舒應(yīng)軍 劉雙武 張虎
摘 要:采用多弧離子鍍技術(shù)在Ti(C, N)金屬陶瓷基體上沉積了TiSiN涂層,用X射線衍射儀、掃描電鏡、顯微硬度儀和劃痕儀等實驗手段研究了基底偏壓對TiSiN涂層的表面形貌、成分、涂層物相和力學(xué)性能的影響。結(jié)果表明,基底偏壓可增加荷能離子的速度,提高荷能離子的能量,并強化離子束對已沉積涂層的濺射作用,減少了涂層表面溶滴的數(shù)量,有利于獲得致密的涂層材料。隨著基底偏壓的增加,(200)方向上衍射強度降低,而(111)方向增強,TiSi2的(311)方向的相對衍射強度略有增大?;灼珘旱脑黾右蔡岣吡送繉拥某练e溫度,致使涂層晶粒有所增大。基底負(fù)偏壓過高容易在晶粒間形成針狀孔洞,從而惡化了涂層的力學(xué)性能。當(dāng)基底偏壓為-200V時,涂層具有良好的力學(xué)性能。
關(guān)鍵詞:Ti-Si-N涂層;基底負(fù)偏壓;多弧離子鍍;微觀組織;力學(xué)性能
中圖分類號:TG174.4 文獻標(biāo)識碼:A? 文章編號:1001-5922(2021)04-0069-04
Abstract:The TiSiN coatings were deposited on the surface of Ti(C, N)-based cermet by multi-arc ion plating method. The effects of substrate bias on the surface morphology, composition, phase and mechanical properties of TiSiN coating were studied by means of X-ray diffraction, scanning electron microscope , microhardness tester and scratch tester. The results show that negative bias voltage can increase the velocity of charged ions, increase the energy of charged ions, and strengthen the sputtering effect of ion beam on the deposited coating, reduce the number of droplets on the coating surface, which is beneficial to obtain dense coating. With the increase of negative bias voltage, the diffraction intensity decreases in the direction of (200), increases in the direction of (111), and increases slightly in the direction of (311) of TiSi2. The increase of negative bias voltage also increases the deposition temperature of coating, resulting in the increase of coating grains. Too high negative bias voltage can easily form needle-like holes in the grains, which will deteriorate the mechanical properties of the coating. When the substrat enegative bias is -200V, the coating has good mechanical properties.
Key words:Ti-Si-N coating; substrate negative bias; multi-arc ion plating; microstructure; mechanical properties
0 前言
由于TiSiN涂層具有硬度高、抗高溫氧化性能好、摩擦系數(shù)小、彈性模量高、與基體結(jié)合力強等特點,得到廣泛關(guān)注[1-6]。目前的研究主要集中在調(diào)整涂層中合金元素的含量[3]、多層復(fù)合[1,6-9]、界面調(diào)控[10-13]等方面。上述微觀效應(yīng)導(dǎo)致薄膜宏觀使役性能的改變,如內(nèi)應(yīng)力控制[14-16]、結(jié)構(gòu)致密化[15]、和膜/基結(jié)合強度改善等。
文獻[6]研究了Ti1-xSixN/CrAlN復(fù)合圖層中隨著Si含量的增加,涂層的硬度由27GPa增加到35GPa,但是涂層的高溫?zé)岱€(wěn)定性卻有所下降。
文獻[14]研究了基體負(fù)偏壓對涂層內(nèi)應(yīng)力和硬度的影響,分析表明,對于低Si含量的涂層,隨著負(fù)偏壓的增大,晶粒度逐漸減小,硬度先升后降,彈性模量的變化不大;對于高Si含量的涂層隨著負(fù)偏壓的增加,晶粒度增大,硬度和彈性模量隨著升高。隨著負(fù)偏壓的增加,涂層的應(yīng)力狀態(tài)由拉應(yīng)力變?yōu)閴簯?yīng)力,其大小隨著負(fù)偏壓的增大而增大,涂層的硬度也隨著增大。
目前以磁控濺射等方法制備TiSiN涂層的研究較多,但對多弧離子鍍制備TiSiN涂層的研究尚缺少系統(tǒng)性。
1 涂層的制備及表征
1.1 TiSiN涂層制備
實驗使用多弧離子鍍機鍍制TiAlN涂層。采用Ti(C, N)金屬陶瓷作為基體材料。試樣經(jīng)打磨、拋光、超聲清洗后,在真空干燥箱中烘干。實驗選擇高純Ti靶和Al靶;所用氮氣和氬氣為高純氣體。靶極電流分別設(shè)為ISi/ITi=60/80、基底溫度為350℃,基底負(fù)偏壓分別在-50V、-100V、-150V、-200V和-250V沉積時間為90min,N2流量為150sccm。
1.2 TiSiN涂層的表征
采用Sirion 200型低溫場發(fā)射掃描電子顯微鏡對涂層的表面形貌和磨損形貌進行分析。用Philips公司生產(chǎn)的X Pert MPD型X射線衍射儀對涂層進行物相分析,選用CuKα射線,λ=0.15406nm,步長為0.02。
用MH-5LD硬度計測量TiAlN涂層的維氏硬度,壓頭所加載荷為0.1kgf,每個試樣選取5個點進行測試,取平均值。在WS-2000自動劃痕儀上測試TiAlN涂層的結(jié)合力。涂層的常溫耐磨性試驗采用球盤磨損試驗。
2 結(jié)果及分析
2.1 TiSiN涂層表面形貌
圖1為不同基底負(fù)偏壓工藝條件下制備的TiSiN涂層表面形貌。由圖可以看出,涂層表面的顆粒的數(shù)量隨著負(fù)偏壓的增大而減少,特別是小顆粒的數(shù)量減少的比較明顯。當(dāng)負(fù)偏壓大于-100V時,涂層表面有部分顆粒脫落的痕跡。當(dāng)負(fù)偏壓增大到-250V后,涂層表面有針狀氣孔產(chǎn)生。在沉積過程中,適當(dāng)?shù)呢?fù)偏壓可增加荷能離子的速度,提高荷能離子的能量,并強化離子束對已沉積涂層的濺射作用,有利于獲得致密的涂層材料?;棕?fù)偏壓的增大也導(dǎo)致電場強度的增強、排斥力增大,部分小顆粒不能克服電場的排斥作用而無法到達基體表面;同時,后沉積的高能離子對先沉積薄膜的再濺射作用也減少了涂層表面顆粒數(shù)量,部分顆粒脫落并形成針狀氣孔。
不同基體負(fù)偏壓下制備的涂層中Si的含量見圖2。
由圖2中可以看出,隨著基體負(fù)偏壓的增加,涂層中Si的含量下降。這是因為負(fù)偏壓的增加,增強了等離子體對以沉積涂層的“再濺射”作用,使得涂層中Si含量降低。
2.2 涂層截面形貌
圖3為不同負(fù)偏壓下TiSiN涂層的斷口形貌。由圖可知,涂層與基體的結(jié)合緊密,界面處沒有裂紋等缺陷產(chǎn)生。隨著負(fù)偏壓的增大,涂層的柱狀組織更加致密,當(dāng)負(fù)偏壓大于-250V時,柱狀晶粒尺寸增大。負(fù)偏壓的增大可以增強離子對基體的濺射作用,提高基體溫度,其作用機理通常用沉積過程中低能離子的轟擊效應(yīng)來解釋[15]。Messier[16]等人發(fā)現(xiàn),隨著基體負(fù)偏壓的增大,涂層致密化所需沉積溫度降低。基底負(fù)偏壓對從靶材激發(fā)出來的離子具有加速作用,當(dāng)離子沉積到基體表面時,對基體表面先沉積的涂層具有轟擊作用,有利于減少先沉積涂層中的缺陷,提高涂層的質(zhì)量。
2.3 XRD物相分析
圖4為不同基體負(fù)偏壓下TiSiN涂層X射線衍射圖譜。分析表明,涂層中含有TiN和TiSi2相。在-50V偏壓時,(200)晶向為主要取向。隨著負(fù)偏壓的增加,(200)方向上衍射強度降低,而(111)方向增強,TiSi2的(311)方向的相對衍射強度略有增大。
2.4 涂層的力學(xué)性能
基體負(fù)偏壓對涂層顯微硬度和晶粒度的影響如圖5所示,對界面結(jié)合強度的影響如圖6所示。隨著基體負(fù)偏壓的增加,涂層的硬度隨之增加,當(dāng)負(fù)偏壓在-200V時,硬度達到最大值,隨著負(fù)偏壓的進一步增加,硬度開始下降。界面結(jié)合強度隨負(fù)偏壓的變化規(guī)律與顯微硬度相一致。利用X射線衍射譜進行晶粒度計算,分析表明,隨著負(fù)偏壓的增加,涂層的平均晶粒尺寸略有增加。負(fù)偏壓的增大,加強了離子束對基體的濺射作用,由轟擊效應(yīng)引起的晶格畸變、缺陷增多,易得到更加致密的涂層材料,其力學(xué)性能得到改善[17]。同時,負(fù)偏壓的增加也提高了涂層的沉積溫度,致使涂層晶粒有所增大。負(fù)偏壓過高容易在晶粒間形成針狀孔洞,從而惡化了涂層的力學(xué)性能。
3 結(jié)論
(1)適當(dāng)?shù)幕w負(fù)偏壓可增加荷能離子的速度,提高荷能離子的能量,并強化離子束對已沉積涂層的濺射作用,減少了涂層表面溶滴的數(shù)量,有利于獲得致密的涂層材料。
(2) 隨著基體負(fù)偏壓的增加,(200)方向上衍射強度降低,而(111)方向增強,TiSi2的(311)方向的相對衍射強度略有增大。
(3)基體負(fù)偏壓的增加也提高了涂層的沉積溫度,致使涂層晶粒有所增大。負(fù)偏壓過高容易在晶粒間形成針狀孔洞,從而惡化了涂層的力學(xué)性能。當(dāng)基底偏壓為-200V時,涂層具有良好的力學(xué)性能。
參考文獻
[1] Q. Wan, B. Yang, M.Y. Chen, et al.Effect of bilayer period on microstructure and mechanical properties of TiSiN/TiN coatings[J].Materialia,2018,3:260-264.
[2]M.Bartosik,R.Hahn,Z.L.Zhang,et al. Fracture toughness of Ti-Si-N thin films[J].International Journal of Refractory Metals and Hard Materials,2018,72:78-82.
[3]Q. Wan,B. Yang,H.D. Liu,et al. Microstructure and adhesion of MeN/TiSiN (Me = Ti, Cr, Zr, Mo, NbxAl1?x) multilayered coatings deposited by cathodic arc ion plating[J]. Applied Surface Science, 2019, 497.
[4]Xuming Zha,F(xiàn)engbiao Chen,F(xiàn)eng Jiang,et al. Correlation of the fatigue impact resistance of bilayer and nanolayered PVD coatings with their cutting performance in machining Ti6Al4V[J]. Ceramics International, 2019, 45(12): 14704-14717.
[5]Wanglin Chen,Te Hu,Chengyong Wang,et al.The effect of microstructure on corrosion behavior of a novel AlCrTiSiN ceramic coating[J].Ceramics International, 2020, 46(8): 12584-12592.
[6]Chun Hu,Hui T. Wang,Li Chen,et al. Structural, mechanical and thermal properties of Ti1-xSixN/CrAlN (x = 0, 0.13 and 0.22) multilayers[J]. Journal of Alloys and Compounds, 2019, 800: 355-362.
[7]Desheng Wang,Ming Hu,Xiaoming Gao,et al.Tailoring of the interface morphology of WS2/CrN bilayered thin film for enhanced tribological property[J]. Vacuum, 2018, 156: 157-164.
[8]Guang Xian,Ji Xiong,Haibo Zhao,et al. Evaluation of the structure and properties of the hard TiAlN-(TiAlN/CrAlSiN)-TiAlN multiple coatings deposited on different substrate materials[J]. International Journal of Refractory Metals and Hard Materials, 2019, 85.
[9]W. Li, P. Liu, Z.H. Xue, et al.Microstructure, mechanical properties and strengthening mechanism of TiSiCN nanocomposite films synthesized by reactive magnetron sputtering[J].Sci. Rep., 2017, 7 :2140(1-10).
[10]Wanglin Chen,An Yan,Xianna Meng,et al. Microstructural change and phase transformation in each individual layer of a nano-multilayered AlCrTiSiN high-entropy alloy nitride coating upon annealing[J]. Applied Surface Science, 2018, 462: 1017-1028.
[11]Wei Li,Ping Liu,Pengcan Chen,et al.Microstructure and a coherent-interface strengthening mechanism of? NbSiN nanocomposite film[J].Thin Solid Films,2017,636:1-7.
[12]Wei Li,Ke Zhang,Ping Liu,et al. Microstructural characterization and strengthening mechanism of AlN/Y nanocomposite and nanomultilayered films[J]. Journal of Alloys and Compounds, 2018, 732: 414-421.
[13]Alexander S. Chang,Lincoln J. Lauhon.Lauhon. Atom probe tomography of nanoscale architectures in functional materials for electronic and photonic applications[J]. Current Opinion in Solid State and Materials Science,2018.
[14] B. Warcholinski,T. A. Kuznetsova,A. Gilewicz,et al. Structural and Mechanical Properties of Zr-Si-N Coatings Deposited by Arc Evaporation at Different Substrate Bias Voltages[J]. Journal of Materials Engineering and Performance,2018, 27(8): 3940-3950.
[15] Yang Deng,Wanglin Chen,Bingxin Li,et al. Physical vapor deposition technology for coated cutting tools: A review[J]. Ceramics International,2020,46(11): 18373-18390.
[16] Kvasov, N. T.,Uglov, V. V.,Safronov, I. V.,et al. The Interface Influence in TiN/SiN (x) Multilayer Nanocomposite Under Irradiation[J].Russian physics journal,2018,60(9):1600-1610.