng)度
注:不同小字母(a, b, c)表示同一指標(biāo)差異顯著,(<0.05)。
Note: Different small letters(a, b, c) indicate significant differences in the same index(<0.05).
2.1.3 不同終溫和終壓對(duì)預(yù)冷前后鮮枸杞呼吸強(qiáng)度的影響
由表1可知,在終溫2,4,6 ℃、終壓800~1 000,1 000~1 200,1 200~1 500 Pa以及未預(yù)冷情況下,鮮枸杞的呼吸強(qiáng)度分別為54.50、63.56、76.67、62.63、70.82、71.09、152.10 mg/(kg·h),其中,3組終溫預(yù)冷組枸杞的呼吸強(qiáng)度明顯要低于未預(yù)冷枸杞的呼吸強(qiáng)度(<0.05),且呼吸強(qiáng)度隨預(yù)冷終溫的降低而減弱。而對(duì)于3組終壓預(yù)冷組,終壓800~1 000 Pa時(shí)枸杞的呼吸強(qiáng)度最低,而未預(yù)冷枸杞的呼吸強(qiáng)度最高,且未預(yù)冷枸杞的呼吸強(qiáng)度明顯高于真空預(yù)冷枸杞的呼吸強(qiáng)度(<0.05)。由此可見(jiàn),預(yù)冷壓力越低,枸杞的呼吸強(qiáng)度越低,在草莓真空預(yù)冷處理中也發(fā)現(xiàn)了同樣的結(jié)果[29]。
2.1.4 不同終溫和終壓對(duì)預(yù)冷前后鮮枸杞蠟質(zhì)層的影響
不同預(yù)冷條件下枸杞內(nèi)表皮的微觀結(jié)構(gòu)如圖2所示,可以看出真空預(yù)冷對(duì)枸杞內(nèi)表皮組織結(jié)構(gòu)有較大的影響,未真空預(yù)冷的枸杞的表皮細(xì)胞間的輪廓比較分明,層次清晰,色素顆粒排列密集,表皮整齊緊湊,細(xì)胞形態(tài)完整;終溫2 ℃和4 ℃條件下表皮細(xì)胞間層次比較清晰,但內(nèi)部色素顆粒排列稀疏且有外滲現(xiàn)象,細(xì)胞稍有破損,終溫6 ℃條件下,枸杞表皮細(xì)胞間層次比較清晰,內(nèi)部無(wú)色素顆粒外滲,細(xì)胞完整性保持得較好,說(shuō)明預(yù)冷終溫越高對(duì)枸杞蠟質(zhì)層損傷越小;在終壓1 200~1 500 Pa的條件下,枸杞的表皮細(xì)胞內(nèi)部無(wú)色素顆粒外滲的現(xiàn)象,細(xì)胞形態(tài)比較完整,而在其他兩個(gè)終壓條件下均出現(xiàn)了枸杞的表皮輪廓比較模糊,內(nèi)部的色素顆粒有外滲的現(xiàn)象,細(xì)胞結(jié)構(gòu)已有受損。
真空預(yù)冷過(guò)程中試驗(yàn)結(jié)果表明:終溫6 ℃和終壓800~1 000 Pa對(duì)枸杞失重率影響比較?。唤K溫6 ℃和終壓1 200~1 500 Pa對(duì)枸杞內(nèi)表皮結(jié)構(gòu)損傷較??;終溫2 ℃和終壓800~1 000 Pa枸杞呼吸強(qiáng)度較低。由圖1可知,預(yù)冷結(jié)束時(shí),終壓1 200~1 500 Pa對(duì)應(yīng)的最低溫度為6.0 ℃,由于3指標(biāo)對(duì)枸杞的影響程度大小排序?yàn)椋合炠|(zhì)層、呼吸強(qiáng)度、失重率,且不同預(yù)冷條件之間的呼吸強(qiáng)度差異不明顯(0.05)。綜合來(lái)看,預(yù)冷終壓1 200~1 500 Pa,終溫6 ℃為鮮枸杞真空預(yù)冷較優(yōu)工藝參數(shù)。
2.2.1 不同處理對(duì)鮮枸杞貯藏過(guò)程中硬度的影響
果蔬的硬度是果實(shí)品質(zhì)的重要指標(biāo)[30]。硬度反映出果實(shí)的質(zhì)構(gòu)特性,與細(xì)胞壁成分和細(xì)胞壁降解酶活性有關(guān)[31]。由于鮮枸杞自身含水率較高,采摘后極易失水,引起組織萎蔫,造成硬度下降。由圖3a可以看出,各組枸杞硬度隨貯藏時(shí)間的延長(zhǎng)呈下降趨勢(shì)。0~8 d,各組枸杞硬度之間無(wú)明顯差異(>0.05),但8 d以后,對(duì)照組枸杞硬度始終低于其他兩組(0.05),說(shuō)明真空預(yù)冷可以有效抑制枸杞軟化。24 d開(kāi)始,真空預(yù)冷結(jié)合微孔膜包裝組的枸杞硬度較其他兩組下降緩慢(0.05),這可能是因?yàn)殡S著貯藏期延長(zhǎng),預(yù)冷導(dǎo)致呼吸速率降低,而呼吸速率的降低會(huì)進(jìn)一步使代謝速率降低,從而抑制枸杞硬度的變化。
2.2.2 不同處理對(duì)鮮枸杞貯藏過(guò)程中可溶性固形物的影響
枸杞鮮果中的可溶性固形物含量高低可作為評(píng)價(jià)其品質(zhì)及保鮮效果的指標(biāo)之一[32]。由圖3b可以看出,各組枸杞可溶性固形物含量隨著貯藏時(shí)間的延長(zhǎng)在19%~25%之間呈現(xiàn)動(dòng)態(tài)變化,貯藏0~12 d,各組枸杞可溶性固形物含量緩慢上升,這可能是貯藏前期枸杞中的淀粉酶將淀粉分解成為可溶性糖,使其含量緩慢上升。貯藏12~16 d時(shí),可能是由于微生物的大量繁殖而消耗枸杞果實(shí)中的糖類等物質(zhì),降低了枸杞中TSS含量[33]。在貯藏16 d以后,各組枸杞TSS含量又開(kāi)始迅速上升。在貯藏第8天后,真空預(yù)冷結(jié)合微孔膜包裝組的枸杞可溶性固形物含量明顯高于對(duì)照組(0.05),說(shuō)明真空預(yù)冷可以有效延緩貯藏期枸杞TSS含量的下降。
2.2.3 不同處理對(duì)鮮枸杞貯藏過(guò)程中色差的影響
顏色是評(píng)價(jià)果蔬感官品質(zhì)的一項(xiàng)重要指標(biāo)。色澤是影響果蔬感官品質(zhì)和貨架期的重要因素[34]??赏ㄟ^(guò)色差(Δ)表示其顏色變化,色差(Δ)值越大,顏色變化越大[35]。圖3c為貯藏期內(nèi),各組枸杞色差(Δ)的變化情況。前4 d,真空預(yù)冷結(jié)合微孔膜包裝組的鮮枸杞色差與對(duì)照組和微孔膜包裝組枸杞的色差無(wú)顯著差異(>0.05),這可能是由于初期真空預(yù)冷作用造成枸杞中色素物質(zhì)有一定的損失。在12~16 d,3個(gè)處理都呈下降趨勢(shì),這可能是鮮枸杞在貯藏過(guò)程中成熟度上升,使色素積累,而后期呼吸作用的加強(qiáng)又使色素分解。20 d之后,枸杞色差雖有所波動(dòng),但整體色差真空預(yù)冷結(jié)合微孔膜包裝組基本在對(duì)照組之下(0.05),這可能是真空預(yù)冷減弱了枸杞的呼吸作用,從而降低枸杞中色素的分解速度,說(shuō)明真空預(yù)冷處理對(duì)貯藏期枸杞色差變化有一定的緩解作用。
2.2.4 不同處理對(duì)鮮枸杞貯藏過(guò)程中呼吸強(qiáng)度的影響
采后果蔬的呼吸強(qiáng)度是衡量其耐貯性的重要指標(biāo)。呼吸強(qiáng)度越高,其營(yíng)養(yǎng)物質(zhì)消耗越快,耐貯性越差[36]。由圖 3d可知,從貯藏初期至末期,各組枸杞的呼吸強(qiáng)度整體上呈先急劇下降后上升然后又下降的趨勢(shì)。對(duì)照組呼吸強(qiáng)度在第8天達(dá)到峰值146.70 mg/(kg·h),隨后呈現(xiàn)下降趨勢(shì),而真空預(yù)冷結(jié)合微孔膜包裝組和微孔膜包裝組在第12天時(shí)才出現(xiàn)峰值分別為97.37和115.53 mg/(kg·h),隨后也呈下降趨勢(shì),真空預(yù)冷結(jié)合微孔膜包裝和微孔膜包裝處理都有效延緩了枸杞呼吸峰的到來(lái)。在整個(gè)貯藏過(guò)程,真空預(yù)冷結(jié)合微孔膜包裝組枸杞呼吸強(qiáng)度始終低于微孔膜包裝組和對(duì)照組(<0.05),說(shuō)明真空預(yù)冷可以通過(guò)迅速消除枸杞的田間熱而降低其呼吸強(qiáng)度。
2.2.5 不同處理對(duì)鮮枸杞貯藏過(guò)程中過(guò)氧化氫酶活性的影響
采后果蔬在成熟衰老過(guò)程中,活性氧代謝失調(diào),造成活性氧自由基的積累,過(guò)氧化氫酶(Catalase,CAT)是活性氧清除劑,能有效阻止活性氧的積累,減少自由基對(duì)果蔬組織的傷害,延緩果蔬衰老[37-38]。圖3e為枸杞在貯藏期間CAT活性的變化情況。前8 d,各組的枸杞CAT活性均呈上升趨勢(shì),之后下降;20~24 d,各組枸杞的CAT活性再次上升然后緩慢下降。在整個(gè)貯藏期間,真空預(yù)冷結(jié)合微孔膜包裝組枸杞的CAT活性始終高于其他兩組(<0.05),真空預(yù)冷結(jié)合微孔膜包裝組、微孔膜組和對(duì)照組枸杞CAT活性由最初的65.68 U/(g·min),貯藏32d分別下降到55.89、44.68、38.96 U/(g·min),說(shuō)明真空預(yù)冷處理可以有效抑制CAT活性下降。與文獻(xiàn)[39]中得出的結(jié)論相似。
1)鮮枸杞分別經(jīng)預(yù)冷終溫2、4、6 ℃和預(yù)冷終壓800~1 000、1 000~1 200、1 200~1 500 Pa的真空預(yù)冷,結(jié)果表明:終溫6℃和終壓800~1 000 Pa對(duì)枸杞失重率影響比較小;終溫6 ℃和終壓1 200~1 500 Pa對(duì)枸杞內(nèi)表皮結(jié)構(gòu)損傷較小;終溫2 ℃和終壓800~1 000 Pa枸杞呼吸強(qiáng)度較低。綜合考慮3個(gè)指標(biāo),終壓1 200~1 500 Pa,終溫6 ℃為鮮枸杞真空預(yù)冷較優(yōu)工藝參數(shù),其中蠟質(zhì)層的損傷程度較小,失重率為0.81%,呼吸強(qiáng)度71.09 mg/(kg·h)。
2)在較優(yōu)預(yù)冷條件下處理后進(jìn)行低溫(-1±0.5) ℃貯藏期間,與無(wú)處理和微孔膜包裝處理相比,真空預(yù)冷結(jié)合微孔膜包裝可以更有效地延緩枸杞硬度和TSS下降,降低呼吸強(qiáng)度,抑制色差的變化和CAT活性的下降(<0.05)。在上述較優(yōu)工藝參數(shù)下真空預(yù)冷處理的鮮枸杞再結(jié)合微孔膜包裝技術(shù)對(duì)后期的貯藏品質(zhì)具有積極的作用。
綜上所述,在適宜的預(yù)冷參數(shù)下進(jìn)行真空預(yù)冷再結(jié)合微孔膜包裝技術(shù)并儲(chǔ)藏在一定的低溫條件下可使鮮枸杞保持較好的貯藏品質(zhì),提高商用價(jià)值。
[1] 梁豪,田懷文,楊文哲. 真空預(yù)冷技術(shù)及其在果蔬方面的應(yīng)用和發(fā)展前景[J]. 科技創(chuàng)新與生產(chǎn)力,2020(11):75-77.
Liang Hao, Tian Huaiwen, Yang Wenzhe. Vacuum pre-cooling technology and its application and development prospect in fruits and vegetables[J]. Sci-tech Innovation and Productivity, 2020(11): 75-77. (in Chinese with English abstract)
[2] 錢驊,黃曉德,趙伯濤,等. 不同終溫和補(bǔ)水率對(duì)蘆筍真空預(yù)冷及其對(duì)貯藏品質(zhì)的影響[J]. 中國(guó)野生植物資源,2018,37(6):28-31,42.
Qian Hua, Huang Xiaode, Zhao Botao, et al. Effect of terminal temperature and compensated water on vacuum precooling of asparagus and its effect on storage quality[J]. Chinese Wild Plant Resources, 2018, 37(6): 28-31, 42. (in Chinese with English abstract)
[3] 劉寶林,宋曉燕. 食品真空冷卻技術(shù)[M]. 北京:科學(xué)出版社,2016:12-13.
[4] Kongwong P, Boonyakiat D, Poonlarp P. Extending the shelf life and qualities of baby cos lettuce using commercial precooling systems[J]. Postharvest Biology and Technology, 2019, 150(9): 60-70.
[5] Tian D, Fen L, Li J G, et al. Donghong, comparison of different cooling methods for extending shelf life of postharvest broccoli international[J]. Journal Agricultural Biological Engineering, 2016, 9(6): 178-185.
[6] 張曉娟,劉貴珊,余江泳,等. 真空預(yù)冷毛豆參數(shù)優(yōu)化及其對(duì)貯藏特性的影響[J]. 食品與發(fā)酵工業(yè),2020,46(23):156-161.
Zhang Xiaojuan, Liu Guishan, Yu Jiangyong, et al. Parameter optimization and effect on storage property of vacuum precooling soybean[J]. Food and Fermentation Industries, 2020, 46(23): 156-161. (in Chinese with English abstract)
[7] 安容慧,周宏勝,羅淑芬,等. 真空預(yù)冷及不同流通方式對(duì)上海青貨架品質(zhì)的影響[J/OL]. 食品科學(xué),[2021-01-25]. https: //kns. cnki. net/kcms/detail/11. 2206. TS. 20200925. 1342. 010. html
An Ronghui, Zhou Hongsheng, Luo Shufen, et al. Effects of vacuum cooling and different circulation modes on the shelf quality of pakchoi[J/OL]. Food Science. [2021-01-25].. https: //kns. cnki. net/kcms/detail/11. 2206. TS. 20200925. 1342. 010. html(in Chinese with English abstract)
[8] 田全明,王曼,魏佳,等. 真空預(yù)冷結(jié)合氮?dú)馓幚韺?duì)新疆小白杏采后品質(zhì)的影響[J/OL]. 食品與發(fā)酵工業(yè),[2021-01-25]..https: //doi. org/10. 13995/j. cnki. 11-1802/ts. 026222
Tian Quanming, Wang Man, Wei Jia, et al. Vacuum precooling combined with nitrogen treatment on postharvest quality of Xiaobai apricot in Xinjiang[J/OL]. Food and Fermentation Industries. [2021-01-25]..https: //doi. org/10. 13995/j. cnki. 11-1802/ts. 026222(in Chinese with English abstract)
[9] 蔡金龍. 微孔膜氣體擴(kuò)散量及其在氣調(diào)保鮮中應(yīng)用研究[D]. 廣州:華南農(nóng)業(yè)大學(xué),2018.
Cai Jinlong. Study on The Gas Transmission Rate of Micro-perforated Films and Its Application in Modified Atmosphere Packaging[D]. Guangzhou: South China Agricultural University, 2018. (in Chinese with English abstract)
[10] Marcella M, Annalisa L, Vincenzo L, et al. A new approach to predict the mass transport properties of micro-perforated films intended for food packaging applications[J]. Journal of Food Engineering, 2012, 113(1): 41-46.
[11] Brody A L,Zhang H,Han J H. 鮮切果蔬氣調(diào)保鮮包裝技術(shù)[M]. 北京:化工出版社,2016.
[12] 李云云,魏丹,張敏. 微孔膜包裝對(duì)雙孢蘑菇貯藏品質(zhì)的影響[J]. 食品與機(jī)械,2016,7(32):122-126.
Li Yunyun, Wei Dan, Zhang Min. Effect of micro-perforated package on storage quality of agaricus bisporus[J]. Food & Machinery, 2016, 7(32): 122-126. (in Chinese with English abstract)
[13] 紀(jì)淑娟,關(guān)瑩,李家政,等. 微孔保鮮膜對(duì)鴨梨冷藏保鮮效果的影響[J]. 保鮮與加工,2008,8(6):35-38.
Ji Shujuan, Guan Ying, Li Jiazheng, et al. Effect of micro-porous film package on ya pear storage at low temperature[J]. Storage and Process, 2008,8(6): 35-38. (in Chinese with English abstract)
[14] 馬佳佳,隋思瑤,孫靈湘,等. 微孔自發(fā)氣調(diào)包裝對(duì)冠玉枇杷的保鮮效果[J]. 現(xiàn)代食品科技,2020,36(11):137-146.
Ma Jiajia, Sui Siyao, Sun Lingxiang, et al. The preservation effects of microporcous spontaneous controlled atmosphere packaging on guanyu loquat[J]. Modern Food Science and Technology, 2020, 36(11): 137-146. (in Chinese with English abstract)
[15] 袁莉,畢陽(yáng),李永才,等. 采后赤霉素處理對(duì)低溫貯藏期間枸杞鮮果腐爛的抑制和品質(zhì)的影響[J]. 食品與生物技術(shù)學(xué)報(bào),2011,30(5):653-656.
Yuan Li, Bi Yang, Li Yongcai, et al. Effects of postharvest gibberellin treatment on the decay inhibition and quality of fresh fruit ofduring cryopreservation[J]. Journal of Food and Biotechnology, 2011, 30(5): 653-656. (in Chinese with English abstract)
[16] 李乾,劉鳳蘭,邱金玲,等. 不同品種枸杞的低溫貯藏品質(zhì)差異性初步分析[J]. 保鮮與加工,2020,20(6):25-31.
Li Qian, Liu Fenglan, Qiu Jinling, et al. Preliminary analysis on quality difference of different varieties ofunder low temperature storage[J]. Preservation and Processing, 2020, 20(6): 25-31. (in Chinese with English abstract)
[17] 李新,周宜潔,唐瑞芳,等. 貯藏溫度對(duì)鮮枸杞生理指標(biāo)和營(yíng)養(yǎng)品質(zhì)的影響[J]. 食品工業(yè)科技,2018,39(14):264-269,281.
Li Xin, Zhou Yijie, Tang Ruifang, et al. Effects of storage temperature on physiological parameters and nutritional quality of wolfberry fruit[J]. Science and Technology of Food Industry, 2018, 39(14): 264-269,281. (in Chinese with English abstract)
[18] 李曉鶯,何軍,葛玉萍,等. 殼聚糖涂膜對(duì)枸杞鮮果常溫保鮮的研究[J]. 安徽農(nóng)業(yè)科學(xué),2009,37(14):6597-6598.
Li Xiaoying, He Jun, Ge Yuping, et al. Study on the preservation of fresh Chinese wolfberry fruit at room temperature by chitosan coating[J]. Anhui Agricultural Science, 2009, 37(14): 6597-6598. (in Chinese with English abstract)
[19] 魏國(guó)東,申江,賀紅霞,等. 冰溫結(jié)合塑料盒包裝對(duì)枸杞鮮果品質(zhì)的影響[J]. 食品研究與開(kāi)發(fā),2020,41(1):79-84.
Wei Guodong, Shen Jiang, He Hongxia, et al. Effect of ice temperature combined with plastic box packaging on the quality ofFruit[J]. Food Research and Development, 2020, 41(1): 79-84. (in Chinese with English abstract)
[20] 馬麗敏,王兵,劉貴珊,等. 預(yù)處理結(jié)合氣調(diào)包裝對(duì)鮮枸杞貯藏品質(zhì)的影響[J]. 食品與發(fā)酵工業(yè),2021,47(6):195-200.
Ma Linmin, Wang Bing, Liu Guishan, et al. Effect of pretreatment combined with modified atmosphere packaging on the storage quality of fresh[J]. Food and Fermentation Industries, 2021, 47(6): 195 -200. (in Chinese with English abstract)
[21] 鄧改革,康寧波,何建國(guó). 小型蓄冷式帶柄鮮枸杞真空預(yù)冷裝置設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2020,51(4):367-372,381.
Deng Gaige, Kang Ningbo, He Jianguo. Design and experiment of small cooling storage vacuum precooling device for fresh wolfberry with srem[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(4): 367-372, 381. (in Chinese with English abstract)
[22] 姚永花,李富軍,張新華,等. 植物蠟質(zhì)層研究進(jìn)展其在果蔬貯藏中的應(yīng)用[J]. 北方園藝,2011(2):202-205.
Yao Yonghua, Li Fujun, Zhang Xinhua, et al. Progress in research on wax layer and its application in fruit and vegetable storage[J]. Northern Horticulture, 2011(2): 202-205. (in Chinese with English abstract)
[23] 羅文煌. 液氮速凍機(jī)溫度場(chǎng)模擬及枸杞和冬春夏草的液氮速凍研究[D]. 廣州:華南理工大學(xué),2019.
Luo Wenhuang. Simulation of Temperature Field of Liquid Nitrogen Freezer and Study on Liquid Nitrogen Freezing of Wolfberry and Cordyceps[D]. Guangzhou: South China University of Technology, 2019. (in Chinese with English abstract)
[24] 蔣蘭,楊毅. 超聲對(duì)枸杞表皮蠟質(zhì)層的影響[J]. 食品工業(yè),2018,12(39):201-203.
Jiang Lan, Yang Yi. The effect of ultrasound on the wax of the epidermis of wolfberry[J]. Food Industry, 2018, 12(39): 201-203. (in Chinese with English abstract)
[25] 鄭國(guó)琦. 寧夏枸杞果實(shí)結(jié)構(gòu)、發(fā)育與糖分積累關(guān)系研究[D]. 西安:西北大學(xué),2011.
Zheng Guoqi. The Studies on the Relationship Between the Structure, Development and Sugar Accumulation in Fruits of[D]. Xi’an: Northwest University, 2011. (in Chinese with English abstract)
[26] 楊愛(ài)梅,吳古飛,杜靜,等. 枸杞表皮蠟質(zhì)層成分及顯微鏡結(jié)構(gòu)的研究[J]. 食品工業(yè)科技,2011,32(12):112-114.
Yang Aimei, Wu Gufei, Du Jing, et al. Study on component and microscopic structure of wax of Lycium barbarum[J]. Science and Technology of Food Industry, 2011, 32(12): 112-114. (in Chinese with English abstract)
[27] 朱偉軍. 菠菜低溫保鮮關(guān)鍵技術(shù)研究[D]. 上海:上海海洋大學(xué),2013.
Zhu Weijun. Study on The Key Technology of Low Temperature Preservation of Spinach[D]. Shanghai: Shanghai Ocean University, 2013. (in Chinese with English abstract)
[28] 陳穎,劉寶林,宋曉燕. 荷蘭豆真空預(yù)冷及其對(duì)貯藏品質(zhì)的影響[J]. 食品科學(xué),2013,34(6):276-279.
Chen Ying, Liu Baolin, Song Xiaoyan. Effect of vacuum pre-cooling treatment on storage quality of sweet broad pea[J]. Food Science, 2013, 34(6): 276-279. (in Chinese with English abstract)
[29] 吳冬夏,申江,張川,等. 草莓真空預(yù)冷理論分析及實(shí)驗(yàn)研究[J]. 食品工業(yè)科技,2018,39(6):270-274.
Wu Dongxia, Shen Jiang, Zhang Chuan, et al. Theoretical analysis and experimental study on strawberry vacuum pre-cooling[J]. Science and Technology of Food Industry, 2018, 39(6): 270-274. (in Chinese with English abstract)
[30] 王青,陶樂(lè)仁,周小輝. 真空預(yù)冷條件下相同終壓不同終溫對(duì)青椒貯藏品質(zhì)的影響[J]. 食品與發(fā)酵科技,2019,55(3):24-28.
Wang Qing, Tao Leren, Zhou Xiaohui. Effect of same final pressure to different final temperature on the storage quality of green pepper by using vacuum precooling[J]. Food and Fermentation Science and Technology, 2019, 55(3): 24-28. (in Chinese with English abstract)
[31] 李歡. 棗果實(shí)成熟軟化的細(xì)胞壁物質(zhì)代謝及其基因表達(dá)研究[D]. 楊凌:西北農(nóng)林科技大學(xué),2017.
Li Huan. Study on Cell Wall Material Metabolism and Gene Expression During Ripening and Softening of Jujube Fruit[D]. Yangling: Northwest A&F University, 2017. (in Chinese with English abstract)
[32] 卜寧霞,徐昊,趙宇慧,等. 不同成熟度枸杞采后品質(zhì)及生理變化研究[J]. 保鮮與加工,2019,19(1):1-8.
Bu Ningxia, Xu Hao, Zhao Yuhui, et al. Study on postharvest quality and physiological changes ofwith different maturities[J]. Preservation and Processing, 2019, 19(1): 1-8. (in Chinese with English abstract)
[33] 候田瑩,郁志芳,章泳,等. 不同貯藏條件下枸杞頭生理特性變化的研究[J]. 食品科學(xué),2008,29(10):593-597.
Hou Tianying, Yu Zhifang, Zhang Yong, et al. Physiological changes ofmill under different storage conditions[J]. Food Science, 2008, 29(10): 593-597. (in Chinese with English abstract)
[34] 史君彥,左進(jìn)華,高麗樸,等. 納米膜包裝對(duì)菠菜采后貯藏品質(zhì)的影響[J]. 北方園藝,2017,41(23):181-186.
Shi Junyan, Zuo Jinhua, Gao Lipu, et al. Effect of nanofilm packaging on postharveld storage quality of spinach[J]. Northern Horticulture, 2017, 41(23): 181-186. (in Chinese with English abstract)
[35] 楊光,王丹丹,李琴,等. 不同貯藏溫度對(duì)雷竹筍品質(zhì)的影響[J]. 食品與發(fā)酵工業(yè),2017,43(5):233-239.
Yang Guang, Wang Dandan, Li Qin, et al. Different storage temperature on the quality of[J]. Food and Fermentation Industry, 2017, 43(5): 233-239. (in Chinese with English abstract)
[36] 趙維琦,孟贊,董斌,等. 采用真空預(yù)冷處理提升西蘭花貯藏品質(zhì)[J]. 食品與發(fā)酵工業(yè),2019,45(19):213-218.
Zhao Weiqi, Meng Zan, Dong Bin, et al. Effcets of vacuum precooling treatment on preservation quality of baroccoli[J]. Food and Fermentation Industry, 2019, 45(19): 213-218. (in Chinese with English abstract)
[37] 楊濤,郜海燕,張潤(rùn)光,等. 加壓氮?dú)鈱?duì)草莓采后生理及貯藏品質(zhì)的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(15):282-290.
Yang Tao, Gao Haiyan, Zhang Runguang, et al. Effects of pressurized nitrogen on strawberry postharvest physiology and storage quality[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(15): 282-290. (in Chinese with English abstract)
[38] 魏云瀟,葉興乾. 果蔬采后成熟衰老酶與保護(hù)酶類系統(tǒng)的研究進(jìn)展[J]. 食品工業(yè)科技,2009,30(12):427-431.
Wei Yunxiao, Ye Xingqian. Advance in enzymes about senescence and antioxidase of fruit and vegetable[J]. Science and Technology of Food Industry, 2009, 30(12): 427-431. (in Chinese with English abstract)
[39] He S Y, Zhang G C, Yu Y Q, et al. Effects of vacuum cooling on the enzymatic antioxidant system of cherry and inhibition of surface-borne pathogens[J]. International Journal of Refrigeration, 2013, 36(8), 2387-2394.
Storage quality of freshby vacuum precooling and microporous membrane packaging
Lu Ling, Kang Ningbo※, Liu Guishan, He Xiaoguang, Li Juan
(,,750021,)
Fresh(wolfberry) is one of the most popular medicinal and food supplements in China. The favorite taste and rich nutrients substances have drawn much more attention, with emphasis on a wide range of health benefits in recent years. Nevertheless, the postharvest freshgenerally presents high respiratory climacteric intensity and very active physiological responses. Specifically, the fruit stalk is easy to fall off during ripening, which makes the juice offlow out and prone to mold pollution. As such, the preservation period of postharvest fresh fruit is only 2-3 days under normal temperature, indicating a very high occurrence of damage rate. Therefore, a great challenge still remains on the preservation of freshfruit. Fortunately, vacuum precooling can quickly eliminate the field heat of fresh, while reducing the respiratory intensity. Since the precooling is very remarkable, only a few efforts were made on the vacuum precooling in the fresh. Furthermore, the respiration rate is relatively high in the freshafter harvest, which the air permeability of ordinary film cannot meet. It is easy to cause low oxygen concentration and high carbon dioxide concentration in the membrane, resulting in anaerobic respiration and carbon dioxide poisoning of fresh, and ultimately losing the nutritional value of fresh. Therefore, a high permeability film is highly demanding to deal with the breathing problem of fresh. Particularly, microporous film preservation is widely expected to be an ideal preservation way at present. In this study, the storage quality of fresh Lycium barbarum was investigated using vacuum precooling combined with microporous membrane packaging. The weight loss rate, wax layer, and respiration rate of freshwere also compared to determine the optimal process parameters. The freshwith vacuum precooling under the best process parameters was packaged with the microporous membrane, and then kept in cold storage at (-1 ± 0.5) ℃. The freshwith microporous membrane packaging and without any treatment was taken as the control group, and then kept in cold storage under the same storage conditions. The hardness, Total Soluble Solids (TSS), color, respiratory intensity, and Catalase (CAT) activity of freshduring storage were measured to comprehensively analyze the effects of different treatments on the storage quality of fresh fruit. The results showed that the final temperature of 6℃ and final pressure of 800-1 000 Pa posed little effect on the weight loss rate of fresh; the final temperature 6 ℃ and final pressure 1 200-1 500 Pa had little damage to the inner epidermis structure of fresh fruit; the final temperature 2 ℃ and final pressure 800-1 000 Pa presented the lowest respiratory intensity of fresh fruit. Consequently, the final temperature of 6 ℃ and the final pressure of 1 200-1 500 Pa were the optimal process parameters for the vacuum precooling of fresh. At the same time, the vacuum precooling combined with microporous membrane packaging during storage can effectively delay the decline of hardness and TSS, while reducing the respiratory intensity, color change, and CAT activity, compared with the control group. This finding can provide important theoretical support for the production of freshusing vacuum precooling technology.
storage; quality control; vacuum precooling; microporous membrane packaging; fresh
10.11975/j.issn.1002-6819.2021.10.029
TS255.3
A
1002-6819(2021)-10-0245-08
魯玲,康寧波,劉貴珊,等. 真空預(yù)冷結(jié)合微孔膜包裝對(duì)鮮枸杞貯藏品質(zhì)的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(10):245-252.doi:10.11975/j.issn.1002-6819.2021.10.029 http://www.tcsae.org
Lu Ling, Kang Ningbo, Liu Guishan, et al. Storage quality of freshby vacuum precooling and microporous membrane packaging[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(10): 245-252. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.10.029 http://www.tcsae.org
2021-02-07
2021-04-17
寧夏回族自治區(qū)重點(diǎn)研發(fā)計(jì)劃重大專項(xiàng)(2018BCF01001),寧夏回族自治區(qū)重點(diǎn)研發(fā)(引才專項(xiàng))項(xiàng)目(2020BEB04025)
魯玲,研究方向?yàn)檗r(nóng)產(chǎn)品加工與貯藏工程。Email:3339321307@qq.com
康寧波,副教授,研究方向?yàn)檗r(nóng)產(chǎn)品加工與貯藏工程、食品機(jī)械。Email:109438847@qq.com