国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

秸稈覆蓋對(duì)粉壟蔗田土壤有機(jī)碳及CO2排放的影響

2021-06-30 01:47:00陳仕林蒙炎成胡鈞銘俞月鳳李婷婷張俊輝陳淵韋本輝韋翔華
關(guān)鍵詞:免耕保護(hù)性耕作

陳仕林 蒙炎成 胡鈞銘 俞月鳳 李婷婷 張俊輝 陳淵 韋本輝 韋翔華

摘要:【目的】研究免耕保護(hù)性耕作下秸稈覆蓋對(duì)蔗田土壤有機(jī)碳與CO2排放的影響,為旱地蔗田土壤有機(jī)碳庫(kù)調(diào)控管理提供科學(xué)依據(jù)?!痉椒ā?018—2019年以秸稈覆蓋第2年宿根蔗田為研究對(duì)象,設(shè)粉壟免耕宿根蔗秸稈覆蓋(SR1)、粉壟免耕宿根蔗無(wú)秸稈覆蓋(SR2)、常規(guī)免耕宿根蔗秸稈覆蓋(CT1)和常規(guī)免耕宿根蔗無(wú)秸稈覆蓋(CT2)4種處理,在甘蔗分蘗期、伸長(zhǎng)期和成熟期采集0~15和15~30 cm土層土壤樣品,分析土壤總有機(jī)碳、土壤易氧化有機(jī)碳、土壤微生物量碳及CO2排放通量,并計(jì)算蔗田土壤碳庫(kù)管理指數(shù)(CPMI)。【結(jié)果】秸稈覆蓋提高了免耕蔗田土壤總有機(jī)碳含量,甘蔗收獲后0~15和15~30 cm土層土壤總有機(jī)碳含量SR1處理較SR2處理分別提高33.60%和22.08%,CT1處理較CT2處理分別提高18.13%和42.22%。秸稈覆蓋增加了免耕蔗田土壤易氧化有機(jī)碳含量,甘蔗收獲后SR1處理0~15和15~30 cm土層土壤易氧化有機(jī)碳含量較SR2處理分別提高11.86%和37.78%,CT1處理較CT2處理分別提高54.84%和31.03%。秸稈覆蓋提高了粉壟免耕蔗田土壤微生物量碳含量,甘蔗收獲后SR1處理0~15和15~30 cm土層土壤微生物量碳含量較SR2處理分別提高83.21%和126.43%。秸稈覆蓋改變了免耕蔗田CO2排放通量,SR1處理CO2排放峰值較SR2處理提高26.26%,CT1處理較CT2處理提高79.18%。粉壟免耕提高了蔗田CO2排放通量,粉壟免耕CO2排放峰值是常規(guī)免耕的1.66~2.35倍。秸稈覆蓋提高了蔗田土壤碳庫(kù)管理指數(shù),0~15和15~30 cm土層碳庫(kù)管理指數(shù)SR1處理較SR2處理分別提高16.99%和55.90%,CT1處理較CT2處理分別提高29.50%和28.53%;秸稈覆蓋下,粉壟免耕0~15和15~30 cm土層碳庫(kù)管理指數(shù)較常規(guī)免耕分別提高67.58%和102.54%。【結(jié)論】秸稈覆蓋提高了粉壟免耕蔗田土壤總有機(jī)碳、易氧化有機(jī)碳和微生物量碳及碳庫(kù)管理指數(shù)。該模式可作為旱地蔗田土壤有機(jī)碳庫(kù)調(diào)控的一種重要手段。

關(guān)鍵詞: 保護(hù)性耕作;免耕;秸稈覆蓋;土壤有機(jī)碳庫(kù);蔗田

中圖分類號(hào): S566.1;S156.92? ? ? ? ? ? ? ? ? ? ? 文獻(xiàn)標(biāo)志碼: A 文章編號(hào):2095-1191(2021)02-0307-10

Abstract:【Objective】In order to study the effects of straw mulching under no-tillage conservation tillage on the chara-cteristics of soil organic carbon and CO2 emissions in sugarcane fields, and provide scientific basis for the regulation and management of soil organic carbon pool in dryland sugarcane fields. 【Method】From 2018 to 2019, the second year of continuous straw mulching was used as the research object of ratoon sugarcane fields, with smash ridging no-tillage ratoon sugarcane straw mulching(SR1), smash ridging no-tillage ratoon sugarcane straw mulching(SR2), and conventional no-tillage ratoon cane straw mulching(CT1) and conventional no-tillage ratoon cane without straw mulching(CT2)? four treatments. Soil samples of 0-15 cm and 15-30 cm soil layers were collected during the sugarcane tillering, elongation and maturity periods. Total organic carbon, easily oxidizable organic carbon, microbial biomass carbon and CO2 emission flux were analyzed, and the sugarcane soil carbon pool management index(CPMI) was calculated. 【Result】Straw mul-ching increased the total organic carbon content of no-tillage sugarcane fields. After sugarcane harvest, the soil total organic carbon of 0-15 cm and 15-30 cm soil layer was increased by 33.60% and 22.08% in SR1 treatment compared with SR2 treatment, respectively. Compared with CT2 treatment, soil layers of 0-15 cm and 15-30 cm in CT1 treatment increased by 18.13% and 42.22% respectively. Straw mulching increased the oxidizable organic carbon content of the soil in no-tilla-ge sugarcane fields. After sugarcane harvest, SR1 treatment increased the oxidizable organic carbon content of 0-15 cm and 15-30 cm soil layers by 11.86% and 37.78% respectively compared with SR2 treatment. The content of oxidizable organic carbon in 0-15 cm and 15-30 cm soil layers in CT1 treatment increased by 54.84% and 31.03% respectively compared with CT2 treatment. Straw mulching increased the soil microbial biomass carbon content in smash ridging no-tillage sugarcane fields. After sugarcane harvest, SR1 treatment increased by 83.21% and 126.43% of soil microbial biomass carbon content in 0-15 cm and 15-30 cm soil layers compared with SR2 treatment, respectively. Straw mulching changed the CO2 emission flux of no-tillage sugarcane fields. The peak CO2 emissions of SR1 treatment increased by 26.26% compared with SR2 treatment. Compared with CT2 treatment, CT1 treatment increased by 79.18%. Smash ridging no-tillage improved the CO2 emission flux of sugarcane fields. The peak CO2 emission of Fenlong no-tillage was as 1.66-2.35 times as that of conventional no-tillage. Straw mulching improved the soil carbon pool management index of sugarcane fields. The carbon pool management index of 0-15 cm and 15-30 cm soil layers in SR1 treatment increased by 16.99% and 55.90% compared with SR2 treatment, respectively. Compared with CT2 treatment, CT1 treatment increased by 29.50% and 28.53%, respectively. Under the straw mulching, the carbon pool management index of the 0-15 cm and 15-30 cm soil layers of the smash ridging no-tillage soil layer increased by 67.58% and 102.54% respectively compared with the conventional no-tillage. 【Conclusion】Straw mulching can increase soil total organic carbon, oxidizable organic carbon, microbial biomass carbon content and soil carbon pool management index in smash ridging no-tillage sugarcane fields. This model can be used as an important means to regulate the characteristics of soil organic carbon pool in dryland sugarcane field.

Key words: conservation tillage; no-tillage; straw mulching; soil organic carbon pool; sugarcane field

Foundation item: Project of the Ten,Hundred and Thousand Talent of the New Century in Guangxi(2018221);Guangxi Innovation Driven Key Project(Guike AA17204037-3); Innovation Team Project of Guangxi Academy of Agricultural Sciences(Guinongke 2018YT08, Guinongke 2021YT040)

0 引言

【研究意義】廣西是我國(guó)甘蔗主產(chǎn)區(qū)之一,甘蔗產(chǎn)量高低及品質(zhì)優(yōu)劣對(duì)平衡甘蔗市場(chǎng)供應(yīng)意義巨大(李楊瑞和楊麗濤,2009)。但亞熱帶紅壤山區(qū)季節(jié)性干旱、土壤貧瘠、生產(chǎn)條件落后等因素嚴(yán)重制約了廣西的甘蔗生產(chǎn)(李炳楊,2018;楊星星等,2020)。土壤總有機(jī)碳作為土壤的重要組成部分,是衡量土壤肥力高低的重要指標(biāo)之一(鄭梓萱和曾辰,2017),其微小變化可能影響土壤CO2的排放(陳朝等,2011;黃濤等,2013)。傳統(tǒng)翻耕頻繁擾動(dòng)土壤結(jié)構(gòu),易造成水土流失,改變土壤碳庫(kù)及養(yǎng)分分布(胡鈞銘等,2018a)。合理的農(nóng)田管理措施對(duì)調(diào)控土壤碳庫(kù)和溫室氣體排放具有積極作用(Chplot et al.,2015;Gao et al.,2015;Garcia-Franco et al.,2015)。農(nóng)業(yè)生產(chǎn)上通過(guò)免少耕或地表覆蓋等保護(hù)性耕作減少土壤侵蝕,有利于農(nóng)業(yè)可持續(xù)生產(chǎn)(田慎重等,2010)。因此,研究秸稈覆蓋下保護(hù)性耕作對(duì)蔗田土壤有機(jī)碳庫(kù)的影響,對(duì)改善蔗田土壤有機(jī)碳庫(kù)管理具有重要意義?!厩叭搜芯窟M(jìn)展】秸稈還田既可解決秸稈廢棄物資源化利用難題,又可改善土壤有機(jī)碳活性和微生物多樣性,增加土壤有機(jī)質(zhì)(劉定輝等,2008;崔鳳娟等,2012),已被廣泛應(yīng)用于農(nóng)業(yè)生產(chǎn)中(呂凱等,2019)。卜玉山等(2010)在春玉米和春小麥上的研究認(rèn)為,秸稈覆蓋后,農(nóng)田土壤溫度下降且水分不易流失,是提高土壤總有機(jī)碳含量的重要原因。李蓉蓉等(2017)在黃土高原旱塬區(qū)的研究表明,秸稈覆蓋顯著增加麥田0~10和10~20 cm耕作層土壤總有機(jī)碳及微生物量碳含量。王改玲等(2017)研究表明,秸稈覆蓋可提高土壤碳庫(kù)管理指數(shù),是改善土壤碳庫(kù)的主要途徑之一。葉新新等(2019)研究發(fā)現(xiàn),秸稈還田后腐解產(chǎn)生的有機(jī)質(zhì)被土壤微生物分解、吸收,微生物大量繁殖,對(duì)土壤微生物量碳含量提高效果明顯。王旭東等(2020)通過(guò)Meta-analysis法研究發(fā)現(xiàn),經(jīng)過(guò)秸稈覆蓋后,土壤環(huán)境得到改善,土壤總有機(jī)碳含量顯著增加,增幅可達(dá)7.7%~14.6%?;矢Τ驶莸龋?020)通過(guò)長(zhǎng)期定位試驗(yàn)發(fā)現(xiàn),秸稈還田與氮肥協(xié)同作用可顯著提高土壤總有機(jī)碳含量和易氧化有機(jī)碳含量。劉穎穎等(2020)研究認(rèn)為,秸稈與紫云英協(xié)同還田改變了土壤養(yǎng)分供給,對(duì)稻田土壤總有機(jī)碳的提高效果優(yōu)于秸稈單獨(dú)還田?!颈狙芯壳腥朦c(diǎn)】近年來(lái),粉壟深旋耕技術(shù)在甘蔗生產(chǎn)上得到較廣泛的應(yīng)用(韋本輝等,2011),粉壟深旋耕可打破犁底層,適于提高旱地土壤蓄水(李華等,2013;李軼冰等,2013)。但目前有關(guān)秸稈覆蓋下粉壟耕作對(duì)紅壤黏土蔗田土壤有機(jī)碳庫(kù)影響的研究鮮見(jiàn)報(bào)道。【擬解決的關(guān)鍵問(wèn)題】以粉壟耕作秸稈覆蓋第2年宿根蔗田為研究對(duì)象,通過(guò)對(duì)宿根蔗田不同時(shí)期土壤總有機(jī)碳含量、土壤易氧化有機(jī)碳含量、土壤微生物量碳含量、CO2排放及耕層土壤碳庫(kù)管理指數(shù)變化的深入研究,科學(xué)評(píng)估秸稈覆蓋對(duì)粉壟蔗田土壤有機(jī)碳的影響,為旱地蔗田土壤有機(jī)碳庫(kù)調(diào)控管理提供科學(xué)依據(jù)。

1 材料與方法

1. 1 試驗(yàn)材料

供試甘蔗品種為桂糖42號(hào)。供試秸稈為豆科秸稈(干基含N 1.63%、P 0.17%、K 1.86%),由廣西農(nóng)業(yè)科學(xué)院經(jīng)濟(jì)作物研究所提供。試驗(yàn)選用豆科秸稈而未采用蔗葉還田,是因?yàn)槎箍凭G肥和豆科作物秸稈易于腐解,便于直接覆蓋還田(胡鈞銘等,2018b),而蔗葉還田操作難度大,且蔗葉表面具有蠟質(zhì),腐解緩慢,難以大面積實(shí)施應(yīng)用(樊保寧等,2020)。

1. 2 試驗(yàn)方法

試驗(yàn)于2018—2019年在廣西南寧隆安縣那桐鎮(zhèn)進(jìn)行。試驗(yàn)新植蔗田設(shè)粉壟耕作和常規(guī)耕作(對(duì)照)2種耕作方式,每種耕作方式設(shè)秸稈覆蓋和無(wú)秸稈覆蓋2種處理,共4個(gè)處理(表1)。每處理3重復(fù),每處理小區(qū)面積148.5 m2。粉壟耕作2018年3月15日采用粉壟深旋耕機(jī)(五豐1SGL-200)進(jìn)行耕作,深度40 cm;常規(guī)耕作采用拖拉機(jī)旋耕20 cm犁田整地。新植蔗于2018年3月30日下種,行距80 cm,2019年1—2月采收。新植蔗采收后,利用田間蔗蔸進(jìn)行宿根蔗生產(chǎn),追蹤研究秸稈覆蓋對(duì)粉壟蔗田土壤有機(jī)碳影響的各項(xiàng)指標(biāo)。甘蔗生長(zhǎng)季施用三元復(fù)合肥(氮∶磷∶鉀=16∶16∶16),施肥量2250 kg/ha,甘蔗種植前期(耕作時(shí)同步施肥)底肥占70%,后期(苗期和伸長(zhǎng)期)追施占30%。豆科秸稈于宿根蔗苗期按2252 kg/ha用量覆蓋于甘蔗行間近根部30 cm處。宿根蔗于2019年12月采收。田間管理按廣西雙高甘蔗生產(chǎn)規(guī)范進(jìn)行。

在宿根蔗分蘗期、伸長(zhǎng)期和成熟期采用S形多點(diǎn)法采集0~15和15~30 cm土層土壤樣品。在甘蔗全生育關(guān)鍵期進(jìn)行氣體采集,采樣時(shí)間分別為5、6、8、9、10和12月,每月進(jìn)行2次氣體取樣,取樣時(shí)間間隔1 d,共采樣12次,采樣時(shí)間為9:00—11:00,采樣前后記錄氣箱內(nèi)溫度。每個(gè)采樣點(diǎn)在蓋膠塞后用50 mL注射器采樣,共采樣4次,每次采樣間隔10 min。每次試驗(yàn)3次重復(fù)。

1. 3 測(cè)定項(xiàng)目及方法

土壤總有機(jī)碳含量采用重鉻酸鉀氧化—外加熱法測(cè)定(鮑士旦,2000),土壤易氧化有機(jī)碳含量采用KMnO4氧化法測(cè)定(張仕吉等,2016),土壤微生物量碳含量采用氯仿熏蒸—K2SO4提取法測(cè)定(林先貴,2010)。蔗田溫室氣體CO2排放通量采用分離式靜態(tài)箱—?dú)庀嗌V法測(cè)定(鄭佳舜等,2019),碳庫(kù)管理指數(shù)等相關(guān)指標(biāo)的計(jì)算(徐明崗等,2006)如下:

1. 4 統(tǒng)計(jì)分析

試驗(yàn)數(shù)據(jù)采用Excel 2010進(jìn)行整理并制圖,以SPSS 19.0進(jìn)行單因素方差分析(LSD)和Duncans多重檢驗(yàn)。

2 結(jié)果與分析

2. 1 秸稈覆蓋對(duì)粉壟蔗田土壤總有機(jī)碳的影響

由圖1可看出,在甘蔗生育期中,除分蘗期SR1處理,成熟期SR2和CT1處理外,其余各處理0~15 cm土層土壤總有機(jī)碳含量均高于15~30 cm土層。分蘗期SR1和CT2處理、伸長(zhǎng)期SR1處理、成熟期CT2處理的土壤總有機(jī)碳含量在0~15和15~30 cm土層間差異顯著(P<0.05,下同)。

在0~15 cm土層土壤中,同種耕作模式下,除伸長(zhǎng)期常規(guī)免耕處理外,其余各處理土壤總有機(jī)碳含量表現(xiàn)為秸稈覆蓋處理顯著高于無(wú)秸稈覆蓋處理。在甘蔗成熟期,秸稈覆蓋顯著提高了免耕宿根蔗田土壤總有機(jī)碳含量,SR1-1處理較SR2-1處理提高33.60%,CT1-1處理較CT2-1處理提高18.13%。秸稈覆蓋條件下,蔗田土壤總有機(jī)碳含量表現(xiàn)為粉壟免耕顯著高于常規(guī)免耕,在分蘗期、伸長(zhǎng)期和成熟期,SR1-1處理土壤總有機(jī)碳含量分別為18.93、18.51和18.45 g/kg,較CT1-1處理分別提高50.36%、62.94%和36.16%。

在15~30 cm土層土壤中,同種耕作模式下,除伸長(zhǎng)期常規(guī)免耕處理外,其余各處理土壤總有機(jī)碳含量表現(xiàn)為秸稈覆蓋顯著高于無(wú)秸稈覆蓋。在甘蔗成熟期,秸稈覆蓋顯著提高了粉壟免耕宿根蔗田土壤總有機(jī)碳含量,SR1-2處理較SR2-2處理提高22.08%,CT1-2處理較CT2-2處理提高42.22%。秸稈覆蓋條件下,蔗田土壤總有機(jī)碳含量表現(xiàn)為粉壟免耕宿根蔗田顯著高于常規(guī)免耕。在分蘗期、伸長(zhǎng)期和成熟期,SR1-2處理土壤總有機(jī)碳含量分別為20.00、17.01和17.97 g/kg,較CT1-2處理分別提高66.67%、60.32%和30.12%??梢?jiàn),秸稈覆蓋或粉壟免耕均能有效提高蔗田土壤總有機(jī)碳含量。

2. 2 秸稈覆蓋對(duì)粉壟蔗田土壤易氧化有機(jī)碳的影響

由圖2可看出,在甘蔗生育期中,除分蘗期SR1和CT1處理外,其余各處理0~15 cm土層土壤易氧化有機(jī)碳含量均高于15~30 cm土層。除分蘗期SR1和成熟期SR2處理外,其余各處理的土壤易氧化有機(jī)碳含量在0~15和15~30 cm土層間差異不顯著(P>0.05,下同)。

在0~15 cm土層土壤中,同種耕作模式下,在分蘗期和伸長(zhǎng)期,秸稈覆蓋處理土壤易氧化有機(jī)碳含量高于無(wú)秸稈覆蓋處理,但差異不顯著。在甘蔗成熟期,秸稈覆蓋提高了免耕宿根蔗田土壤易氧化有機(jī)碳含量,SR1-1處理較SR2-1處理提高11.86%,CT1-1處理較CT2-1處理提高54.84%。秸稈覆蓋條件下,在分蘗期和成熟期,蔗田土壤易氧化有機(jī)碳含量表現(xiàn)為粉壟免耕顯著高于常規(guī)免耕。在分蘗期、伸長(zhǎng)期和成熟期,SR1-1處理土壤易氧化有機(jī)碳含量分別為0.39、0.52和0.66 g/kg,較CT1-1處理分別提高160.00%、20.93%和37.50%。

在15~30 cm土層土壤中,同種耕作模式下,秸稈覆蓋處理土壤易氧化有機(jī)碳含量高于無(wú)秸稈覆蓋處理,且在分蘗期和成熟期,SR1-2處理土壤易氧化有機(jī)碳含量顯著高于SR2-2處理。在甘蔗成熟期,秸稈覆蓋提高了免耕宿根蔗田土壤易氧化有機(jī)碳含量,SR1-2處理較SR2-2處理提高37.78%,CT1-2處理較CT2-2處理提高31.03%。秸稈覆蓋條件下,在分蘗期和成熟期,蔗田土壤易氧化有機(jī)碳含量表現(xiàn)為粉壟免耕顯著高于常規(guī)免耕。在分蘗期、伸長(zhǎng)期和成熟期,SR1-2處理土壤易氧化有機(jī)碳含量分別為0.55、0.48和0.62 g/kg,較CT1-2處理分別提高243.75%、11.63%和63.16%??梢?jiàn),粉壟免耕和秸稈覆蓋均能顯著提高蔗田土壤易氧化有機(jī)碳含量。

2. 3 秸稈覆蓋對(duì)粉壟蔗田土壤微生物量碳的影響

由圖3可看出,在甘蔗各生育期中,除伸長(zhǎng)期SR1、SR2和CT1處理及成熟期CT2處理外,其余處理0~15 cm土層土壤微生物量碳含量均高于15~30 cm土層,且各處理在0~15和15~30 cm土層間差異不顯著。

在0~15 cm土層土壤中,同種耕作模式下,除伸長(zhǎng)期常規(guī)免耕處理外,秸稈覆蓋處理土壤微生物量碳含量均高于無(wú)秸稈覆蓋處理。在甘蔗成熟期,秸稈覆蓋提高了免耕宿根蔗田土壤微生物量碳含量,SR1-1處理較SR2-1處理提高83.21%,CT1-1處理較CT2-1處理提高10.27%。秸稈覆蓋條件下,除分蘗期外,蔗田土壤微生物量碳含量均表現(xiàn)為粉壟免耕顯著高于常規(guī)免耕,伸長(zhǎng)期和成熟期SR1-1處理土壤微生物量碳含量分別為284.25和409.13 mg/kg,較CT1-1處理分別提高146.36%和150.06%。

在15~30 cm土層土壤中,同種耕作模式下,除成熟期CT2處理外,秸稈覆蓋處理的土壤微生物量碳含量均高于無(wú)秸稈覆蓋處理。在甘蔗成熟期,秸稈覆蓋提高了粉壟免耕宿根蔗田土壤微生物量碳含量,SR1-2處理較SR2-2處理提高126.43%。秸稈覆蓋條件下,除分蘗期外,蔗田土壤微生物量碳含量表現(xiàn)為粉壟免耕顯著高于常規(guī)免耕。在伸長(zhǎng)期和成熟期SR1-2處理土壤微生物量碳含量分別為358.81和327.82 mg/kg,較CT1-2處理分別提高128.88%和112.98%??梢?jiàn),秸稈覆蓋或粉壟免耕均能顯著提高蔗田土壤微生物量碳含量。

2. 4 秸稈覆蓋對(duì)粉壟蔗田CO2排放的影響

從圖4可看出,在甘蔗整個(gè)生育期內(nèi),不同處理CO2排放通量表現(xiàn)為SR1>SR2>CT1>CT2。2019年5—12月SR2和CT1處理蔗田土壤CO2排放通量變化趨勢(shì)基本一致,SR1、SR2和CT1處理蔗田土壤CO2排放通量隨甘蔗生長(zhǎng)發(fā)育呈先增大后減小的變化趨勢(shì),CT2處理則相反。甘蔗苗期和分蘗期土壤CO2緩慢排放,進(jìn)入伸長(zhǎng)期CO2排放通量大幅增長(zhǎng),且達(dá)到峰值,然后進(jìn)入成熟期,排放通量開(kāi)始下降。同種耕作模式下,排放通量峰值表現(xiàn)為SR1>SR2,CT1>CT2,SR1處理較SR2處理提高26.26%,CT1處理較CT2處理提高79.18%,表明秸稈覆蓋能促進(jìn)蔗田CO2排放。同種覆蓋處理下,不同耕作模式CO2排放通量表現(xiàn)為SR1>CT1,SR2>CT2,即粉壟免耕CO2排放通量高于常規(guī)免耕,粉壟免耕CO2排放峰值是常規(guī)免耕處理的1.66~2.35倍。

2. 5 秸稈覆蓋對(duì)粉壟蔗田土壤碳庫(kù)管理指數(shù)的影響

甘蔗不同生育時(shí)期4個(gè)處理中,以CT2為參照土壤,根據(jù)土壤碳庫(kù)管理指數(shù)(CPMI)方法可得到SR1、SR2和CT1各層土壤的碳庫(kù)管理指數(shù)(表2)。由表2可知,在甘蔗分蘗期、伸長(zhǎng)期和成熟期,不同處理各土層碳庫(kù)指數(shù)(CPI)均表現(xiàn)為SR1>SR2>CT1>CT2;0~30 cm土層土壤碳庫(kù)指數(shù)平均值總體也表現(xiàn)為SR1>SR2>CT1>CT2。

甘蔗不同生育期中,除伸長(zhǎng)期15~30 cm土層土壤碳庫(kù)管理指數(shù)表現(xiàn)為SR1>CT1>SR2>CT2外,其余各處理均表現(xiàn)為SR1>SR2>CT1>CT2。0~30 cm土層土壤碳庫(kù)管理指數(shù)平均值表現(xiàn)為SR1>SR2>CT1>CT2,表明秸稈覆蓋提高了土壤碳庫(kù)管理指數(shù)。同種耕作模式下,0~15和15~30 cm土層碳庫(kù)管理指數(shù)SR1處理較SR2處理分別提高16.99%和55.90%,CT1處理較CT2處理分別提高29.50%和28.53%。秸稈覆蓋下,粉壟免耕0~15和15~30 cm土層碳庫(kù)管理指數(shù)較常規(guī)免耕分別提高67.58%和102.54%。可見(jiàn),秸稈覆蓋是改善粉壟免耕蔗田土壤質(zhì)量的主要手段。

3 討論

作物根系在土層的空間布局影響土壤有機(jī)碳的積累,如深松耕作促使玉米根系主要分布于20 cm土層以下(張麗等,2015;Liu et al.,2015),而秸稈覆蓋后,秸稈可被微生物腐解,能提高土壤總有機(jī)碳含量,促進(jìn)土壤有機(jī)質(zhì)積累(嚴(yán)昌榮等,2010;楊晶等,2010;關(guān)振寰等,2014)。土壤總有機(jī)碳變化主要發(fā)生在0~30 cm土層,且在0~10 cm耕作層中變化更明顯(Doran et al.,1998;Mikhailova et al.,2000)。本研究結(jié)果表明,秸稈覆蓋或粉壟免耕保護(hù)性耕作均能有效增加蔗田土壤總有機(jī)碳含量,且秸稈覆蓋和粉壟免耕同步實(shí)施對(duì)蔗田土壤總有機(jī)碳含量提高效果最佳。其原因可能是頻繁的土壤耕作易破壞土壤結(jié)構(gòu),加快土壤有機(jī)質(zhì)分解,不利于土壤總有機(jī)碳積累(Chen et al.,2016),但合理的保護(hù)性耕作有助于改變養(yǎng)分在耕層的分布(蔣發(fā)輝等,2020),且秸稈中碳元素分解與轉(zhuǎn)化是土壤總有機(jī)碳的重要來(lái)源,合理耕作配合秸稈還田對(duì)提升土壤地力有積極作用(Paustian et al.,1997;董珊珊和竇森,2017;閆洪奎和王欣然,2017;田慎重等,2020)。

土壤易氧化有機(jī)碳是考察土壤質(zhì)量?jī)?yōu)劣的重要指標(biāo)之一,受田間管理措施的改變較敏感(Chen et al.,2009)。土壤微生物量碳是土壤中最活躍的因子,易受到耕作方式的影響(陶水龍等,1998;Doran et al.,1998),頻繁耕作會(huì)擾亂土層結(jié)構(gòu),不利于土壤微生物量碳積累(Nelson et al.,2006)。免少耕等保護(hù)性耕作能增加土壤肥力,提高土壤有機(jī)質(zhì)含量,利于土壤蓄水保墑及土壤環(huán)境的改善(王長(zhǎng)生等,2004)。本研究結(jié)果表明,秸稈覆蓋與粉壟免耕保護(hù)性耕作同步實(shí)施提高了土壤易氧化有機(jī)碳含量和土壤微生物量碳含量。其原因可能是因?yàn)樵囼?yàn)地為蔗田土壤粉壟耕作后的第2年,免耕保護(hù)性耕作對(duì)土層結(jié)構(gòu)擾動(dòng)較小,促進(jìn)了土壤團(tuán)粒結(jié)構(gòu)的穩(wěn)定,為土壤微生物活動(dòng)提供了適宜的環(huán)境條件(崔鳳娟等,2012;哈斯格日樂(lè)等,2019),土壤微生物活動(dòng)頻繁,降解土壤動(dòng)植物殘?bào)w加快,進(jìn)而提升了土壤有機(jī)碳及微生物量碳含量(隋躍宇等,2009);秸稈還田經(jīng)腐解后,轉(zhuǎn)化為外源有機(jī)物料進(jìn)入土壤被微生物吸收和利用,微生物繁殖加快,促使有機(jī)質(zhì)向土壤活性碳庫(kù)輸入(田慎重等,2010;張英英等,2017),也有助于提高土壤易氧化有機(jī)碳含量和微生物量碳含量。本研究還發(fā)現(xiàn),土壤微生物量碳含量在甘蔗分蘗期至成熟期隨生育期推移而波動(dòng),在甘蔗成熟期最高,該變化動(dòng)態(tài)與李云玲等(2004)在玉米地上的研究結(jié)果一致,分析其原因,可能與甘蔗分蘗期和伸長(zhǎng)期生長(zhǎng)旺盛,對(duì)土壤養(yǎng)分需求增多有關(guān)。環(huán)境的改變使植物與土壤微生物養(yǎng)分競(jìng)爭(zhēng)加劇,更多營(yíng)養(yǎng)物質(zhì)被植物吸收,導(dǎo)致土壤微生物量碳含量下降(江淼華等,2018)。

耕作和秸稈覆蓋是影響農(nóng)田溫室氣體排放的重要管理措施(Pandey et al.,2012)。Busari等(2015)研究發(fā)現(xiàn),免耕等保護(hù)性耕作可改變土壤物理、化學(xué)和生物等性質(zhì),對(duì)減少CO2排放有積極作用(張國(guó)和王效科,2020)。但本研究發(fā)現(xiàn),粉壟免耕與秸稈覆蓋同步實(shí)施增加了土壤CO2排放。其原因可能是粉壟耕作打破了犁底層,使土壤變得疏松透氣,微生物活動(dòng)頻繁,促進(jìn)了CO2排放(Wei et al.,2017);此外,土壤有機(jī)質(zhì)分解、植物殘?bào)w腐解和植物根系呼吸等因素也會(huì)影響土壤CO2排放(Oorts et al.,2007),秸稈的腐解加速了微生物對(duì)有機(jī)質(zhì)的分解和轉(zhuǎn)化,進(jìn)而增加了CO2排放通量(Bavin et al.,2009;賀京等,2011)。土壤碳庫(kù)管理指數(shù)是反映農(nóng)田管理對(duì)土壤養(yǎng)分和碳庫(kù)動(dòng)態(tài)變化影響的重要指標(biāo)(張國(guó)盛和黃高寶,2005)。碳庫(kù)管理指數(shù)升高可促進(jìn)土壤腐殖質(zhì)的形成和土壤環(huán)境的改善(范如芹等,2010),碳庫(kù)指數(shù)降低則土壤肥力下降,土壤性質(zhì)惡化(郭寶華等,2014)。本研究結(jié)果表明,秸稈覆蓋與粉壟免耕保護(hù)性耕作同步實(shí)施可有效提高土壤碳庫(kù)管理指數(shù),與陳尚洪等(2008)、展茗等(2009)在稻田上的研究結(jié)果一致。原因可能在于保護(hù)性耕作可降低土壤緊實(shí)度,提高土壤有機(jī)碳活性(張霞等,2018)。同時(shí),秸稈在高溫高濕環(huán)境下易分解,利于土壤微生物數(shù)量和微生物活度上升,進(jìn)而促進(jìn)土壤活性碳庫(kù)的積累(蔡太義等,2011)。

4 結(jié)論

秸稈覆蓋對(duì)粉壟免耕蔗田土壤質(zhì)量改善有一定的積極作用,可提高土壤總有機(jī)碳、易氧化有機(jī)碳和微生物量碳及碳庫(kù)管理指數(shù),但同時(shí)提高了CO2排放通量。該模式可作為旱地蔗田土壤有機(jī)碳庫(kù)調(diào)控的一種重要手段。

參考文獻(xiàn):

鮑士旦. 2000. 土壤農(nóng)化分析[M]. 北京:中國(guó)農(nóng)業(yè)出版社. [Bao S D. 2000. Soil agrochemical analysis[M]. Beijing:China Agriculture Press.]

卜玉山,邵海林,王建程,苗果園. 2010. 秸稈與地膜覆蓋春玉米和春小麥耕層土壤碳氮?jiǎng)討B(tài)[J]. 中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào),18(2):322-326. doi:10.3724/SP.J.1011.2010.00322. [Bu Y S,Shao H L,Wang J C,Miao G Y. 2010. Dynamics of soil carbon and nitrogen in plowed layer of spring corn and spring wheat fields mulched with straw and plastic film[J]. Chinese Journal of Eco-Agriculture,18(2):322-326.]

蔡太義,黃耀威,黃會(huì)娟,賈志寬,李立科,楊寶平,韓思明. 2011. 不同年限免耕秸稈覆蓋對(duì)土壤活性有機(jī)碳和碳庫(kù)管理指數(shù)的影響[J]. 生態(tài)學(xué)雜志,30(9):1962-1968. doi:10.13292/j.1000-4890.2011.0328. [Cai T Y,Huang Y W,Huang H J,Jia Z K,Li L K,Yang B P,Han S M. 2011. Soil labile organic carbon and carbon pool management index as affected by different years no-tilling with straw mulching[J]. Chinese Journal of Ecology,30(9):1962-1968.]

陳朝,呂昌河,范蘭,武紅. 2011. 土地利用變化對(duì)土壤有機(jī)碳的影響研究進(jìn)展[J]. 生態(tài)學(xué)報(bào),31(18):5358-5371. [Chen C,Lü C H,F(xiàn)an L,Wu H. 2011. Effects of land use change on soil organic carbon:A review[J]. Acta Ecolo-gica Sinica,31(18):5358-5371.]

陳尚洪,朱鐘麟,劉定輝. 2008. 秸稈還田和免耕對(duì)土壤養(yǎng)分及碳庫(kù)管理指數(shù)的影響研究[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào),14(4):806-809. doi:10.3724/SP.J.1005.2008.01083. [Chen S H,Zhu Z L,Liu D H. 2008. Influence of straw mul-ching with no-till on soil nutrients and carbon pool management index[J]. Plant Nutrition and Fertilizer Science,14(4):806-809.]

崔鳳娟,劉景輝,李立軍,高婕,李倩. 2012. 免耕秸稈覆蓋對(duì)土壤活性有機(jī)碳庫(kù)的影響[J]. 西北農(nóng)業(yè)學(xué)報(bào),21(9):195-200. doi:10.7606/j.issn.1004-1389.2012.9.036. [Cui F J,Liu J H,Li L J,Gao J,Li Q. 2012. Effect of zero tilla-ge with mulching on active soil organic carbon[J]. Acta Agriculturae Boreali-Occidentalis Sinica,21(9):195-200.]

董珊珊,竇森. 2017. 玉米秸稈不同還田方式對(duì)黑土有機(jī)碳組成和結(jié)構(gòu)特征的影響[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),36(2):322-328. doi:10.11654/jaes.2016-1131. [Dong S S,Dou S. 2017. Effect of different ways of corn stover application to soil on composition and structural characteristics of organic carbon in black soil[J]. Journal of Agro-Environment Science,36(2):322-328.]

樊保寧,游建華,周秋惠. 2020. 我國(guó)糖料甘蔗葉有效處理與利用[J]. 中國(guó)糖料,42(1):77-80. doi:10.13570/j.cnki.scc.2020.01.014. [Fan B N,You J H,Zhou Q H. 2020. Effective treatment and utilization of sugarcane leaves in China[J]. Sugar Crops of China,42(1):77-80.]

范如芹,梁愛(ài)珍,楊學(xué)明,張曉平,申艷,時(shí)秀煥. 2010. 耕作方式對(duì)黑土團(tuán)聚體含量及特征的影響[J]. 中國(guó)農(nóng)業(yè)科學(xué),43(18):3767-3775. doi:10.3864/j.issn.0578-1752.2010. 18.010. [Fan R Q,Liang A Z,Yang X M,Zhang X P,Shen Y,Shi X H. 2010. Effects of tillage on soil aggregates in black soils in northeast China[J]. Scientia Agricultura Sinica,43(18):3767-3775.]

關(guān)振寰,李巧云,張仁陟,王琳,張軍. 2014. 保護(hù)性耕作對(duì)土壤易氧化和總有機(jī)碳的影響[J]. 土壤通報(bào),45(2):420-426. doi:10.19336/j.cnki.trtb.2014.02.028. [Guan Z H,Li Q Y,Zhang R Z,Wang L,Zhang J. 2014. Effects of conservation tillage on readily oxidizable and total organic carbon in soil[J]. Chinese Journal of Soil Science,45(2):420-426.]

郭寶華,范少輝,杜滿義,劉廣路,蘇文會(huì). 2014. 土地利用方式對(duì)土壤活性碳庫(kù)和碳庫(kù)管理指數(shù)的影響[J]. 生態(tài)學(xué)雜志,33(3):723-728. doi:10.13292/j.1000-4890.2014. 0064. [Guo B H,F(xiàn)an S H,Du M Y,Liu G L,Su W H. 2014. Effect of land-use type on soil labile carbon pool and carbon management index[J]. Chinese Journal of Eco-logy,33(3):723-728.]

哈斯格日樂(lè),屈忠義,王凡. 2019. 粉壟耕作下施加脫硫石膏和生物炭對(duì)鹽漬土壤水熱鹽的影響研究[J]. 節(jié)水灌溉,(9):19-22. doi:10.3969/j.issn.1007-4929.2019.09.005. [Hasigerile,Qu Z Y,Wang F. 2019. Water-heat-salt effects of applying desulphurization gypsum and biochar on saline-alkali soil under smashing ridge tillage[J]. Water Sa-ving Irrigation,(9):19-22.]

賀京,李涵茂,方麗,胡嘯,孔維才. 2011. 秸稈還田對(duì)中國(guó)農(nóng)田土壤溫室氣體排放的影響[J]. 中國(guó)農(nóng)學(xué)通報(bào),27(20):246-250. [He J,Li H M,F(xiàn)ang L,Hu X,Kong W C. 2011. Influence of straw application on agricultural greenhouse gas emissions in China[J]. Chinese Agricultural Science Bulletin,27(20):246-250.]

胡鈞銘,陳勝男,韋翔華,夏旭,韋本輝. 2018a. 耕作對(duì)健康耕層結(jié)構(gòu)的影響及發(fā)展趨勢(shì)[J]. 農(nóng)業(yè)資源與環(huán)境學(xué)報(bào),35(2):95-103. doi:10.13254/j.jare.2017.0242. [Hu J M,Chen S N,Wei X H,Xia X,Wei B H. 2018a. Effects of tillage model on healthy plough layer structure and its development trends[J]. Journal of Agricultural Resources and Environment,35(2):95-103.]

胡鈞銘,黃忠華,羅維鋼,李婷婷,蒙炎成,黃太慶,廖婷,俞月鳳. 2018b. 蕉肥間作下微噴灌對(duì)蕉園土壤水氮?jiǎng)討B(tài)及香蕉產(chǎn)量的影響[J]. 廣西植物,38(6):710-718. doi:10. 11931/guihaia.gxzw201803004. [Hu J M,Huang Z H,Luo W G,Li T T,Meng Y C,Huang T Q,Liao T,Yu Y F. 2018b. Effects of micro-sprinkler irrigation on soil water and nitrogen and yield under banana-mung bean intercropping[J]. Guihaia,38(6):710-718.]

皇甫呈惠,孫筱璐,劉樹堂,賈志越,趙洪翠. 2020. 長(zhǎng)期定位秸稈還田對(duì)土壤團(tuán)聚體及有機(jī)碳組分的影響[J]. 華北農(nóng)學(xué)報(bào),35(3):153-159. doi:10.7668/hbnxb.20190844. [Huangfu C H,Sun X L,Liu S T,Jia Z Y,Zhao H C. 2020. Effect of long-term straw returning to field on soil aggregates and organic carbon components[J]. Acta Agriculturae Boreali-Sinica,35(3):153-159.]

黃濤,仇少君,杜娟,史振俠,巨曉棠. 2013. 碳氮管理措施對(duì)冬小麥/夏玉米輪作體系作物產(chǎn)量、秸稈腐解、土壤CO2排放的影響[J]. 中國(guó)農(nóng)業(yè)科學(xué),46(4):756-768. doi:10. 3864/j.issn.0578-1752.2013.04.010. [Huang T,Qiu S J,Du J,Shi Z X,Ju X T. 2013. Effects of different carbon and nitrogen managements on yield, straw decomposition, soil CO2 flux of the winter wheat/summer maize[J]. Scientia Agricultura Sinica,46(4):756-768.]

江淼華,倪夢(mèng)穎,周嘉聰,陳岳民,楊玉盛. 2018. 增溫和降雨減少對(duì)杉木幼林土壤酶活性的影響[J]. 生態(tài)學(xué)雜志,37(11):3210-3219. doi:10.13292/j.1000-4890.201811.040. [Jiang M H,Ni M Y,Zhou J C,Chen Y M,Yang Y S. 2018. Effects of warming and precipitation reduction on soil enzyme activity in a young Cunninghamia lanceolata plantation[J]. Chinese Journal of Ecology,37(11):3210-3219.]

蔣發(fā)輝,高磊,韋本輝,李錄久,彭新華. 2020. 粉壟耕作對(duì)紅壤理化性質(zhì)及紅薯產(chǎn)量的影響[J]. 土壤,52(3):588-596. doi:10.13758/j.cnki.tr.2020.03.024. [Jiang F H,Gao L,Wei B H,Li L J,Peng X H. 2020. Impact of Fenlong tillage on soil physiochemical properties and sweet potato yield in dryland red soil[J]. Soils,52(3):588-596.]

李炳楊. 2018. 廣西甘蔗種植現(xiàn)狀、問(wèn)題及對(duì)策[J]. 熱帶農(nóng)業(yè)科學(xué),38(4):119-127. doi:10.12008/j.issn.1009-2196.2018. 04.022. [Li B Y. 2018. The present situation,problems and countermeasures of sugarcane cultivation in Guangxi[J]. Chinese Journal of Tropical Agriculture,38(4):119-127.]

李華,逄煥成,任天志,李軼冰,汪仁,牛世偉,安景文. 2013. 深旋松耕作法對(duì)東北棕壤物理性狀及春玉米生長(zhǎng)的影響[J]. 中國(guó)農(nóng)業(yè)科學(xué),46(3):647-656. doi:10.3864/j.issn. 0578-1752.2013.03.022. [Li,H,Pang H C,Ren T Z,Li Y B,Wang R,Niu S W,An J W. 2013. Effects of deep rotary-subsoiling tillage method on brown physical properties and maize growth in northeast of China[J]. Scientia Agri-cultura Sinica,46(3):647-656.]

李蓉蓉,王俊,毛海蘭,付鑫. 2017. 秸稈覆蓋對(duì)冬小麥農(nóng)田土壤有機(jī)碳及其組分的影響[J]. 水土保持學(xué)報(bào),31(3):187-192. doi:10.13870/j.cnki.stbcxb.2017.03.032. [Li R R,Wang J,Mao H L,F(xiàn)u X. 2017. Effects of straw mulching on soil organic carbon and fractions of soil carbon in a winter wheat field[J]. Journal of Soil and Water Conservation,31(3):187-192.]

李楊瑞,楊麗濤. 2009. 20世紀(jì)90年代以來(lái)我國(guó)甘蔗產(chǎn)業(yè)和科技的新發(fā)展[J]. 西南農(nóng)業(yè)學(xué)報(bào),22(5):1469-1476. doi:10.16213/j.cnki.scjas.2009.05.017. [Li Y R,Yang L T. 2009. New developments in sugarcane industry and technologies in China since 1990s[J]. Southwest China Journal of Agricultural Sciences,22(5):1469-1476.]

李軼冰,逄煥成,李華,李玉義,楊雪,董國(guó)豪,郭良海,王湘峻. 2013. 粉壟耕作對(duì)黃淮海北部春玉米籽粒灌漿及產(chǎn)量的影響[J]. 中國(guó)農(nóng)業(yè)科學(xué),46(14):3055-3064. doi:10.3864/j.issn.0578-1752.2013.14.022. [Li Y B,Pang H C,Li H,Li Y Y,Yang X,Dong G H,Guo L H,Wang X J. 2013. Effects of deep vertically rotary tillage on grain filling and yield of spring maize in north Huang-Huai-Hai region[J]. Scientia Agricultura Sinica,46(14):3055-3064.]

李云玲,謝英荷,洪堅(jiān)平. 2004. 生物菌肥在不同水分條件下對(duì)土壤微生物生物量碳、氮的影響[J]. 應(yīng)用與環(huán)境生物學(xué)報(bào),(6):790-793. doi:10.3321/j.issn:1006-687X.2004. 06.025. [Li Y L,Xie Y H,Hong J P. 2004. Effect of bacterial manure on soil miceobial biomass C and N under different moisture conditions[J]. Chinese Journal of App-lied & Environmental Biology,(6):790-793.]

林先貴. 2010. 土壤微生物研究原理與方法[M]. 北京:高等教育出版社:73-80. [Lin X G. 2010. Principles and me-thods of soil microbial research[M]. Beijing:Higher Education Press:73-80.]

劉定輝,蒲波,陳尚洪,朱鐘麟,舒麗. 2008. 秸稈還田循環(huán)利用對(duì)土壤碳庫(kù)的影響研究[J]. 西南農(nóng)業(yè)學(xué)報(bào),(5):1316-1319. doi:10.16213/j.cnki.scjas.2008.05.004. [Liu D H,Pu B,Chen S H,Zhu Z L,Shu L. 2008. Effect of crop straw returning to paddy soil onsoil carbon pool in Sichuan basin[J]. Southwest China Journal of Agricultural Scien-ces,(5):1316-1319.]

劉穎穎,卜容燕,唐杉,韓上,王慧,李敏,程文龍,李曉韋,武際,朱林. 2020. 連續(xù)秸稈—紫云英協(xié)同還田對(duì)雙季稻產(chǎn)量、養(yǎng)分積累及土壤肥力的影響[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào),26(6):1008-1016. doi:10.11674/zwyf.19353. [Liu Y Y,Bu R Y,Tang S,Han S,Wang H,Li M,Cheng W L,Li X W,Wu J,Zhu L. 2020. Effect of continuous straw-Chinese milk vetch synergistic return to the field on yield,nutrient accumulation and soil fertility of double cro-pping rice[J]. Journal of Plant Nutrition and Fertilizers,26(6):1008-1016.]

呂凱,段穎丹,吳伯志. 2019. 秸稈覆蓋對(duì)種植烤煙坡耕地土壤侵蝕的影響[J]. 南方農(nóng)業(yè)學(xué)報(bào),50(11):2450-2458. doi:10.3969/j.issn.2095-1191.2019.11.10. [Lü K,Duan Y D,Wu B Z. 2019. Effects of straw mulching on soil erosion in tobacco sloping farmland[J]. Journal of Southern Agriculture,50(11):2450-2458.]

隋躍宇,焦曉光,高崇生,程偉,張興義,劉曉冰. 2009. 土壤有機(jī)質(zhì)含量與土壤微生物量及土壤酶活性關(guān)系的研究[J]. 土壤通報(bào),40(5):1036-1039. doi:10.19336/j.cnki.trtb. 2009.05.013. [Sui Y Y,Jiao X G,Gao C S,Cheng W,Zhang X Y,Liu X B. 2009. The relationship among organic matter content and soil microbial biomass and soil enzyme activities[J]. Chinese Journal of Soil Science,40(5):1036-1039.]

陶水龍,林啟美,趙小蓉. 1998. 土壤微生物量研究方法進(jìn)展[J]. 土壤與肥料,(5):3-5. [Tao S L,Lin Q M,Zhao X R. 1998. Progress in research methods of soil microbial biomass[J]. Soil and Fertilizer Sciences,(5):3-5.]

田慎重,寧堂原,王瑜,李洪杰,仲惟磊,李增嘉. 2010. 不同耕作方式和秸稈還田對(duì)麥田土壤有機(jī)碳含量的影響[J]. 應(yīng)用生態(tài)學(xué)報(bào),21(2):373-378. doi:10.13287/j.1001-9332.2010.0014. [Tian S Z,Ning T Y,Wang Y,Li H J,Zhong W L,Li Z J. 2010. Effects of different tillage methods and straw-returning on soil organic carbon content in a winter wheat field[J]. Chinese Journal of App-lied Ecology,21(2):373-378.]

田慎重,張玉鳳,邊文范,董亮,Jiafa Luo,郭洪海. 2020. 深松和秸稈還田對(duì)旋耕農(nóng)田土壤有機(jī)碳活性組分的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),36(2):185-190. doi:10.11975/j.issn.1002-6819.2020.02.022. [Tian S Z,Zhang Y F,Bian W F,Dong L,Luo J F,Guo H H. 2020. Effects of subsoiling and straw return on soil labile organic carbon fractions in continuous rotary tillage cropland[J]. Transactions of the Chinese Society of Agricultural Engineering,36(2):185-190.]

王改玲,李立科,郝明德. 2017. 長(zhǎng)期施肥和秸稈覆蓋土壤活性有機(jī)質(zhì)及碳庫(kù)管理指數(shù)變化[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào),23(1):20-26. doi:10.11674/zwyf.16095. [Wang G L,Li L K,Hao M D. 2017. Effect of long-term fertilization and straw mulch on the contents of labile organic matter and carbon management index[J]. Journal of Plant Nutrition and Fertilizer,23(1):20-26.]

王旭東,莊俊杰,劉冰洋,李帥帥,趙鑫,劉洋,張海林. 2020. 秸稈還田條件下中國(guó)農(nóng)田土壤有機(jī)碳含量變化及其影響因素的Meta分析[J]. 中國(guó)農(nóng)業(yè)大學(xué)學(xué)報(bào),25(8):12-24. doi:10.11841/j.issn.1007-4333.2020.08.02. [Wang X D,Zhuang J J,Liu B Y,Li S S,Zhao X,Liu Y,Zhang H L. 2020. Residue returning induced changes in soil organic carbon and the influential factors in Chinas croplands:A meta-analysis[J]. Journal of China Agricultural University,25(8):12-24.]

王長(zhǎng)生,王遵義,蘇成貴,李行,王晶,吳光華. 2004. 保護(hù)性耕作技術(shù)的發(fā)展現(xiàn)狀[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),(1):167-169. doi:10.3969/j.issn.1000-1298.2004.01.043. [Wang C S,Wang Z Y,Su C G,Li H,Wang J,Wu G H. 2004. Deve-lopment and application of protective farming technique[J]. Transactions of the Chinese Society for Agricultural Machinery,(1):167-169.]

韋本輝,甘秀芹,陳耀福,申章佑,羅學(xué)夫,陸柳英,胡泊,李艷英,吳延勇,劉斌,韋廣潑,寧秀呈. 2011. 稻田粉壟冬種馬鈴薯試驗(yàn)[J]. 中國(guó)馬鈴薯,25(6):342-344. doi:10.3969/j.issn.1672-3635.2011.06.007. [Wei B H,Gan X Q,Chen Y F,Shen Z Y,Luo X F,Lu L Y,Hu P,Li Y Y,Wu Y Y,Liu B,Wei G P,Ning X C. 2011. Planting winter potato in rice field by using smash-ridging technique[J]. Chinese Potato Journal,25(6):342-344.]

徐明崗,于榮,王伯仁. 2006. 長(zhǎng)期不同施肥下紅壤活性有機(jī)質(zhì)與碳庫(kù)管理指數(shù)變化[J]. 土壤學(xué)報(bào),(5):723-729. doi:10.11766/trxb200505200503. [Xu M G,Yu R,Wang B R. 2006. Labile organic matter and carbon management index in red soil under long-term fertilization[J]. Acta Pedologica Sinica,(5):723-729.]

閆洪奎,王欣然. 2017. 長(zhǎng)期定位試驗(yàn)下秸稈還田配套深松對(duì)土壤性狀及玉米產(chǎn)量的影響[J]. 華北農(nóng)學(xué)報(bào),32(S1):250-255. doi:10.7668/hbnxb.2017.S1.043. [Yan H K,Wang X R. 2017. The effects of straw returned form a complete set of deep scarification to soil properties and maize yield under a long-term trial[J]. Acta Agriculturae Boreali-Sinica,32(S1):250-255.]

嚴(yán)昌榮,劉恩科,何文清,劉爽,劉勤. 2010. 耕作措施對(duì)土壤有機(jī)碳和活性有機(jī)碳的影響[J]. 中國(guó)土壤與肥料,(6):58-63. doi:10.11838/sfsc.20100610. [Yan C R,Liu E K,He W Q,Liu S,Liu Q. 2010. Effect of different tillage on soil organic carbon and its fractions in the loess plateau of China[J]. Soil and Fertilizer Sciences in China,(6):58-63.]

楊晶,沈禹穎,南志標(biāo),高崇岳,牛伊寧,王先之,羅彩云,李光棣. 2010. 保護(hù)性耕作對(duì)黃土高原玉米-小麥-大豆輪作系統(tǒng)產(chǎn)量及表層土壤碳管理指數(shù)的影響[J]. 草業(yè)學(xué)報(bào),19(1):75-82. doi:10.11686/cyxb20100111. [Yang J,Shen Y Y,Nan Z B,Gao C Y,Niu Y N,Wang X Z,Luo C Y,Li G D. 2010. Effects of conservation tillage on crop yield and carbon pool management index on top soil within a maize-wheat-soy rotation system in the Loess Plateau[J]. Acta Prataculturae Sinica,19(1):75-82.]

楊星星,楊云川,田憶,廖麗萍,謝鑫昌,莫崇勛,肖良. 2020. 廣西降雨虧缺型驟旱的演變過(guò)程及時(shí)空分布特征[J]. 水土保持研究,27(2):149-157. doi:10.13869/j.cnki.rswc.2020.02.022. [Yang X X,Yang Y C,Tian Y,Liao L P,Xie X C,Mo C X,Xiao L. 2020. Characteristics of spatiotemporal distribution of rainfall-deficient flash drou-ght in Guangxi[J]. Research of Soil and Water Conservation,27(2):149-157.]

葉新新,王冰清,劉少君,馬超,李軍利,柴如山,熊啟中,李虹穎,郜紅建. 2019. 耕作方式和秸稈還田對(duì)砂姜黑土碳庫(kù)及玉米小麥產(chǎn)量的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),35(14):112-118. doi:10.11975/j.issn.1002-6819.2019.14.014. [Ye X X,Wang B Q,Liu S J,Ma C,Li J L,Chai R S,Xiong Q Z,Li H Y,Gao H J. 2019. Influence of tillage and straw retention on soil carbon pool and maize-wheat yield in Shajiang black soil[J]. Transactions of the Chinese Socie-ty of Agricultural Engineering,35(14):112-118.]

展茗,汪金平,樂(lè)麗鑫,江洋,余鍵,潘圣剛. 2009. 短期免耕對(duì)稻田土壤活性有機(jī)碳庫(kù)的影響[J]. 湖北農(nóng)業(yè)科學(xué),48(4):834-837. doi:10.3969/j.issn.0439-8114.2009.04.022. [Zhan M,Wang J P,Yue L X,Jiang Y,Yu J,Pan S G. 2009. Effects of short-term no-tillage on soil carbon pool in paddy fields[J]. Hubei Agricultural Sciences,48(4):834-837.]

張國(guó),王效科. 2020. 我國(guó)保護(hù)性耕作對(duì)農(nóng)田溫室氣體排放影響研究進(jìn)展[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),39(4):872-881. doi:10.11654/jaes.2020-0102. [Zhang G,Wang X K. 2020. Impacts of conservation tillage on greenhouse gas emissions from cropland in China:A review[J]. Journal of Agro-Environment Science,39(4):872-881.]

張國(guó)盛,黃高寶. 2005. 農(nóng)田土壤有機(jī)碳固定潛力研究進(jìn)展[J]. 生態(tài)學(xué)報(bào),(2):351-357. doi:10.3321/j.issn:1000-0933.2005.02.026. [Zhang G S,Huang G B. 2005. Soil organic carbon sequestration potential in cropland[J]. Acta Ecologica Sinica,(2):351-357.]

張麗,張中東,郭正宇,宮帥,王若男,陶洪斌,王璞. 2015. 深松耕作和秸稈還田對(duì)農(nóng)田土壤物理特性的影響[J]. 水土保持通報(bào),35(1):102-106. doi:10.13961/j.cnki.stbctb.2015.01.019. [Zhang L,Zhang Z D,Guo Z Y,Gong S,Wang R N,Tao H B,Wang P. 2015. Effects of subsoi-ling tillage and straw returning to field on soil physical properties[J]. Bulletin of Soil and Water Conservation,35(1):102-106.]

張仕吉,項(xiàng)文化,孫偉軍,方晰. 2016. 中亞熱帶土地利用方式對(duì)土壤易氧化有機(jī)碳庫(kù)及碳庫(kù)管理指數(shù)的影響[J]. 生態(tài)環(huán)境學(xué)報(bào),25(6):911-919. doi:10.16258/j.cnki.1674-5906.2016.06.001. [Zhang S J,Xiang W H,Sun W J,F(xiàn)ang X. 2016. Effects of land use on soil readily oxidized carbon and carbon management index in hilly region of central Hunan Province[J]. Ecology and Environmental Sciences,25(6):911-919.]

張霞,杜昊輝,王旭東,李軍. 2018. 不同耕作措施對(duì)渭北旱塬土壤碳庫(kù)管理指數(shù)及其構(gòu)成的影響[J]. 自然資源學(xué)報(bào),33(12):2223-2237. doi:10.31497/zrzyxb.20171206. [Zhang X,Du H H,Wang X D,Li J. 2018. Effects of different tillage methods on soil organic carbon pool management index and its composition in Weibei highland[J]. Journal of Natural Resources,33(12):2223-2237.]

張英英,蔡立群,武均,齊鵬,羅珠珠,張仁陟. 2017. 不同耕作措施下隴中黃土高原旱作農(nóng)田土壤活性有機(jī)碳組分及其與酶活性間的關(guān)系[J]. 干旱地區(qū)農(nóng)業(yè)研究,35(1):1-7. doi:10.7606/j.issn.1000-7601.2017.01.01. [Zhang Y Y,Cai L Q,Wu J,Qi P,Luo Z Z,Zhang R Z. 2017. The relationship between soil labile organic carbon fractions and the enzyme activities under different tillage measures in the Loess Plateau of central Gansu Province[J]. Agricultural Research in the Arid Areas,35(1):1-7.]

鄭佳舜,胡鈞銘,韋翔華,黃太慶,李婷婷,黃嘉琪. 2019. 綠肥壓青粉壟保護(hù)性耕作對(duì)稻田土壤溫室氣體排放的影響[J]. 中國(guó)農(nóng)業(yè)氣象,40(1):15-24. doi:10.3969/j.issn.1000- 6362.2019.01.002. [Zheng J S,Hu J M,Wei X H,Huang T Q,Li T T,Huang J Q. 2019. Effect of conservation tilla-ge with smash ridging under green manure condition on the emission of greenhouse gas in the rice field soil[J]. Chinese Journal of Agrometeorology,40(1):15-24.]

鄭梓萱,曾辰. 2017. 納木錯(cuò)典型小流域土壤有機(jī)碳含量空間分布[J]. 南方農(nóng)業(yè)學(xué)報(bào),48(12):2152-2156. doi:10.3969/ j.issn.2095-1191.2017.12.06. [Zheng Z X,Zeng C. 2017. Spatial distribution of soil organic carbon in a typical catchment in Namco Basin[J]. Journal of Southern Agriculture,48(12):2152-2156.]

Bavin T K,Griffis T J,Baker J M,Venterea R T. 2009. Impact of reduced tillage and cover cropping on the greenhouse gas budget of a maize/soybean rotation ecosystem[J]. Agriculture,Ecosystems and Environment,134(3-4):234-242. doi:10.1016/j.agee.2009.07.005.

Busari M A,Kukal S S,Kaur A,Bhatt R,Dulazi A A. 2015. Conservation tillage impacts on soil,crop and the environment[J]. International Soil and Water Conservation Research,3(2):119-129. doi:10.1016/j.iswcr.2015.05.002.

Chen H Q,Hou R X,Gong Y S,Li H W,F(xiàn)an M S,Kuzyakov Y. 2009. Effects of 11 years of conservation tillage on soil organic matter fractions in wheat mono-culture in Loess Plateau of China[J]. Soil Tillage Research,106(1):85-94. doi:10.1016/j.still.2009.09.009.

Chen L F,He Z B,Zhu X,Du J,Yang J J,Li J. 2016. Impacts of afforestation on plant diversity,soil properties,and soil organic carbon storage in a semi-arid grassland of northwestern China[J]. Catena,147:300-307. doi:10. 1016/j.catena.2016.07.009.

Chplot V,Abdalla K,Alexis M,Bourennane H,Darboux F,Dlamini P,Everson C,Mchunu C,Muller-Nedebock D,Mutema M,Quenea K,Thenga H,Chivenge P. 2015. Surface organic carbon enrichment to explain greater CO2 emissions from short-term no-tilled soils[J]. Agriculture Ecosystems & Environment,203:110-118. doi:10.1016/j.agee.2015.02.001.

Doran J W,Elliott E T,Paustian K. 1998. Soil microbial activity,nitrogen cycling,and long-term changes in organic carbon pools as related to fallow tillage management[J]. Soil and Tillage Research,49(1-2):3-18. doi:10.1016/S0167-1987(98)00150-0.

Gao W,Zhou T Z,Ren T S. 2015. Conversion from conventional to no tillage alters thermal stability of organic matter in soil aggregates[J]. Soil Science Society of America Journal,79(2):585-594. doi:10.2136/sssaj2014.08.0334.

Garcia-Franco N,Albaladejo J,Almagro M,Martínez-Mena M. 2015. Beneficial effects of reduced tillage and green manure on soil aggregation and stabilization of organic carbon in a Mediterranean agroecosystem[J]. Soil & Ti-llage Research,153:66-75. doi:10.1016/j.still.2015.05.010.

Liu S,Yan C,He W,Chen B Q,Zhang Y Q,Liu Q,Liu E K. 2015. Effects of different tillage practices on soil water-stable aggregation and organic carbon distribution in dryland farming in Northern China[J]. Acta Ecologica Sinica,35(4):65-69. doi:10.1016/j.chnaes.2015.06.005.

Mikhailova E A,Bryant R B,Vassenev I I,Schwager S J,Post C J. 2000. Cultivation effects on soil carbon and nitrogen contents at depth in the russian chernozem[J]. Soil Science Society of America Journal,64(2):739-745. doi:10.2136/sssaj2000.642738x.

Nelson M A,Griffith S,Steiner J. 2006. Tillage effects on nitrogen dynamics and grass seed crop production in wes-tern oregon,USA[J]. Soil ence Society of America Journal,70(3):825-831. doi:10.2136/sssaj2005.0248.

Oorts K,Merckx R,Grehan E,Labreuche J,Nicolardot B. 2007. Determinants of annual fluxes of CO2 and N2O in long-term no-tillage and conventional tillage systems in northern France[J]. Soil & Tillage Research,95(1-2):133-148. doi:10.1016/j.still.2006.12.002.

Pandey D,Agrawal M,Bohra J S. 2012. Greenhouse gas emissions from rice crop with different tillage permutations in rice-wheat system[J]. Agriculture,Ecosystem and Environment,159(18):133-144. doi:10.1016/j.agee.2012. 07.008.

Paustian K,Andren O,Janzen H H,Lal R,Smith P,Tian G,Tiessen H,Noordwijk M,Woomer P L. 1997. Agricultural soils as a sink to mitigate CO2 emissions[J]. Soil Use and Management,13(S4):230-244. doi:10.1111/j.1475-2743.1997.tb00594.x.

Wei B H,Gan X Q,Li Y Y,Shen Z Y,Zhou L Z,Zhou J,Liu B,Lao C Y,Hu P. 2017. Effects of once fenlong cultivation on soil properties and rice yield and quality for 7 consecutive years[J]. Agricultural Science & Technology,18(12):2365-2371. doi:10.16175/j.cnki.1009-4229.2017. 12.039.

(責(zé)任編輯 王 暉)

猜你喜歡
免耕保護(hù)性耕作
一種能處理雜草的免耕玉米播種機(jī)
小香蒜免耕種植技術(shù)
玉米寬窄行免耕精量播種推廣技術(shù)
我國(guó)深松整地機(jī)具產(chǎn)品特點(diǎn)及發(fā)展方向探討
吉林省玉米保護(hù)性耕作技術(shù)
玉米保護(hù)性耕作技術(shù)試驗(yàn)示范要點(diǎn)
保護(hù)性耕作條件下深松機(jī)發(fā)展現(xiàn)狀與展望
試析保護(hù)性耕作玉米病蟲害的發(fā)生特點(diǎn)及防治措施
談我國(guó)東北地區(qū)機(jī)械化保護(hù)性耕作技術(shù)
夜間增溫及免耕對(duì)冬小麥生長(zhǎng)及養(yǎng)分吸收利用的影響
龙口市| 胶南市| 黎平县| 永寿县| 高要市| 滦南县| 安化县| 麻阳| 星子县| 仁寿县| 潼关县| 襄城县| 娄烦县| 武威市| 团风县| 连州市| 叙永县| 红原县| 鄯善县| 拉萨市| 周至县| 会泽县| 广水市| 新邵县| 阿荣旗| 丁青县| 潢川县| 红桥区| 普安县| 余姚市| 遵义市| 大厂| 洪洞县| 谷城县| 马山县| 宜宾县| 潮安县| 徐闻县| 荥阳市| 化德县| 西城区|