国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

華北中元古代淺海碳酸鹽沉淀方式變化: 海水氧化還原條件波動的響應(yīng)?*

2021-07-21 12:20:00吳孟亭孫龍飛史曉穎1湯冬杰
古地理學(xué)報 2021年4期
關(guān)鍵詞:疊層石文石薊縣

吳孟亭 方 浩 孫龍飛 史曉穎1, 湯冬杰

1中國地質(zhì)大學(xué)(北京)生物地質(zhì)與環(huán)境地質(zhì)國家重點(diǎn)實(shí)驗室,北京 100083 2中國地質(zhì)大學(xué)(北京)科學(xué)研究院,北京 100083 3中國地質(zhì)大學(xué)(北京)地球科學(xué)與資源學(xué)院,北京 100083

1 概述

要全面了解元古宙中期大氣和淺海氧化還原狀態(tài)的演變規(guī)律,需開展跨盆地、長序列、多剖面、多指標(biāo)的沉積地球化學(xué)綜合研究。元古宙中期沉積地層厚度巨大并以碳酸鹽巖為主,華北地臺發(fā)育的長城系(1.8~1.6Ga)、薊縣系(1.6~1.4Ga)和青白口系(1.0~0.8Ga)總厚度可達(dá)9000m(Luetal.,2002),華南神農(nóng)架群(1.46~1.06Ga)厚度可達(dá)12000m(Canfieldetal.,2018;曠紅偉等,2018)。由于對這種巨厚的沉積序列進(jìn)行連續(xù)系統(tǒng)的地球化學(xué)分析難度很大,因此,有必要開發(fā)更直觀的、野外可識別的海水氧化還原條件指標(biāo)。前人的研究成果表明,沉積巖的礦物學(xué)特征或可能直觀地反映海水氧化還原條件,例如華北串嶺溝組(1.65~1.64Ga)由赤鐵礦構(gòu)成的鮞鐵巖和疊層石鐵巖(Linetal.,2019)、下馬嶺組(1.40~1.35Ga)二段下部以鮞綠泥石(Tangetal.,2017a)和菱鐵礦(Canfieldetal.,2018;Tangetal.,2018)為主的鐵巖以及鐵嶺組(1.45~1.40Ga)二段疊層石微生物礁體內(nèi)大量產(chǎn)出的海綠石,均可以反映淺海缺氧鐵化的地球化學(xué)條件;反之,高于莊組(1.60~1.54Ga)二段產(chǎn)出的錳氧化物結(jié)核(Fangetal.,2020)和下馬嶺組二段中部發(fā)育的赤鐵礦海相紅層(Tangetal.,2020),則指示適度氧化的海洋化學(xué)條件。由此可見,礦物組合具有指示海水氧化還原條件的重要潛力。然而,上述礦物在地層中的產(chǎn)出并不連續(xù),因此有必要開發(fā)更多在地層記錄中相對連續(xù)的沉積學(xué)和礦物學(xué)標(biāo)識,對直觀反映海水氧化還原條件具有重要科學(xué)意義。

大量研究表明,隨著大氣和淺海氧化程度的逐步增強(qiáng),前寒武紀(jì)淺海碳酸鹽沉淀方式也發(fā)生了顯著的改變: 在太古宙至古元古代往往發(fā)育大量海底沉淀(纖維狀文石或方解石、微指狀疊層石、魚骨狀方解石等),新元古代則常以水柱沉淀的碳酸鹽灰泥占優(yōu)勢,而中元古代則表現(xiàn)出碳酸鹽沉淀方式的過渡,存在2種沉淀方式的多次轉(zhuǎn)換(Grotzinger,1989;Knoll and Swett,1990;Grotzinger and Kasting,1993;Sami and James,1994;Sumner and Grotzinger,1996)。碳酸鹽沉淀方式的長期變化是隨海水氧化還原條件的演變而發(fā)生的。有研究者提出,在缺氧、鐵化的海洋化學(xué)條件下,F(xiàn)e2+和Mn2+作為碳酸鹽沉淀的強(qiáng)力抑制劑可能限制了方解石在水柱中成核—生長,但允許文石以海底沉淀形式產(chǎn)出(Sumner and Grotzinger,1996)。隨著海洋氧化水體的擴(kuò)張,F(xiàn)e2+和Mn2+被氧化而從淺海中移除,使方解石可在水柱中成核—生長—沉淀。因此,碳酸鹽巖序列中不同類型的碳酸鹽沉淀,可能具有直觀反映海水氧化還原條件的潛力,進(jìn)而對全面了解元古宙中期大氣和淺海復(fù)雜的氧化還原狀態(tài)具有重要意義,盡管這仍然需要有針對性的地球化學(xué)數(shù)據(jù)驗證。值得指出的是,碳酸鹽沉淀方式多樣,本研究所指的碳酸鹽僅包括水柱沉淀的灰泥和海底沉淀的文石等原生沉淀,不包括機(jī)械破碎形成的內(nèi)碎屑顆粒和早期成巖在孔隙水中形成的碳酸鹽沉淀等其他類型的碳酸鹽。

在將碳酸鹽沉淀方式應(yīng)用于前寒武紀(jì)淺海氧化還原條件分析之前,還有2種觀點(diǎn)需要進(jìn)一步驗證。第1種觀點(diǎn)是碳酸鹽沉淀方式的長期變化可能只是由于碳酸鹽飽和度長期下降所致(Grotzinger,1989,1990;Knoll and Swett,1990;Grotzinger and Kasting,1993;Grotzinger and James,2000),其與海水氧化還原條件并不直接相關(guān)。這種低飽和度條件不利于海底沉淀的快速形成,從而易被異地運(yùn)移的沉積物所覆蓋而終止生長。第2種觀點(diǎn)則認(rèn)為水柱中碳酸鹽灰泥的沉淀是在大氣低二氧化碳濃度背景下,如小于10 PAL(現(xiàn)代大氣水平),通過藍(lán)細(xì)菌的二氧化碳濃縮機(jī)制(CCM)所導(dǎo)致的(Riding,2006;Kah and Riding,2007)。由于這2種機(jī)制產(chǎn)生的碳酸鹽在特征上相近,目前要準(zhǔn)確判斷究竟是哪種機(jī)制發(fā)揮了更大的作用,還需要進(jìn)行大量細(xì)致的碳酸鹽沉積學(xué)和配套的地球化學(xué)指標(biāo)研究來驗證。

為進(jìn)一步拓展古海水化學(xué)條件分析的沉積學(xué)指標(biāo),從而高效、簡便地實(shí)施碳酸鹽巖地層氧化還原條件的直觀分析,作者系統(tǒng)分析華北中元古代碳酸鹽巖地層的沉積相特征,測試并收集了相關(guān)層位的氧化還原地球化學(xué)數(shù)據(jù)。試圖通過對碳酸鹽沉淀方式與海水氧化還原條件變化之間的相關(guān)性分析,為快速直觀地分析前寒武紀(jì)碳酸鹽沉積的氧化還原條件提供一種新的途徑。

2 地質(zhì)背景

2.1 地質(zhì)概況

位于華北克拉通中部的燕遼盆地發(fā)育并保存了全球最好的元古宙中期沉積地層,總厚度超過9km(Luetal.,2002)。這套地層沉積于Columbia超大陸裂解(Zhaoetal.,2003,2011;Zhangetal., 2012)和Rodinia超大陸聚合(Lietal.,2008)期間,可劃分為3系12組(陳晉鑣等,1980),自下而上包括長城系(常州溝組、串嶺溝組、團(tuán)山子組、大紅峪組)、薊縣系(高于莊組、楊莊組、霧迷山組、洪水莊組、鐵嶺組、下馬嶺組)和青白口系(長龍山組、景兒峪組)。長城系主要由石英砂巖和暗色頁巖以及少量白云巖組成(Linetal.,2019);薊縣系以淺水碳酸鹽巖為主,夾有較深水沉積的黑色頁巖(Tangetal.,2016;Zhangetal.,2016);青白口系由下部長龍山組砂巖和上部景兒峪組碳酸鹽巖組成(Tangetal.,2016)。由于薊縣系大部分地層連續(xù)(高林志等,2009;Suetal.,2010;Lietal.,2013;蘇文博,2014)、變質(zhì)程度較低、普遍低于葡萄石—綠纖石相(Lietal.,2003;Chuetal.,2007),因此筆者以薊縣高于莊組、野三坡霧迷山組、凌源霧迷山組和薊縣鐵嶺組(圖 1)的若干層段為例,重點(diǎn)研究碳酸鹽沉淀特征及與之配套的海洋化學(xué)條件。

A—研究區(qū)域交通位置簡圖;B—薊縣地區(qū)地質(zhì)簡圖;C—平泉和凌源地區(qū)地質(zhì)簡圖;D—野三坡地區(qū)地質(zhì)簡圖。 B、C、D據(jù)全國1︰50萬地質(zhì)圖(中國地質(zhì)調(diào)查局,2013)圖 1 華北中元古界碳酸鹽巖剖面位置及地質(zhì)背景Fig.1 Location of the Mesoproterozoic carbonate rock sections in North China and their geological background

2.2 沉積特征

A—薊縣高于莊組三段暗色鈣質(zhì)泥巖夾白云質(zhì)灰?guī)r;B—薊縣高于莊組三段臼齒構(gòu)造;C—薊縣高于莊組三段似丘狀交錯層理(箭頭示沖刷面);D—凌源霧迷山組四段交錯層理;E—凌源霧迷山組四段微生物席紋層(風(fēng)化面灰白色)與灰泥沉積互層(風(fēng)化面深灰色);F—凌源霧迷山組四段扁平狀礫石;G—薊縣鐵嶺組一段含錳白云巖夾淺綠色海綠石頁巖;H—薊縣鐵嶺組二段底部竹葉狀礫屑灰?guī)r中的扁平狀礫石; I—薊縣鐵嶺組二段柱狀疊層石圖 2 華北高于莊組、霧迷山組和鐵嶺組沉積特征Fig.2 Sedimentary features of the Gaoyuzhuang,Wumishan and Tieling Formations in North China

高于莊組與下伏大紅峪組呈不整合接觸,與上覆楊莊組呈整合接觸。高于莊組自下而上分為4個亞組(或段): 官地亞組(一段)、桑樹鞍亞組(二段)、張家峪亞組(三段)、環(huán)秀寺亞組(四段)(陳晉鑣等,1980)。在薊縣剖面上,高于莊組厚約1500m,以中—厚層碳酸鹽巖為主,夾少量薄層黑色頁巖。一段底部為1層厚約3m的砂巖,其內(nèi)波痕發(fā)育;主體以中厚層白云巖為主,富含丘狀疊層石,常發(fā)生硅化,表現(xiàn)為淺潮下帶沉積(喬秀夫等,2007)。二段底部發(fā)育約20m 厚的紫黑色薄層泥質(zhì)白云巖夾富Mn頁巖,缺乏波浪和潮汐構(gòu)造,可見0.5~1mm直徑的Mn結(jié)核,為正常浪基面以下的深潮下帶沉積(Fangetal.,2020)。富Mn段上部為約40m厚的含Mn厚層白云巖,發(fā)育微生物席和波痕,為正常浪基面以上的淺潮下帶至潮間帶沉積(梅冥相,2007)。三段下部為薄—中層狀微晶白云質(zhì)灰?guī)r,夾黑色頁巖(圖 2-A)和較多20~30cm大小的灰?guī)r結(jié)核;上部為中—厚層微晶白云質(zhì)灰?guī)r,發(fā)育臼齒狀構(gòu)造(圖 2-B;梅冥相,2005,2007)和微生物席紋層(Fangetal.,2020)。該段中與波浪和水流相關(guān)的沉積構(gòu)造少見,但偶見丘狀層理(圖 2-C),代表風(fēng)暴浪基面附近的深潮下帶沉積(梅冥相,2005;Guoetal.,2015)。四段下部見有分米級纖維狀文石海底扇,中—上部以塊狀微生物巖和厚層白云巖為主,主要形成于潮下帶微生物礁巖環(huán)境(梅冥相,2005)。

凌源地區(qū)霧迷山組厚約2800m,與下伏楊莊組和上覆洪水莊組均為整合接觸,為一套連續(xù)沉積的淺海碳酸鹽巖,可識別出4個段,代表 4個沉積旋回(曠紅偉等,2009;羅順社等,2010)。一段由厚層微晶灰質(zhì)白云巖和粉晶白云巖組成,含燧石條帶和結(jié)核以及波紋狀疊層石。二段為巨厚層微晶白云巖和紋層狀粉晶白云巖,含少量燧石,疊層石以層狀和波狀為主。三段為厚層微晶—粉晶白云巖,含豐富的硅質(zhì)條帶,發(fā)育丘狀和緩波狀疊層石及凝塊石。四段以中厚—薄層微晶灰?guī)r為主,夾燧石條帶和結(jié)核;微晶灰?guī)r中發(fā)育臼齒構(gòu)造(曠紅偉等,2009),疊層石呈緩波狀—柱狀—層紋狀過渡。霧迷山組發(fā)育多種淺水沉積標(biāo)志(圖 2-D),有豐富的疊層石、微生物席紋層(圖 2-E)、內(nèi)碎屑礫石(圖 2-F)和大量燧石條帶和結(jié)核,普遍缺乏陸源碎屑,代表環(huán)潮坪沉積(羅順社等,2010;Kuangetal.,2012)。

鐵嶺組分為2段: 一段為富錳白云巖夾頁巖(Guoetal.,2013;Tangetal.,2017b);二段以灰?guī)r為主,發(fā)育大量疊層石。在薊縣鐵嶺子剖面,該組厚度超過300m(郭文琳等,2019)。鐵嶺組一段下部為中厚層含錳泥質(zhì)白云巖夾薄層海綠石頁巖(圖 2-G),向上頁巖夾層增多,并發(fā)育丘狀交錯層理(Tangetal.,2018);中部為中厚層富錳泥質(zhì)白云巖,夾厚度較大的深綠色海綠石頁巖;上部為泥質(zhì)白云巖夾少量薄層含海綠石頁巖;頂部見1層紅褐色泥質(zhì)膠結(jié)砂礫巖,代表古風(fēng)化殼殘余。鐵嶺組一段代表風(fēng)暴浪基面附近沉積,水深波動頻繁。鐵嶺組二段中下部為泥質(zhì)灰?guī)r夾竹葉狀礫屑灰?guī)r(圖 2-H)和厚層疊層石灰?guī)r,上部為厚層塊狀疊層石微晶灰?guī)r(圖 2-I)。鐵嶺組二段主要發(fā)育于風(fēng)暴浪基面之上的淺潮下帶環(huán)境。

2.3 年代框架

華北長城系和薊縣系是目前全球同期地層年代約束最好的巖石地層單元(圖 3)。位于常州溝組底部不整合面之下的侵入環(huán)斑花崗巖體的LA-MC-ICP-MS鋯石U-Pb年齡為1673±10Ma(Lietal.,2013);串嶺溝組底部碎屑鋯石U-Pb年齡為1657.4Ma(段超等,2014);團(tuán)山子組頂部LA-MC-ICP-MS鉀質(zhì)火山巖鋯石U-Pb年齡為1637±15Ma(張拴宏等,2013);大紅峪組火山巖SHRIMP鋯石U-Pb年齡為1622±23Ma和1626±9Ma(高林志等,2008a;Luetal.,2008);薊縣高于莊組三段下部LA-MC-ICP-MS凝灰?guī)r鋯石U-Pb年齡為1577±12Ma(田輝等,2015);延慶高于莊組三段上部分別獲得凝灰?guī)r的SHRIMP和LA-MC-ICP-MS鋯石年齡1559±12Ma和1560±5Ma(李懷坤等,2010);霧迷山組三段凝灰?guī)rSHRIMP鋯石U-Pb年齡分別為1487±16Ma和1483±13Ma(李懷坤等,2014);鐵嶺組斑脫巖SHRIMP鋯石U-Pb年齡為1437±21Ma(Suetal.,2010);下馬嶺組凝灰?guī)rSHRIMP鋯石U-Pb年齡為1366±9Ma(高林志等,2008b),且凝灰?guī)r層和斑脫巖高精度TIMS鋯石U-Pb年齡分別為1384.4±1.4Ma和1392.2±1.0Ma(Zhangetal.,2015)。依據(jù)上述高精度定年數(shù)據(jù)和地層序列,將高于莊組、霧迷山組、鐵嶺組的年齡分別估計為1600~1540Ma(李懷坤等,2010,2014)、1520~1470Ma(李懷坤等,2014)和1450~1400Ma(Zhangetal.,2009,2015)(圖 3)。

圖 3 華北元古宇地層序列和鋯石U-Pb年齡(據(jù)Tang et al.,2016,有修改)Fig.3 Stratigraphic subdivisions and zircon U-Pb age constraints of the Proterozoic succession in North China Platform(modified from Tang et al.,2016)

3 材料和方法

研究樣品分別采自薊縣高于莊組(40°09′2.09″N, 117°28′34.32″E)、凌源大河北村霧迷山組(40°53′21.72″N, 118°57′23.64″E)、野三坡霧迷山組(39°39′58.37″N, 115°28′02.81″E)和天津鐵嶺子村鐵嶺組(40°05′29.21″N, 117°23′53.63″E)(圖 1)。共采集碳酸鹽巖樣品84份,磨制探針片40張,對84份樣品進(jìn)行了I/(Ca+Mg)值測試分析。

宏觀沉積特征主要基于野外露頭觀察,薄片微觀特征使用Zeiss Scope A1偏光顯微鏡觀察,超微構(gòu)造使用Zeiss Supra 55型場發(fā)射掃描電鏡分析,其中SE2探頭用于獲取二次電子圖像,AsB探頭用于獲取背散射電子圖像。I/(Ca+Mg)值測試方法據(jù)Shang等(2019),簡述如下:稱取200目樣品粉末約5mg,用超純(MQ)水潤洗4次去除黏土礦物(Tangetal.,2017b)和可溶性鹽;潤洗樣品離心干燥后在瑪瑙缽中碾細(xì),再次稱重;用3%硝酸充分溶解樣品40min,然后離心,分取2次上清液,用于主量元素和碘測試。主量元素測試取0.2mL上清液,用3%HNO3稀釋至1︰51000;碘測試取1mL上清液,添加3%叔胺溶液,然后用MQ水稀釋至0.5%以抑制溶液中的碘揮發(fā)(Luetal.,2010;Hardistyetal.,2017)。為了進(jìn)一步避免碘的流失,實(shí)驗需在48 h內(nèi)測試完成。主量元素和碘元素測試均在國家地質(zhì)實(shí)驗測試中心完成,其中主量元素使用PerkinElmer NexION 300Q電感耦合等離子體質(zhì)譜儀(ICP-MS)測試,JDo-1標(biāo)樣監(jiān)測顯示測試誤差小于5%;碘元素采用MC-ICP-MS(Neptune Plus,Thermo Fisher Scientific,Germany)測試,標(biāo)樣GSR-12監(jiān)測顯示測量誤差小于6%(1σ)(Shangetal.,2019),Ⅰ/(Ca+Mg)值的檢測限約為0.1μmol/mol。

4 結(jié)果

4.1 碳酸鹽灰泥和海底沉淀特征

4.1.1 宏觀特征

在研究區(qū),灰泥集中發(fā)育在高于莊組三段、霧迷山組四段以及鐵嶺組二段(圖 3;圖 4)。野外觀察發(fā)現(xiàn),在灰泥集中發(fā)育的層位,纖維狀文石海底沉淀往往不發(fā)育。高于莊組三段灰泥層的厚度通常為0.5~3cm,橫向厚度較穩(wěn)定,露頭呈灰色,而相鄰的含泥白云質(zhì)灰?guī)r風(fēng)化面則呈淡黃色(圖 4-A);這些灰泥層主要發(fā)育在從泥質(zhì)灰?guī)r向鈣質(zhì)泥巖的過渡層中。霧迷山組四段的灰泥層特征與高于莊組相近,但更加發(fā)育(圖 4-D),盡管其多與含陸源碎屑的微生物席紋層交互產(chǎn)出,但成分較微生物席更純凈,缺乏陸源碎屑和席紋層;而鄰近巖層中可見灰色不連續(xù)硅質(zhì)條帶或結(jié)核,并常見有風(fēng)暴礫巖透鏡體和軟沉積變形。鐵嶺組二段的灰泥多以厚層疊層石形式產(chǎn)出,與高于莊組和霧迷山組的灰泥層產(chǎn)出形式明顯不同(圖 4-G):這些灰泥同時構(gòu)成了疊層石的柱體和柱間充填物(Tosti and Riding,2017a,2017b),疊層石柱體寬窄不一,大部分小于10cm,常有分支,其間由狹長的柱間水道分隔(圖 4-G);疊層石紋層隆起較低,紋層之間常呈不完全疊覆,致使紋層縱向發(fā)育不穩(wěn)定,表明疊層石生長過程中受水體擾動明顯;疊層石柱體早期礦化不明顯,易被流水沖刷形成內(nèi)碎屑,可見彎曲變形,表明屬水柱沉淀灰泥而不是席內(nèi)早期礦化產(chǎn)物(Tosti and Riding,2017a,2017b)。

以纖維狀文石扇形式產(chǎn)出的海底沉淀集中發(fā)育在高于莊組四段下部和霧迷山組二段中部。雖然在這些層位有可能發(fā)育少量灰泥沉淀,但后者通常并不獨(dú)立成層。高于莊組四段下部的晶體扇最大直徑約20cm,高可達(dá)約10cm(圖 4-J)。晶體扇密集發(fā)育的層段可厚達(dá)十余米。在剖面上可見由晶體扇壓實(shí)形成的“薄餅”(圖 4-J),其層面密布文石纖維(圖 4-K)。霧迷山組二段中部發(fā)育厘米級晶體扇沉積,扇體最大直徑約3cm(圖 4-M)。它們通常與微指狀疊層石、黑色紋層石和微晶白云巖在縱向上相互疊置。文石扇可見扇根,并向上過渡為微指狀疊層石(圖 4-M),其間可見扁平礫石和波狀層理。值得注意的是,文石不穩(wěn)定,難以在深時記錄中保存,而是會轉(zhuǎn)化成為低鎂方解石或白云石。本研究中,高于莊組的文石扇實(shí)際已轉(zhuǎn)化為方解石扇,霧迷山組文石扇則已轉(zhuǎn)化為白云石扇,它們均是文石扇假晶(見 表 1 中Mg/Ca值)。

A—薊縣高于莊組三段上部灰泥沉淀層,單層厚0.5~3cm,側(cè)向平直連續(xù)延伸,呈淺灰色(箭頭);B—薊縣高于莊組三段上部球?;夷?有重結(jié)晶),貧陸源碎屑(單偏光);C—背散射照片,示薊縣高于莊組三段上部灰泥晶粒(淺灰色)“懸浮”在白云石(深灰色)晶粒間;D—凌源霧迷山組四段灰泥沉淀層,單層厚1~2cm,側(cè)向平直連續(xù)延伸,呈淺灰色(箭頭);E和F—凌源霧迷山組四段灰泥沉淀主要由近球形微晶方解石晶粒組成,重結(jié)晶較弱,貧陸源碎屑(單偏光);G—薊縣鐵嶺組二段疊層石,柱體和柱間充填均由灰泥組成;H和Ⅰ—薊縣鐵嶺組二段疊層石主要由近球形灰泥晶粒組成,呈麻點(diǎn)狀;J—薊縣高于莊組四段下部文石扇(黃色箭頭)與微生物席紋層(白色箭頭)共同發(fā)育,文石扇被壓扁(單偏光);K—薊縣高于莊組四段下部文石扇(層面);L—薊縣高于莊組四段下部文石扇,可見纖維狀晶體(紅色虛線),末端平滑(黃色箭頭);M—薊縣高于莊組四段下部“壓扁”文石扇縱切面,可見橫向展布的纖維狀文石;N—野三坡霧迷山組二段文石扇(黃色箭頭)和微指狀疊層石(白色箭頭); O—野三坡霧迷山組二段文石扇“扇根”單偏光顯微特征。J-M中文石扇已方解石化,N和O中的文石扇已白云石化圖 4 華北高于莊組、霧迷山組和鐵嶺組碳酸鹽巖沉積特征和顯微特征Fig.4 Macroscopic and microscopic features of carbonate rocks from the Gaoyuzhuang,Wumishan and Tieling Formations in North China

4.1.2 微觀特征

顯微觀察表明,高于莊組三段灰泥的晶粒呈次圓—圓形,重結(jié)晶可導(dǎo)致其粒徑大于灰泥標(biāo)準(zhǔn)(5μm)并達(dá)到細(xì)粉晶級,通常約10μm,少量大于20μm,普遍缺乏微生物席和陸源碎屑(圖 4-B,4-C)。霧迷山組的灰泥較純凈、貧陸源碎屑和有機(jī)質(zhì),少見后期脈體,顯示較弱的成巖改造特征;灰泥晶粒大小均一,平均粒徑不超過30μm,且大部分表現(xiàn)為近球形(圖 4-E,4-F)。鐵嶺組疊層石柱體與柱間均被灰泥充填,貧生物擾動和陸源碎屑(圖 4-H),灰泥晶粒大小均一,通常10~15μm,略大于高于莊組與霧迷山組,但鐵嶺組的灰泥略顯不純,呈麻點(diǎn)狀(圖 4-I)。

纖維狀文石海底沉淀與灰泥在鏡下呈現(xiàn)出截然不同的特征。薊縣高于莊組晶體扇中柱狀文石晶體寬約1mm,從晶體底部到頂部,晶體寬度略有增大(圖 4-L)。霧迷山組中部文石扇呈向上散開的扇狀發(fā)育,底部可見扇根,向上寬度增大,內(nèi)隱約可見垂向生長的文石纖維,單根纖維寬度較難辨識(圖 4-N,4-O)。

4.2 地球化學(xué)特征

圖中問號處缺乏Ce異常數(shù)據(jù),據(jù)Ⅰ/(Ca+Mg)值為0μmol/mol推測Ce/Ce*值約為1圖 5 華北薊縣高于莊組、凌源霧迷山組四段下部和薊縣鐵嶺組地層柱狀圖和地球化學(xué)特征(據(jù)Zhang et al.,2018;孫龍飛等,2020;周泓屹,2020;有修改)Fig.5 Geochemical data and lithostratigraphic column of the Gaoyuzhuang Formation,lower part of Member 4 of Wumishan Formation and Tieling Formation in North China(modified from Zhang et al.,2018;Sun et al.,2020;Zhou,2020)

據(jù)本研究收集的大部分研究層段與氧化還原條件相關(guān)的地球化學(xué)數(shù)據(jù)分析,薊縣高于莊組三段下部有1次顯著的Ce異常負(fù)偏,Ce/Ce*值從約1.0轉(zhuǎn)變?yōu)榧s0.8并在三段中—上部以及四段部分地層內(nèi)持續(xù),但在文石海底沉淀發(fā)育層位,Ce異常數(shù)據(jù)缺失(圖 5;Zhangetal.,2018)。凌源霧迷山組四段下部厚約150m的地層內(nèi)存在明顯的Ce負(fù)異常,Ce/Ce*值為約0.8(孫龍飛等,2020)。薊縣鐵嶺組二段Ce異常持續(xù)存在,Ce/Ce*值可低至0.8以下;短暫的Cr同位素正異常也指示在鐵嶺組二段沉積期,大氣存在短暫的增氧過程(Weietal.,2021)。薊縣鐵嶺組二段具有較高的I/(Ca+Mg)值,最高可達(dá)3.15μmol/mol,其中大于0.5μmol/mol的樣品占比為22/35。

本研究進(jìn)一步分析了高于莊組四段和霧迷山組二段文石海底沉淀產(chǎn)出層位的氧化還原地球化學(xué)數(shù)據(jù),發(fā)現(xiàn)在薊縣高于莊組四段的21個文石海底沉淀樣品中,僅有2個樣品的碘含量分別為0.07 μg/g和0.03 μg/g,其余均無信號檢出(表 1)。樣品中Sr含量較高,最高可達(dá)1388 μg/g,最低值為40 μg/g,平均值598 μg/g。Mg/Ca摩爾比值最高為0.85,最低為0.01,平均值為0.11。野三坡霧迷山組二段的17個樣品中,黑色紋層石(由亞毫米級纖維狀文石等厚層與微亮晶層交互構(gòu)成;Tangetal.,2014)樣品14個,文石扇樣品2個,文石扇緊鄰的微指狀疊層石樣品1個。所有這些測試樣品均未檢測到碘信號,Mg/Ca摩爾比值最高為1.02,最低為0.95,平均值為0.98;Sr含量最高30 μg/g,最低10 μg/g,平均值為23.81 μg/g;Mn/Sr摩爾比值最高2.23,最低0.51,平均值為0.93。由于碳酸鹽沉淀抑制劑在碳酸鹽沉淀過程中一般會被排出碳酸鹽晶格(Sumner and Grotzinger,1996),而且Fe、Mn含量因容易受到早期成巖過程影響而增加(Tangetal.,2018;Fangetal.,2020),因此,筆者并未針對性地開展不同類型碳酸鹽沉淀的Fe、Mn含量分析。

5 討論

5.1 華北中元古代淺海碳酸鹽沉淀方式

5.1.1 海底沉淀

海底沉淀和水柱灰泥沉淀是前寒武紀(jì)碳酸鹽巖中最引人注目的2種沉淀方式(Sumner and Grotzinger,1996)。碳酸鹽海底沉淀的產(chǎn)出形式主要包括纖維狀文石扇(Grotzinger,1989;Grotzinger and Kasting,1993;Grotzinger and James,2000;Sumner and Grotzinger,2000,2004;Tangetal.,2014,2015)、微指狀疊層石(Hofmann and Jackson,1987;Tangetal.,2013)和魚骨狀方解石(Sumner and Grotzinger,1996,2000;Grotzinger and James,2000;湯冬杰等,2017)。這些海底沉淀一般垂直層面生長,晶體常具纖維狀形態(tài),其內(nèi)缺乏碎屑混入,從而顯著區(qū)別于相鄰的其他沉積。在本研究中,薊縣高于莊組四段的纖維狀文石扇特征在層面上十分典型(圖 4-K),但這些晶體扇常被壓扁,在剖面上呈厘米至分米級透鏡體,較難辨識(圖 4-J)。由于這些文石扇較圍巖顏色更深,曾被稱為“瀝青質(zhì)”(天津地質(zhì)礦產(chǎn)局,1992),實(shí)則為壓扁的纖維狀文石扇海底沉淀(謝樹成等,2016)。野三坡霧迷山組二段的纖維狀文石扇內(nèi)可見“扇根”,內(nèi)部純凈,垂向纖維狀晶體雖受重結(jié)晶影響但仍清晰可見,屬典型的纖維狀文石扇(圖 4-M)。這種晶體扇高度近10cm,與古元古代典型文石扇的大小相當(dāng)(Sumner and Grotzinger,2000,2004)。

一般認(rèn)為纖維狀文石扇原始沉淀的礦物為文石,由于文石不穩(wěn)定,在成巖階段可轉(zhuǎn)化為方解石或白云石(Hood and Wallace,2012,2015)。但也有研究認(rèn)為這些文石海底沉淀可能并非碳酸鹽沉淀,而是由石膏晶體轉(zhuǎn)變而成(Holland,1984;Hofmannetal.,1985)。然而,由于前寒武紀(jì)大氣整體低氧,有氧風(fēng)化輸入到海洋的硫酸根通量極低(Luoetal.,2015),海水以缺氧、鐵化為主,因此不易形成石膏沉淀。另一方面,高于莊組文石晶體末端平滑(圖 4-L),為典型的文石特征,與石膏或方解石的茅狀末端明顯不同。

由于海底沉淀內(nèi)部較圍巖顯著缺乏碎屑沉積,且碎屑沉積會導(dǎo)致其生長終止,因此海底沉淀通常被認(rèn)為是碳酸鹽快速沉淀的標(biāo)志(Grotzinger and Kasting,1993)。文中研究的文石海底沉淀礦物純凈,缺乏陸源碎屑,且不含微生物席紋層。由于微生物席一般具有快速生長特征,如果條件適宜,數(shù)周內(nèi)便可覆蓋整個海岸帶(Noffkeetal.,2001),因此這些快速沉淀文石晶體扇的發(fā)育反映海水具有高碳酸鹽飽和度。

5.1.2 水柱灰泥沉淀

在研究的樣品中,灰泥晶粒呈近球狀,略有重結(jié)晶,直徑10~20μm,缺乏破碎和磨圓現(xiàn)象,且缺乏其他碎屑伴生(圖 4-A至4-I),表明它們并非機(jī)械破碎而成,而很可能是由藍(lán)細(xì)菌光合作用誘發(fā)的水柱方解石沉淀。在灰泥層相鄰的灰質(zhì)白云巖中可見方解石晶?!皯腋 庇诎自剖|(zhì)內(nèi)(圖 4-C),進(jìn)一步表明方解石微晶為水柱灰泥沉淀成因?;夷鄬觾?nèi)方解石晶粒純凈,缺乏微生物席和碎屑顆粒,從而與圍巖形成鮮明對比,表明灰泥與纖維狀文石海底沉淀類似,具有快速沉淀的特征,指示海水具有碳酸鈣過飽和特征。

5.2 華北中元古代淺海氧化還原條件波動

圖 6 華北高于莊組和霧迷山組碳酸鹽巖Ⅰ/(Ca+Mg)值與Sr和Mg/Ca值的協(xié)變關(guān)系Fig.6 Ⅰ/(Ca+Mg)values versus Sr and Mg/Ca values in carbonate rocks of the Gaoyuzhuang and Wumishan Formations in North China

5.3 華北中元古代淺海碳酸鹽沉淀的控制因素

前寒武紀(jì)碳酸鹽海底沉淀豐度降低以及灰泥豐度增加的長期趨勢曾被歸因為碳酸鈣飽和度的持續(xù)下降(Grotzinger,1990;Grotzinger and James,2000)。由于陸源碎屑輸入可造成文石海底沉淀的生長中斷,大尺度(如分米級)文石扇被認(rèn)為代表了海水具有極高碳酸鈣飽和度條件下的快速沉淀產(chǎn)物(Sumner and Grotzinger,2000),灰泥的相對增加則可能表明海水的碳酸鹽飽和度有所降低。如前所述,本研究中的灰泥可構(gòu)成純凈的厘米級灰泥層,與相鄰的微生物席層和富碎屑顆粒層形成鮮明對比(圖 4-B,4-E,4-H),表明其也具有快速沉淀的特征,反映海水同樣具有高碳酸鈣飽和度。因此,中元古代生物碳酸鹽沉淀在海底沉淀與水柱沉淀之間的頻繁轉(zhuǎn)換,并非主要受控于海水碳酸鈣飽和度的增加或降低。

藍(lán)細(xì)菌的二氧化碳濃縮機(jī)制(CCM)被認(rèn)為是導(dǎo)致灰泥從水柱中沉淀的關(guān)鍵因素(Riding,2006)。由于海水中存在大量且多樣的碳酸鹽沉淀抑制劑,即使海水碳酸鈣過飽和,碳酸鹽礦物也很難直接從海水中成核—生長—沉淀(Okuboetal.,2018)。有關(guān)藍(lán)細(xì)菌二氧化碳CCM啟動所需的pCO2臨界值和啟動時間還存在一定的不確定性。實(shí)驗研究表明,當(dāng)pCO2低于10 PAL時(約0.4%),即可觸發(fā)底棲藍(lán)細(xì)菌的CCM啟動(Badgeretal.,2002)。已知最早且保存較好的鈣化底棲藍(lán)細(xì)菌發(fā)現(xiàn)于加拿大約1200Ma的Society Cliffs組疊層石內(nèi),并被認(rèn)為是當(dāng)時大氣pCO2降低至10 PAL的重要標(biāo)志(Kah and Riding,2007)。浮游藍(lán)細(xì)菌CCM啟動的臨界pCO2可能相對較高,約為現(xiàn)代水平的33倍(Arpetal.,2002)。Sherman等(2000)發(fā)現(xiàn)在1400~1300Ma,灰泥已在碳酸鹽沉積中占據(jù)重要比例,故推測浮游藍(lán)細(xì)菌CCM啟動可能遠(yuǎn)早于1400Ma(Fralick and Riding,2015)。因此,在中元古代之前浮游藍(lán)細(xì)菌的CCM可能已經(jīng)啟動,中元古代碳酸鹽海底沉淀與水柱沉淀的交替,可能并非受控于大氣pCO2波動,而是受其他因素影響。

5.4 碳酸鹽沉淀方式在古氧相分析中的應(yīng)用價值和適用條件

適度氧化的淺海是早期真核生物的重要生態(tài)空間,故研究淺海的氧化還原狀態(tài)具有重要的意義。由于在前寒武紀(jì)大氣整體低氧的背景下,淺海的氧化還原狀態(tài)具有顯著的時空動態(tài)波動和不均一性(Poultonetal.,2010;Sperlingetal.,2014;Gilleaudeau and Kah,2015;Reinhardetal.,2016;Wangetal.,2020),因此開展長序列、多剖面的研究是認(rèn)識這個時期淺海氧化還原條件動態(tài)演化的關(guān)鍵。但是這個時期的地層厚度巨大,較難開展高密度的長序列地球化學(xué)研究。碳酸鹽沉淀方式與海水氧化還原條件關(guān)系的確立,為直觀、便捷、高效、定性地識別海水氧化還原狀態(tài)提供了重要方法。這種方法可有效地用于野外初步分析氧化還原條件、為選定進(jìn)一步地球化學(xué)研究的關(guān)鍵層位提供依據(jù)。此外,由于碳酸鹽巖易受重結(jié)晶和成巖改造的影響,對于強(qiáng)烈重結(jié)晶和成巖改造的樣品,運(yùn)用地球化學(xué)指標(biāo)存在一定的局限性甚至不能進(jìn)行有效的地球化學(xué)分析,而碳酸鹽沉淀方式變化則可以提供較為可靠的判斷氧化還原條件的途徑。

由于Fe3+/Fe2+(+0.77 V)具有較低的氧化還原電勢(Lietal.,2019),當(dāng)缺氧海水中氧含量增加時,F(xiàn)e2+就會被氧化而從海水中移除,從而改變碳酸鹽的沉淀方式。因此,碳酸鹽沉淀方式的變化非常適合反映前寒武紀(jì)大氣低氧背景下(Planavskyetal.,2014;Coleetal.,2016;Tangetal.,2016;Bellefroidetal.,2018)較弱的氧化還原條件波動。這一特性使得該指標(biāo)可以靈敏地反映海水輕微的氧化還原波動,但也因此限制了其在顯生宙總體高氧背景下的應(yīng)用。

6 結(jié)論

通過對華北中元古界高于莊組、霧迷山組和鐵嶺組碳酸鹽沉淀方式及其對氧化還原條件變化響應(yīng)機(jī)理的分析,得出了以下結(jié)論:

1)在高于莊組三段、霧迷山組四段和鐵嶺組二段發(fā)育大量從水柱沉淀的層狀灰泥,在高于莊組四段下部和霧迷山組二段中部發(fā)現(xiàn)纖維狀文石海底沉淀;它們均具有快速沉淀的性質(zhì),可反映海水碳酸鈣過飽和特征。

2)碳酸鹽巖氧化還原狀態(tài)指標(biāo)Ⅰ/(Ca+Mg)值和Ce異常的研究表明,層狀灰泥沉淀形成于適度氧化的水體條件,而纖維狀文石扇海底沉淀形成于缺氧、鐵化的底層海水中。對氧化還原敏感的碳酸鹽沉淀抑制劑Fe2+和Mn2+是連接水體氧化還原與碳酸鹽沉淀方式的橋梁。

3)碳酸鹽沉淀方式(水柱沉淀和海底沉淀)廣泛適用于整體低氧背景下的前寒武紀(jì)碳酸鹽巖地層的氧化還原狀態(tài)分析。

致謝感謝中國地質(zhì)大學(xué)(北京)研究生謝寶增在樣品采集及尚墨翰、李楊在樣品測試中提供的幫助,感謝中國科學(xué)院地質(zhì)與地球物理研究所周錫強(qiáng)老師對文章提出的寶貴修改建議。

參考文獻(xiàn)(References)

陳晉鑣,張惠民,朱士興,趙震,王振剛. 1980. 薊縣震旦亞界的研究. 見: 中國地質(zhì)科學(xué)院天津地質(zhì)礦產(chǎn)研究所編. 中國震旦亞界. 天津: 天津科學(xué)技術(shù)出版社,56-114. [Chen J Z,Zhang H M,Zhu S X,Zhao Z,Wang Z G. 1980. The study of Sinian subboundary in Ji-xian County. In: Tianjin Institute of Geology and Mineral Resources,Chinese Academy of Geological Sciences(ed). Sinian Subboundary in China. Tianjin: Tianjin Science and Technology Press,56-114]

段超,李延河,魏明輝,楊云,侯可軍,陳小丹,鄒斌. 2014. 河北宣化姜家寨鐵礦床串嶺溝組底部碎屑鋯石LA-MC-ICP-MS U-Pb年齡及其地質(zhì)意義. 巖石學(xué)報, 30(1): 35-48. [Duan C,Li Y H,Wei M H,Yang Y,Hou K J,Chen X D,Zou B. 2014. U-Pb dating study of detrital zircons from the Chuanlinggou Formation in Jiang-jiazhai iron deposit,North China Craton and its geological significances. Acta Petrologica Sinica, 30(1): 35-48]

高林志,張傳恒,尹崇玉,史曉穎,王自強(qiáng),劉耀明,劉鵬舉,唐烽,宋彪. 2008a. 華北古陸中、新元古代年代地層框架SHRIMP鋯石年齡新依據(jù). 地球?qū)W報, 29(3): 366-376. [Gao L Z,Zhang C H,Yin C Y,Shi X Y,Wang Z Q,Liu Y M,Liu P J,Tang F,Song B. 2008a. SHRIMP ZIRCON ages: basis for refining the chronostratigraphic classification of the Meso- and Neoproterozoic strata in North China old land. Acta Geoscientica Sinica, 29(3): 366-376]

高林志,張傳恒,史曉穎,宋彪,王自強(qiáng),劉耀明. 2008b. 華北古陸下馬嶺組歸屬中元古界的鋯石SHRIMP年齡新證據(jù). 科學(xué)通報, 53(21): 2617-2623. [Gao L Z,Zhang C H,Shi X Y,Song B,Wang Z Q,Liu Y M. 2008b. Mesoproterozoic age for Xiamaling Formation in North China Plate indicated by ZIRCON SHRIMP dating. Chinese Science Bulletin, 53(21): 2665-2671]

高林志,張傳恒,劉鵬舉,丁孝忠,王自強(qiáng),張彥杰. 2009. 華北—江南地區(qū)中、新元古代地層格架的再認(rèn)識. 地球?qū)W報, 30(4): 433-446. [Gao L Z,Zhang C H,Liu P J,Ding X Z,Wang Z Q,Zhang Y J. 2009. Recognition of Meso- and Neoproterozoic stratigraphic framework in North and South China. Acta Geoscientica Sinica, 30(4): 433-446]

郭文琳,蘇文博,張健,李惠民,周紅英,李懷坤,Ettensohn F R,Huff W D. 2019. 天津薊縣鐵嶺組新剖面鉀質(zhì)斑脫巖鋯石U-Pb測年及Hf同位素研究. 巖石學(xué)報, 35(8): 2433-2454. [Guo W L,Su W B,Zhang J,Li H M,Zhou H Y,Li H K,Ettensohn F R,Huff W D. 2019. Zircon U-Pb dating and Hf isotopes of K-bentonites from the Tieling Formation in a new exposure of the Jixian Section,Tianjin,North China Craton. Acta Petrologica Sinica, 35(8): 2433-2454]

李懷坤,朱士興,相振群,蘇文博,陸松年,周紅英,耿建珍,李生,楊峰杰. 2010. 北京延慶高于莊組凝灰?guī)r的鋯石U-Pb定年研究及其對華北北部中元古界劃分新方案的進(jìn)一步約束. 巖石學(xué)報, 26(7): 2131-2140. [Li H K,Zhu S X,Xiang Z Q,Su W B,Lu S N,Zhou H Y,Geng J Z,Li S,Yang F J. 2010. Zircon U-Pb dating on tuff bed from Gaoyuzhuang Formation in Yanqing,Beijing: further constraints on the new subdivision of the Mesoproterozoic stratigraphy in the northern North China. Acta Petrologica Sinica, 26(7): 2131-2140]

李懷坤,蘇文博,周紅英,相振群,田輝,楊立公,Huff W D,Ettensohn F R. 2014. 中—新元古界標(biāo)準(zhǔn)剖面薊縣系首獲高精度年齡制約: 薊縣剖面霧迷山組和鐵嶺組斑脫巖鋯石SHRIMP U-Pb同位素定年研究. 巖石學(xué)報, 30(10): 2999-3012. [Li H K,Su W B,Zhou H Y,Xiang Z Q,Tian H,Yang L G,Huff W D,Ettensohn F R. 2014. The first precise age constraints on the Jixian System of the Meso- to Neoproterozoic Standard Section of China: SHRIMP zircon U-Pb dating of bentonites from the Wumishan and Tieling Formations in the Jixian Section,North China Craton. Acta Petrologica Sinica, 30(10): 2999-3012]

曠紅偉,彭楠,羅順社,岑超,李家華,陳銘培. 2009. 燕山中東部凌源地區(qū)霧迷山組MT構(gòu)造的發(fā)現(xiàn)、地質(zhì)特征和研究意義. 自然科學(xué)進(jìn)展, 19(12): 1308-1318. [Kuang H W,Peng N,Luo S S,Cen C,Li J H,Chen M P. 2009. Discovery of MT structure and its geological features and studying significance in the eastern Yanshan in Lingyuan,Liaoning Province. Progress in Natural Science, 19(12): 1308-1318]

曠紅偉,柳永清,范正秀,彭楠,許歡,安偉,王能盛,耿元生,朱志才,夏曉旭,王玉沖. 2018. 揚(yáng)子克拉通北緣中元古界神農(nóng)架群沉積特征. 古地理學(xué)報, 20(4): 523-544. [Kuang H W,Liu Y Q,F(xiàn)an Z X,Peng N,Xu H,An W,Wang N S,Geng Y S,Zhu Z C,Xia X X,Wang Y C. 2018. Sedimentary characteristics of the Mesopro-terozoic Shennongjia Group in northern margin of Yangtze Craton. Journal of Palaeogeography(Chinese Edition), 20(4): 523-544]

陸松年,李惠民. 1991. 薊縣長城系大紅峪組火山巖的單顆粒鋯石U-Pb法準(zhǔn)確定年. 地球?qū)W報, 12(1): 137-146. [Lu S N,Li H M. 1991. A precise U-Pb single zircon age determination for the volcanics of Dahongyu Formation. Acta Geoscientica Sinica, 12(1): 137-146]

羅順社,張建坤,陳小軍,曠紅偉. 2010. 遼西凌源地區(qū)霧迷山組沉積特征與層序地層. 中國地質(zhì), 37(2): 394-403. [Luo S S,Zhang J K,Chen X J,Kuang H W. 2010. Sedimentary characteristics and sequence stratigraphy of Wumishan Formation in Lingyuan area,western Liaoning Province. Chinese Geology, 37(2): 394-403]

梅冥相. 2005. 天津薊縣剖面中元古界高于莊組臼齒狀構(gòu)造的層序地層位置及其成因的初步研究. 古地理學(xué)報, 7(4): 437-447. [Mei M X. 2005. Preliminary study on sequence-stratigraphic position and origin for molar-tooth structure of the Gaoyuzhuang Formation of Mesoproterozoic at Jixian in Tianjin. Journal of Palaeogeography(Chinese Edition), 7(4): 437-447]

梅冥相. 2007. 燕山地區(qū)中元古代高于莊組非疊層石碳酸鹽巖序列的沉積特征及其重要意義. 現(xiàn)代地質(zhì), 21(1): 45-56. [Mei M X. 2007. Sedimentary features and their implication for the depositional succession of non-stromatolitic carbonates, Mesoproterozoic Gaoyuzhuang Formation in Yanshan area of North China. Geoscience, 21(1): 45-56]

喬秀夫,高林志,張傳恒. 2007. 中朝板塊中、新元古界年代地層柱與構(gòu)造環(huán)境新思考. 地質(zhì)通報, 26(5): 503-509. [Qiao X F,Gao L Z,Zhang C H. 2007. New idea of the Meso- and Neoproterozoic chronostratigraphic chart and tectonic environment in Sino-Korean Plate. Geological Bulletin of China, 26(5): 503-509]

孫龍飛,湯冬杰,周利敏,方浩,吳孟亭,郭華,周錫強(qiáng),鄒佳男,史曉穎. 2020. 華北中元古界霧迷山組淺海脈沖式增氧. 古地理學(xué)報, 22(6): 1181-1196. [Sun L F,Tang D J,Zhou L M,F(xiàn)ang H,Wu M T,Guo H,Zhou X Q,Zou J N,Shi X Y. 2020. A pulsed oxygenation in shallow seawater recorded by Mesoproterozoic Wumishan Formation,North China. Journal of Palaeogeography(Chinese Edition), 22(6): 1181-1196]

蘇文博. 2014.2012年全球前寒武紀(jì)新年表與中國中元古代年代地層學(xué)研究. 地學(xué)前緣, 21(2): 119-138. [Su W B. 2014. A review of the revised Precambrian Time Scale(GTS2012)and the research of the Mesoproterozoic chronostratigraphy of China. Earth Science Frontiers, 21(2): 119-138]

湯冬杰,史曉穎,張文浩,劉云,吳金鍵. 2017. 華北中元古代魚骨狀方解石: 成因機(jī)制和古環(huán)境意義. 古地理學(xué)報, 19(2):227-240. [Tang D J,Shi X Y,Zhang W H,Liu Y,Wu J J. 2017. Mesopro-terozoic herringbone calcite from North China Platform: ge-nesis and paleoenvironmental significance. Journal of Palaeogeography(Chinese Edition), 19(2): 227-240]

天津地質(zhì)礦產(chǎn)局. 1992. 天津市區(qū)域地質(zhì)志. 北京: 地質(zhì)出版社. [Tianjin Bureau of Geology and Mineral Resources. 1992. Regional Geology of Tianjin. Beijing: Geological Publishing House]

田輝,張健,李懷坤,蘇文博,周紅英,楊立公,相振群,耿建珍,劉歡,朱士興,許振清. 2015. 薊縣中元古代高于莊組凝灰?guī)r鋯石LA-MC-ICPMS U-Pb定年及其地質(zhì)意義. 地球?qū)W報, 36(5): 647-658. [Tian H,Zhang J,Li H K,Su W B,Zhou H Y,Yang L G,Xiang Z Q,Geng J Z,Liu H,Zhu S X,Xu Z Q. 2015. Zircon LA-MC-ICPMS U-Pb dating of tuff from Mesoproterozoic Gaoyuzhuang Formation in Jixian County of North China and its geological significance. Acta Geoscientica Sinica, 36(5): 647-658]

謝樹成,顏佳新,史曉穎,殷鴻福,等. 2016. 烴源巖地球生物學(xué). 北京: 科學(xué)出版社,83-87. [Xie S C,Yan J X,Shi X Y,Yin H F,etal. 2016. Geobiology of Hydrocarbon Source Rocks. Beijing: Science Press,83-87]

張拴宏,趙越,葉浩,胡健民,吳飛. 2013. 燕遼地區(qū)長城系串嶺溝組及團(tuán)山子組沉積時代的新制約. 巖石學(xué)報, 29(7): 2481-2490. [Zhang S H,Zhao Y,Ye H,Hu J M,Wu F. 2013. New constraints on ages of the Chuanlinggou and Tuanshanzi formations of the Changcheng System in the Yan-Liao area in the northern North China Craton. Acta Petrologica Sinica, 29(7): 2481-2490]

周弘屹. 2020. 華北陸表海中元古代鐵嶺組沉積期氧化還原狀態(tài). 中國地質(zhì)大學(xué)(北京)本科學(xué)位論文. [Zhou H Y. 2020. Shallow seawater redox conditions during the deposition of the Mesoproterozoic Tieling Formation,North China Land Surface Sea. Undergraduate dissertation of China University of Geoscience(Beijing)]

Ahm A S C,Bjerrum C J,Bl?ttler C L,Swart P K,Higgins J A. 2018. Quantifying early marine diagenesis in shallow-water carbonate sediments. Geochimica et Cosmochimica Acta, 236(1): 140-159.

Arp G,Reimer A,Reitner J. 2002. Calcification of cyanobacterial filaments. Girvanella and the origin of lower Paleozoic lime mud. Comment and reply: comment. Geology, 30(6): 579-580.

Badger M R,Hanson D,Price G D. 2002. Evolution and diversity of CO2concentrating mechanisms in cyanobacteria. Functional Plant Biology, 29: 161-173.

Badger M R,Price G D. 2003. CO2concentrating mechanisms in cyanobacteria: molecular components,their diversity and evolution. Journal of Experimental Botany, 54(383): 609-622.

Bellefroid E J,Hood A S,Hoffman P F,Thomas M D,Reinhard C T,Planavsky N J. 2018. Constraints on Paleoproterozoic atmospheric oxygen levels. Proceedings of the National Academy of Sciences of the United States of America, 115(32): 8104-8109.

Byrne R,Sholkovitz E. 1996. Marine chemistry and geochemistry of the lanthanides. In: Gschneider K A Jr,Eyring L R(eds). Handbook on the Physics and Chemistry of the Rare Earths,23. Amsterdam: Elsevier,497-593.

Canfield D E,Zhang S,F(xiàn)rank A B,Wang X,Wang H,Su J,Ye Y,F(xiàn)rei R. 2018. Highly fractionated chromium isotopes in Mesoproterozoic-aged shales and atmospheric oxygen. Nature Communications, 9(1): 2871.

Chu X,Zhang T,Zhang Q,Lyons T. 2007. Sulfur and carbon isotope records from 1700 to 800Ma carbonates of the Jixian section,northern China: implications for secular isotope variations in Proterozoic seawater and relationships to global supercontinental events. Geochimica et Cosmochimica Acta, 71(19): 4668-4692.

Cole D B,Reinhard C T,Wang X,Gueguen B,Halverson G P,Gibson T,Hodgskiss M S W,McKenzie N R,Lyons T W,Planavsky N J. 2016. A shale-hosted Cr isotope record of low atmospheric oxygen during the Proterozoic. Geology, 44(7): 555-558.

Fang H,Tang D,Shi X,Lechte M,Yu W. 2020. Manganese-rich deposits in the Mesoproterozoic Gaoyuzhuang Formation(ca. 1.58Ga),North China platform: genesis and paleoenvironmental implications. Palaeo-geography,Palaeoclimatology,Palaeoecology, 559: 109966.

Fralick P,Riding R. 2015. Steep rock lake: sedimentology and geochemi-stry of an Archean carbonate platform. Earth-Science Reviews, 151: 132-175.

German C R,Elderfield H. 1990. Application of the Ce anomaly as a paleoredox indicator: the ground rules. Paleoceanography, 5(5): 823-833.

German C R,Holliday B P,Elderfield H. 1991. Redox cycling of rare earth elements in the suboxic zone of the Black Sea. Geochimica et Cosmochimica Acta, 55(12): 3553-3558.

Gilleaudeau G J,Kah L C. 2015. Heterogeneous redox conditions and a shallow chemocline in the Mesoproterozoic ocean: evidence from carbon-sulfur-iron relationships. Precambrian Research, 257: 94-108.

Gilleaudeau G J,F(xiàn)rei R,Kaufman A J,Kah L C,Azmy K,Bartley J K,Chernyavskiy P,Knoll A H. 2016. Oxygenation of the Mesoproterozoic atmosphere: clues from chromium isotopes in carbonates. Geochemical Perspectives Letters, 2(2): 178-187.

Gischler E,Dietrich S,Harris D,Webster J M,Ginsburg R N. 2013. A comparative study of modern carbonate mud in reefs and carbonate platforms: mostly biogenic,some precipitated. Sedimentary Geology, 292(15): 36-55.

Grotzinger J P. 1989. Facies and evolution of Precambrian carbonate depo-sitional systems: emergence of the modern platform archetype. SEPM(Society for Sedimentary Geology)Special Publication, 44: 79-106.

Grotzinger J P. 1990. Geochemical model for Proterozoic stromatolite decline. American Journal of Science,290-A: 80-103.

Grotzinger J P,Kasting J F. 1993. New constraints on Precambrian ocean composition. The Journal of Geology, 101(2): 235-243.

Grotzinger J P,James N P. 2000. Precambrian carbonates: evolution of understanding. SEPM(Society for Sedimentary Geology)Special Publication, 67: 3-20.

Guo H,Du Y,Kah L C,Huang J,Hu C,Huang H,Yu W. 2013. Isotopic composition of organic and inorganic carbon from the Mesoproterozoic Jixian Group,North China: implications for biological and oceanic evolution. Precambrian Research, 224: 169-183.

Guo H,Du Y,Kah L C,Hu C,Huang J,Huang H,Yu W,Song H. 2015. Sulfur isotope composition of carbonate-associated sulfate from the Mesoproterozoic Jixian Group,North China: implications for the marine sulfur cycle. Precambrian Research, 266: 319-336.

Hardisty D S,Lu Z,Planavsky N J,Bekker A,Philippot P,Zhou X,Lyons T W. 2014. An iodine record of Paleoproterozoic surface ocean oxygenation. Geology, 42(7): 619-622.

Hardisty D S,Lu Z,Bekker A,Diamond C W,Gill B C,Jiang G,Kah L C,Knoll A H,Loyd S J,Osburn M R,Planavsky N J,Wang C,Zhou X,Lyons T W. 2017. Perspectives on Proterozoic surface ocean redox from iodine contents in ancient and recent carbonate. Earth and Planetary Science Letters, 463(1): 159-170.

Higgins J A,F(xiàn)ischer W W,Schrag D P. 2009. Oxygenation of the ocean and sediments: consequences for the seafloor carbonate factory. Earth and Planetary Science Letters, 284(1): 25-33.

Higgins J A,Bl?ttler C L,Lundstrom E A,Santiago-Ramos D P,Akhtar A A,Crüger Ahm A S,Bialik O,Holmden C,Bradbury H,Murray S T,Swart P K. 2018. Mineralogy,early marine diagenesis,and the chemistry of shallow-water carbonate sediments. Geochimica et Cosmochimica Acta, 220: 512-534.

Hofmann H J,Thurston P C,Wallace H. 1985. Archean stromatolites from Uchi greenstone belt,northwestern Ontario. In: Evolution of Archean Supracrustal Sequences. Newfoundland: GAC St. Johns, 125-132.

Hofmann H J,Jackson G D. 1987. Proterozoic ministromatolites with radial-fibrous fabric. Sedimentology, 34(6): 963-971.

Holland H D. 1984. The Chemical Evolution of the Atmosphere and Oceans. Princeton,New Jersey: Princeton University Press,582.

Hood A,Wallace M W. 2012. Synsedimentary diagenesis in a Cryogenian reef complex: ubiquitous marine dolomite precipitation. Sedimentary Geology, 255-256: 56-71.

Hood A,Wallace M W. 2015. Extreme ocean anoxia during the Late Cryogenian recorded in reefal carbonates of Southern Australia. Precambrian Research, 261: 96-111.

Kaczmarek S E,Sibley D F. 2007. A comparison of nanometer-scale growth and dissolution features on natural and synthetic dolomite crystals: implications for the origin of dolomite. Journal of Sedimentary Research, 77(5): 424-432.

Kah L C,Riding R. 2007. Mesoproterozoic carbon dioxide levels inferred from calcified cyanobacteria. Geology, 35(9): 799-802.

Kaufman A J,Knoll A H. 1995. Neoproterozoic variations in the C-isotopic composition of seawater: stratigraphic and biogeochemical implications. Precambrian Research, 73(1-4): 27-49.

Knoll A H,Swett K. 1990. Carbonate deposition during the late Proterozoic Era: an example from Spitsbergen. American Journal of Science, 290: 104-132.

Kuang H W,Liu Y Q,Peng N,Luo S S,Li J H,Cen C,Chen M P. 2012. Molar-tooth structure from the Mesoproterozoic Wumishan Formation in Lingyuan,Yanshan region,North China,and geological implications. Acta Geologica Sinica-English Edition, 86(1): 85-95.

Li C,Peng P,Sheng G,F(xiàn)u J,Yan Y. 2003. A molecular and isotopic geochemical study of Meso- to Neoproterozoic(1.73-0.85Ga)sediments from the Jixian section,Yanshan Basin,North China. Precambrian Research, 125(3-4): 337-356.

Li H,Lu S,Su W,Xiang Z,Zhou H,Zhang Y. 2013. Recent advances in the study of the Mesoproterozoic geochronology in the North China Craton. Journal of Asian Earth Sciences, 72: 216-227.

Li X,Liu L,Wu Y,Liu T. 2019. Determination of the redox potentials of solution and solid surface of Fe(Ⅱ)associated with iron oxyhydro-xides. ACS Earth and Space Chemistry, 3(5): 711-717.

Li Z,Bogdanova S,Collins A,Davidson A,De Waele B,Ernst R E,F(xiàn)itzsimons I C W,F(xiàn)uck R A,Gladkochub D P,Jacobs J,Karlstrom K E,Lu S,Natapov L M,Pease V,Pisarevsky S A,Thrane K,Vernikovsky V. 2008. Assembly,configuration,and break-up history of Rodinia: a synthesis. Precambrian Research, 160(1-2): 179-210.

Lin Y,Tang D,Shi X,Zhou X,Huang K. 2019. Shallow-marine ironstones formed by microaerophilic iron-oxidizing bacteria in terminal Paleoproterozoic. Gondwana Research, 76: 1-18.

Ling H F,Chen X,Li D A,Wang D,Shields-Zhou G A,Zhu M. 2013. Cerium anomaly variations in Ediacaran-earliest Cambrian carbonates from the Yangtze Gorges area,South China: implications for oxygena-tion of coeval shallow seawater. Precambrian Research, 225: 110-127.

Liu X M,Kah L C,Knoll A H,Cui H,Wang C,Bekker A,Hazen R M. 2021. A persistently low level of atmospheric oxygen in Earth’s middle age. Nature Communications, 12(1): 1-7.

Lu S,Yang C,Li H K,Li H M. 2002. A group of rifting events in the terminal Paleoproterozoic in the North China Craton. Gondwana Research, 5(1): 123-131.

Lu S,Zhao G,Wang H,Hao G. 2008. Precambrian metamorphic basement and sedimentary cover of the North China Craton: a review. Precambrian Research, 160(1-2): 77-93.

Lu W,W?rndle S,Halverson G P,Zhou X,Bekker A,Rainbird R H,Hardisty D S,Lyons T W,Lu Z. 2017. Iodine proxy evidence for increased ocean oxygenation during the Bitter Springs Anomaly. Geochemical Perspectives Letters, 5: 53-57.

Lu W,Ridgwell A,Thomas E,Hardisty D S,Luo G,Algeo T J,Saltzman M R,Gill B C,Shen Y,Ling H F. 2018. Late inception of a resiliently oxygenated upper ocean. Science, 361(6398): 147-177.

Lu Z,Jenkyns H C,Rickaby R E. 2010. Iodine to calcium ratios in marine carbonate as a paleo-redox proxy during oceanic anoxic events. Geology, 38(12): 1107-1110.

Luo G,Hallmann C,Xie S,Ruan X,Summons R E. 2015. Comparative microbial diversity and redox environments of black shale and stroma-tolite facies in the Mesoproterozoic Xiamaling Formation. Geochimica et Cosmochimica Acta, 151: 150-167.

Meyer H J. 1984. The influence of impurities on the growth rate of calcite. Journal of Crystal Growth, 66(3): 639-646.

Noffke N,Gerdes G,Klenke T,Krumbein W E. 2001. Microbially induced sedimentary structures: a new category within the classification of primary sedimentary structures. Journal of Sedimentary Research, 71(5): 649-656.

Okubo J,Klyukin Y I,Warren L V,Bodnar R J,Xiao S. 2018. The Origin of Barite in the Basal Ediacaran Sete Lagoas Cap Carbonate(bambui Group,Brazil)and Its Implications. In: GSA Annual Meeting in IndianapoLis,Indiana,USA-2018.

Planavsky N J,Reinhard C T,Wang X,Thomson D,McGoldrick P,Rainhard R H,Johnson T,F(xiàn)ischer W W,Lyons T W. 2014. Low Mid-Proterozoic atmospheric oxygen levels and the delayed rise of animals. Science, 346(6209): 635-638.

Poulton S W,F(xiàn)ralick P W,Canfield D E. 2010. Spatial variability in oceanic redox structure 1.8 billion years ago. Nature Geoscience, 3(7): 486-490.

Raven J A. 1997. Putting the C in phycology. European Journal of Phycology, 32(4): 319-333.

Reinhard C T,Planavsky N J,Olson S L,Lyons T W,Erwin D H. 2016. Earth’s oxygen cycle and the evolution of animal Life. Proceedings of the National Academy of Sciences of the United States of America, 113(32): 8933-8938.

Riding R. 2006. Cyanobacterial calcification,carbon dioxide concentrating mechanisms,and Proterozoic-Cambrian changes in atmospheric composition. Geobiology, 4(4): 299-316.

Sami T T,James N P. 1994. Peritidal carbonate platform growth and cyclicity in an early Proterozoic foreland basin,Upper Pethei Group,northwest Canada. Journal of Sedimentary Research,64(2b): 111-131.

Shang M,Tang D,Shi X,Zhou L,Zhou X,Song H,Jiang G. 2019. A pulse of oxygen increase in the early Mesoproterozoic ocean at ca. 1.57-1.56Ga. Earth and Planetary Science Letters, 527: 115797.

Sherman A G,James N P,Narbonne G M. 2000. Sedimentology of a late Mesoproterozoic muddy carbonate ramp,northern Baffin Island,Arctic Canada. In: Grotzinger J P,James N P(eds). Carbonate Sedimentation and Diagenesis in the Evolving Precambrian World. SEPM Special Publication, 67: 275-294.

Sperling E A,Rooney A D,Hays L,Sergeev V N,Vorob’eva N G,Sergeeva N D,Selby D,Johnston D T,Knoll A H. 2014. Redox heterogeneity of subsurface waters in the Mesoproterozoic ocean. Geobiology, 12(5): 373-386.

Su W,Li H,Huff W,Ettensohn F,Zhang S,Zhou H,Wan Y. 2010. SHRIMP U-Pb dating for a K-bentonite bed in the Tieling Formation,North China. Chinese Science Bulletin, 55(29): 3312-3323.

Sumner D Y,Grotzinger J P. 1996. Were kinetics of Archean calcium carbonate precipitation related to oxygen concentration?Geology, 24: 119-122.

Sumner D Y,Grotzinger J P. 2000. Late archean aragonite precipitation: petrography,facies associations,and environmental significance. In: Grotzinger J P, James N P(eds). Carbonates Sedimentation and Dia-genesis in the Evolving Precambrian World. SEPM Special Publication, 67: 123-144.

Sumner D Y,Grotzinger J P. 2004. Implications for Neoarchaean ocean chemistry from primary carbonate mineralogy of the Campbellrand-Malmani Platform,South Africa. Sedimentology, 51(6): 1273-1299.

Tang D,Shi X,Jiang G,Pei Y,Zhang W,Wang Y,Liu M. 2013. Environment controls on Mesoproterozoic thrombolite morphogenesis: a case study from the North China Platform. Journal of Palaeogeography, 2(3): 275-296.

Tang D,Shi X,Jiang G. 2014. Sunspot cycles recorded in Mesoproterozoic carbonate biolaminites. Precambrian Research, 248: 1-16.

Tang D,Shi X,Liu D,Lin Y,Zhang C,Song G,Wu J. 2015. Terminal Paleoproterozoic ooidal ironstone from North China: a sedimentary response to the initial breakup of Columbia supercontinent. Earth Science: Journal of China University of Geosciences, 40: 290-304.

Tang D,Shi X,Wang X,Jiang G. 2016. Extremely low oxygen concentration in Mesoproterozoic shallow seawaters. Precambrian Research, 276: 145-157.

Tang D,Shi X,Jiang G,Zhou X,Shi Q. 2017a. Ferruginous seawater facilitates the transformation of glauconite to chamosite: an example from the Mesoproterozoic Xiamaling Formation of North China. American Mineralogist, 102(11): 2317-2332.

Tang D,Shi X,Ma J,Jiang G,Zhou X,Shi Q. 2017b. Formation of shallow-water glaucony in weakly oxygenated Precambrian ocean: an example from the Mesoproterozoic Tieling Formation in North China. Precambrian Research, 294: 214-229.

Tang D,Shi X,Jiang G,Wu T,Ma J,Zhou X. 2018. Stratiform siderites from the Mesoproterozoic Xiamaling Formation in North China: genesis and environmental implications. Gondwana Research, 58: 1-15.

Tang D,Ma J,Shi X,Lechte M,Zhou X. 2020. The formation of marine red beds and iron cycling on the Mesoproterozoic North China Platform. American Mineralogist, 105(9): 1412-1423.

Thompson J B,Schultze-Lam S,Beveridge T J,Marais D J D. 1997. Whiting events: biogenic origin due to the photosynthetic activity of cyanobacterial picoplankton. Limnology and Oceanography, 42(1): 133-141.

Tosti F,Riding R. 2017a. Fine-grained agglutinated elongate columnar stromatolites: Tieling Formation,ca 1420Ma,North China. Sedimentology, 64(4): 871-902.

Tosti F,Riding R. 2017b. Current molded,storm damaged,sinuous columnar stromatolites: Mesoproterozoic of northern China. Palaeogeography,Palaeoclimatology,Palaeoecology, 465: 93-102.

Wan B,Tang Q,Pang K,Wang X,Bao Z,Meng F,Zhou C,Yuan X,Hua H,Xiao S. 2019. Repositioning the Great Unconformity at the southeastern margin of the North China Craton. Precambrian Research, 324: 1-17.

Wang H,Zhang Z,Li C,Algeo T J,Cheng M,Wang W. 2020. Spatiotemporal redox heterogeneity and transient marine shelf oxygenation in the Mesoproterozoic ocean. Geochimica et Cosmochimica Acta, 270: 201-217.

Wei W,F(xiàn)rei R,Klaebe R,Tang D,Wei G Y,Li D,Tian L L,Huang F,Ling H F. 2021. A transient swing to higher oxygen levels in the atmosphere and oceans at~1.4Ga. Precambrian Research, 354: 106058.

W?rndle S,Crockford P W,Kunzmann M,Bui T H,Halverson G P. 2019. Linking the Bitter Springs carbon isotope anomaly and early Neopro-terozoic oxygenation through Ⅰ/[Ca+Mg]ratios. Chemical Geology, 524: 119-135.

Zhao G,Sun M,Wilde S,Li S. 2003. Assembly,accretion and breakup of the Paleo-Mesoproterozoic Columbia supercontinent: records in the North China Craton. Gondwana Research, 6(3): 417-434.

Zhao G,Li S,Sun M,Wilde S A. 2011. Assembly,accretion,and break-up of the Palaeo-Mesoproterozoic Columbia supercontinent: record in the North China Craton revisited. International Geology Review, 53(11-12): 1331-1356.

Zhang K,Zhu X,Wood R A,Shi Y,Gao Z,Poulton S W. 2018. Oxygenation of the Mesoproterozoic ocean and the evolution of complex eukaryotes. Nature Geoscience, 11: 345-350.

Zhang S,Zhao Y,Yang Z,He Z,Wu H. 2009. The 1.35Ga diabase sills from the northern North China craton: implications for breakup of the Columbia(Nuna)supercontinent. Earth and Planetary Science Letters, 288(3-4): 588-600.

Zhang S,Li Z,Evans D,Wu H,Li H,Dong J. 2012. Pre-Rodinia supercontinent Nuna shaping up: a global synthesis with new paleomagnetic results from North China. Earth and Planetary Science Letters, 353: 145-155.

Zhang S,Wang X,Hammarlund E,Wang H,Costa M,Bjerrum C,Connelly J,Zhang B,Bian L,Candield D. 2015. Orbital forcing of climate 1.4 billion years ago. Proceedings of the National Academy of Sciences of the United States of America, 112(12): E1406-E1413.

Zhang S,Wang X,Wang H,Bjerrum C J,Hammarlund E U,Costa M M,Connelly J N,Zhang B,Su J,Canfield D E. 2016. Sufficient oxygen for animal respiration 1,400million years ago. Proceedings of the National Academy of Sciences, 113(7): 1731-1736.

Zhou X,Jenkyns H C,Owens J D,Junium C K,Zheng X Y,Sageman B B,Hardisty D S,Lyons T W,Ridgwell A,Lu Z. 2015. Upper ocean oxygenation dynamics from Ⅰ/Ca ratios during the Cenomanian-Turonian OAE 2. Paleoceanography, 30(5): 510-526.

猜你喜歡
疊層石文石薊縣
遼東半島震旦系甘井子組疊層石生長機(jī)制研究
這種石頭有生命
醍醐灌頂
寶藏(2021年8期)2021-09-15 02:19:50
薊縣風(fēng)采
文石瑰意琦行,皴紋超然出眾
——詳解淄博文石皴紋及賞石文化
寶藏(2021年1期)2021-03-10 11:06:18
文石韻
寶藏(2019年9期)2019-09-25 06:56:40
文雅清虛 淄博文石
寶藏(2018年12期)2019-01-29 01:50:50
游薊縣梨木臺
——紀(jì)念上山下鄉(xiāng)48周年
中華魂(2017年3期)2017-11-22 02:01:55
疊層石形態(tài)的主控因素—微生物席
區(qū)域重力調(diào)查在薊縣-滄州地區(qū)的應(yīng)用及認(rèn)識
年辖:市辖区| 舒城县| 集安市| 策勒县| 衡山县| 临澧县| 永修县| 庄浪县| 龙泉市| 江永县| 寿阳县| 湘潭县| 宝鸡市| 博湖县| 友谊县| 马山县| 临高县| 长顺县| 璧山县| 四子王旗| 聊城市| 郑州市| 吉林省| 崇阳县| 和龙市| 和林格尔县| 忻州市| 夏邑县| 奇台县| 桂阳县| 溧水县| 正阳县| 门源| 西乌珠穆沁旗| 弥渡县| 嘉定区| 横峰县| 马关县| 白水县| 亚东县| 襄垣县|