楊曉燕 宗夢繁 吳文兵 梅國雄 蔣國盛
摘 ? ?要:基于Davis和Raymond土體一維非線性固結(jié)的假設(shè),通過引入連續(xù)排水邊界條件研究了瞬時荷載下的雙層地基一維非線性固結(jié)問題. 利用變量代換及分離變量法得到連續(xù)排水邊界條件下雙層地基一維非線性固結(jié)問題的解析解,通過退化為Xie雙面排水解答驗證了本文解析解的正確性. 基于所得解析解,對不同界面參數(shù)以及非線性參數(shù)對土體固結(jié)特性的影響進行了分析. 結(jié)果表明:連續(xù)排水邊界條件下,按沉降定義的平均固結(jié)度解答(Us)始終大于按孔壓定義的平均固結(jié)度解答(Up),且兩者的差別隨著非線性參數(shù)Nσ值的增大而增大. 連續(xù)排水邊界條件下Us隨Nσ值的增大而增大,而Up隨Nσ值的增大而減小. 與Xie雙面排水解答相比,連續(xù)排水邊界下Nσ值對Up的影響較小. 此外,土層界面參數(shù)對土體固結(jié)有較大影響.
關(guān)鍵詞:非線性固結(jié);連續(xù)排水邊界;雙層地基;界面參數(shù);解析解
中圖分類號: TU 43 ? ? ? ? ? ? ? ? ? ? ? ?文獻標志碼:A
Analytical Solution for One-dimensional Nonlinear Consolidation of
Double-layered Soil Based on Continuous Drainage Boundary
YANG Xiaoyan1,ZONG Mengfan1,WU Wenbing1,2,3, MEI Guoxiong1,2,3,JIANG Guosheng1?
(1. Faculty of Engineering,China University of Geosciences,Wuhan 430074,China;
(2. College of Civil Engineering and Architecture,Guangxi University,Nanning 530004,China;
3. Key Laboratory of Engineering Disaster Prevention and Structural Safety
of Ministry of Education,Guangxi University,Nanning 530004,China)
Abstract:Based on the assumptions of one-dimensional nonlinear consolidation of soil proposed by Davis and Raymond, the one-dimensional nonlinear consolidation problem of double-layered soil under constant loading is investigated by introducing the continuous drainage boundary condition. The analytical solution for the one-dimensional nonlinear consolidation of doubled-layered soil is derived by means of variable substitution method and separation of variables method. The rationality of the present solution is also verified by comparing with Xies solution. Based on the present solution, the effect of different interface parameter and nonlinear parameter on consolidation behavior of soil is analyzed. The results show that, under the continuous drainage boundary condition, the solution of the average consolidation degree,Us,defined as the settlement,is always larger than that of the average consolidation degree, Up, defined as the pore pressure, and the difference between Us and Up increases with the increase of Nσ(the ratio of final effective pressure to initial effective pressure). In the continuous drainage boundary condition, the Us increases with the increase of Nσ, while the Up decreases with the increase of Nσ. Compared with the Xies solution, the influence of Nσ value on Up is smaller in the continuous drainage boundary. In addition, the soil interface parameters have a great influence on soil consolidation.
Key words:nonlinear consolidation;continuous drainage boundary;double-layered soil;interface parameter; analytical solution
由于地基的成層性和非線性,雙層地基的一維非線性固結(jié)研究具有重要的理論和工程意義. Davis和Raymond[1]基于e-lgσ′關(guān)系,假定固結(jié)過程中滲透系數(shù)kv與壓縮系數(shù)mv同步變化且自重應(yīng)力沿深度保持不變,得到kv和mv隨深度及時間變化的土體一維非線性固結(jié)理論. 由于一維非線性固結(jié)求解的復(fù)雜性,現(xiàn)有的土體一維非線性固結(jié)解析解相對較少,其中成層地基一維非線性固結(jié)解析解仍然很少,Xie等[2-4]基于Davis和Raymond的假定,推導出雙層地基瞬時加載及單級加載、單層地基單級加載及循環(huán)加載條件下一維非線性固結(jié)問題的解析解. 施建勇等[5]基于雙曲線壓縮模型建立了土體一維非線性固結(jié)方程并獲得了解析解. Lekha等[6]基于e-lgσ′和e-lg kv關(guān)系,在作出進一步簡化假定后推導出瞬時荷載下土體一維非線性固結(jié)解析解. 而對于其他更復(fù)雜的情況,往往只有半解析解[7-10]和數(shù)值解[11-15]. 但以上非線性固結(jié)理論的研究僅限于對土體非線性壓縮和滲透特性的不斷深入,而對土體排水邊界隨時間發(fā)展過程的研究還不夠深入.
目前,土體固結(jié)問題的研究主要集中在固結(jié)方程和初始條件的優(yōu)化上,有關(guān)邊界條件的研究相對較少. Terzaghi邊界已廣泛用于求解固結(jié)問題,其形式簡單但邊界只能表示為完全透水和完全不透水兩種. 雖然有一些關(guān)于半透水邊界的報道,如Gray[16]最早對半透水邊界進行了研究,隨后Schiffman和Stein[17]、方開澤[18]也對半透水邊界進行了研究,但半透水邊界求解相對困難. 基于此,梅國雄等[19]提出與時間相關(guān)的連續(xù)排水邊界并得到瞬時荷載下的單層一維固結(jié)方程的解答;隨后,蔡烽等[20]、Liu和Lei[21]、Wang等[22-23]、吳文兵等[24-27]對基于連續(xù)排水邊界的土體固結(jié)問題進行了跟蹤研究. 但以上基于連續(xù)排水邊界的固結(jié)研究中均未綜合考慮地基的成層性和土體非線性特性,而地基成層性和土體非線性對固結(jié)性狀的影響不容忽視.
本文基于Davis和Raymond的假定推導出連續(xù)排水邊界條件下瞬時加載的雙層地基一維非線性固結(jié)解析解,基于所得解詳細討論了連續(xù)排水邊界界面參數(shù)及非線性參數(shù)對土體一維非線性固結(jié)特性的影響. 然后與Xie等[3]所得解進行對比,驗證解答的合理性.
1 ? 連續(xù)排水邊界
土體固結(jié)特性非常復(fù)雜,不僅與土體參數(shù)有關(guān),排水邊界形式對土體固結(jié)特性也有很大影響. 運用最廣的邊界形式是傳統(tǒng)Terzaghi排水邊界,包括完全排水和完全不排水兩種形式,表達式分別為式(1)和式(2).
4 ? 解答的驗證與分析
基于Davis和Raymond的假定,Xie等[3]得到了Terzaghi雙面排水及單面排水雙層地基一維非線性固結(jié)解答. 本節(jié)通過與Xie的理論解進行全面對比,對本文解的合理性進行分析.
圖2反映了土層壓縮系數(shù)比值對按沉降定義的平均固結(jié)度Us的影響. 圖中Tv為時間因數(shù),表達式前文已給出. 由圖2可以看出界面參數(shù)r取值等于1 000時,基于連續(xù)排水邊界固結(jié)解答與Xie雙面排水解答一致,表明界面參數(shù)取值較大時,連續(xù)排水邊界將退化為Terzaghi完全排水邊界,初步驗證了解答的正確性. 此外,從圖中還可以看出隨著下層土與上層土壓縮系數(shù)比值的減小,雙層地基固結(jié)速率變快,表明上軟下硬型地基固結(jié)更快.
圖3反映了連續(xù)排水邊界條件下最終有效應(yīng)力與初始有效應(yīng)力比值Nσ對Us和Up的影響. 由于kvi、mvi值隨Nσ值的增大而同步減小[7-8],固結(jié)過程中kvi減小則土體內(nèi)孔隙水越難排出即孔壓越難消散,而mv值減小則土體越難被壓縮即孔壓越容易消散,因此kvi減小則固結(jié)速率減小,而mvi值減小則固結(jié)速率增大. 從圖3中可以看出固結(jié)度曲線隨Nσ取值不同而發(fā)生改變,說明kvi、mvi對固結(jié)度的影響并未抵消. 圖中Us隨Nσ值的增大而增大,而Up隨Nσ值的增大而減小,這說明連續(xù)排水邊界條件下,按沉降定義的平均固結(jié)度計算時,壓縮系數(shù)對固結(jié)速率起主要作用;而按孔壓定義的平均固結(jié)度計算時,滲透系數(shù)對固結(jié)速率起主要作用. 此外,從圖3可以看出對于同一時間因數(shù)Tv,Us值均大于Up值,且兩者的差別隨著Nσ值的增大而增大,說明雙層地基一維非線性固結(jié)的沉降速率大于孔壓消散速率.
圖4和圖5分別反映了不同邊界條件下Nσ值對Us和Up的影響. 由圖4可以看出對于Xie單面及雙面排水解答,Us不隨Nσ值的變化而變化,這說明kvi和mvi對Us的影響相互抵消;而基于連續(xù)排水邊界所得解答Us隨Nσ值的增大而增大. 邊界的排水會影響土體變形的發(fā)展過程,排水邊界不同則土體變形過程也會產(chǎn)生差異,因此圖4中Xie所得解答Nσ值對Us沒有影響,而連續(xù)排水邊界下Nσ值對Us有影響,這可能是排水邊界不同引起的. 由圖5可以看出連續(xù)排水邊界解答和Xie單面及雙面排水解答,Up均隨Nσ值的增大而減小,這說明按孔壓定義的平均固結(jié)度計算時,滲透系數(shù)對固結(jié)速率起主要作用. 此外,從圖5還可以看出連續(xù)排水邊界條件下Nσ對Up的影響遠小于Xie所得解答下Nσ對Up的影響.
圖6反映了界面參數(shù)r值對按沉降定義的固結(jié)度的影響. 從圖中可以看出土體固結(jié)速率隨r值的增大而增大. 在固結(jié)初期,連續(xù)排水邊界條件下土體固結(jié)速率小于Xie解答下的土體固結(jié)速率,但在固結(jié)中后期,連續(xù)排水條件下固結(jié)速率在Xie單面和雙面排水條件之間變化,值越大越接近于雙面排水,越小越接近于單面排水. 當r取值較大時,連續(xù)排水邊界條件得到的固結(jié)曲線與Xie雙面排水得到的固結(jié)曲線相近;而當r取值較小時,連續(xù)排水邊界條件得到的固結(jié)曲線與Xie單面排水得到的固結(jié)曲線幾乎一致,這表明Xie解答的固結(jié)初期較快,而基于連續(xù)排水邊界所得解答后期固結(jié)更快. 對于實際工程而言,當排水邊界參考連續(xù)排水邊界模型進行設(shè)計時,可以通過調(diào)整r取值來設(shè)計實際工程中需要的固結(jié)排水速率.
在控制其他條件不變的情況下,圖7分析了土體滲透系數(shù)對孔壓曲線的影響. 從圖中可以看出,如果上土層孔壓消散慢則下土層孔壓消散速度快,反之上土層孔壓消散快則下土層孔壓消散慢,即滲透系數(shù)對孔壓的影響在上土層和下土層表現(xiàn)相反. kv02 /kv01比值越大表明上土層滲透系數(shù)相對于下土層滲透系數(shù)變小,對于上層土,孔壓隨比值kv02 /kv01的增大而增大,即kv02 /kv01比值越大上層土的孔壓越難消散,說明上土層滲透系數(shù)相對于下土層滲透系數(shù)小時,上土層的孔壓越難消散;反之,kv02 /kv01比值越大下層土的孔壓越容易消散,說明下土層滲透系數(shù)比上土層滲透系數(shù)大時,下土層孔壓越容易消散. 這表明上下土層中滲透系數(shù)相對較大的土層其孔壓消散更快.
圖8分析了土體體積壓縮系數(shù)對孔壓曲線的影響. 從圖8中可以看出,瞬時荷載作用下,在上下土層滲透性大小相等的情況下,孔壓隨mv02 /mv01值的減小而減小,mv02 /mv01值變小表明下土層體積壓縮系數(shù)與上土層體積壓縮系數(shù)比值變小,即上層土壓縮模量與下層土壓縮模量的比值變小. 孔壓隨mv02 /mv01的減小而減小,表明上軟下硬型的地基超靜孔隙水壓力消散更快,該類土層固結(jié)更快.
5 ? 結(jié) ? 論
本文基于Davis和Raymond土體一維非線性固結(jié)的假設(shè),通過引入連續(xù)排水邊界條件推導出瞬時加載下雙層地基的一維非線性固結(jié)問題的解析解. 利用所得解析解,對雙層地基非線性固結(jié)進行分析,得到以下結(jié)論:
1)連續(xù)排水邊界條件下Us隨Nσ值的增大而增大,而Up隨Nσ值的增大而減小,說明利用Us計算地基固結(jié)度時,體積壓縮系數(shù)對固結(jié)速率起決定性作用,而利用Up計算地基固結(jié)度時,滲透系數(shù)對固結(jié)速率起決定性作用.
2)連續(xù)排水邊界條件下Nσ對Up的影響遠小于Xie所得解答下Nσ對Up的影響.
3)在固結(jié)初期,連續(xù)排水邊界條件下土體固結(jié)速率小于Xie解答下的土體固結(jié)速率. 但在固結(jié)中后期,連續(xù)排水條件下固結(jié)速率在Xie單面和雙面排水條件之間變化,r值越大越接近于雙面排水,r越小越接近于單面排水.
4)連續(xù)排水邊界條件下雙層地基一維非線性固結(jié),Us大于Up,且兩者的差別隨著Nσ值的增大而增大.
參考文獻
[1] ? ?DAVIS E H,RAYMOND G P. A non-linear theory of consolidation[J]. Géotechnique,1965,15(2):161—173.
[2] ? ?XIE K H,LI B H,LI Q L. A nonlinear theory of consolidation under time-dependent loading[C]//International Proceedings of the Second International Conference on Soft Soil Engineering. Nanjing: Hohai University Press,1996:193—198.
[3] ? XIE K H,XIE X Y,JIANG W. A study on one-dimensional nonlinear consolidation of double-layered soil[J]. Computers and Geotechnics,2002,29(2):151—168.
[4] ? ?謝康和,周瑾,董亞欽. 循環(huán)荷載作用下地基一維非線性固結(jié)解析解[J]. 巖石力學與工程學報,2006,25(1):21—26.
XIE K H,ZHOU J,DONG Y Q. Analytical solution for one-dimensional nonlinear consolidation of soil under cyclic loadings[J]. Chinese Journal of Rock Mechanics and Engineering,2006,25(1):21—26.(In Chinese)
[5] ? ?施建勇,楊立昂,趙維炳,等. 考慮土體非線性特性的一維固結(jié)理論研究[J]. 河海大學學報(自然科學版),2001,29(1):1—5.
SHI J Y,YANG L A,ZHAO,W B,et al. Research of one-dimensional consolidation theory considering nonlinear characteristics of soil[J].Journal of Hehai University (Natural Sciences),2001,29(1):1—5. (In Chinese)
[6] ? ?LEKHA K R,KRISHNASWAMY N R,BASAK P. Consolidation of clays for variable permeability and compressibility[J]. Journal of Geotechnical and Geoenvironmental Engineering,2003,129(11):1001—1009.
[7] ? ?李冰河,謝永利,謝康和,等. 軟粘土非線性一維固結(jié)半解析解[J]. 西安公路交通大學學報,1999,19(1):24—29.
LI B H,XIE Y L,XIE K H,et al. Semi analytical solution of one dimensional non linear consolidation of soft clay[J].Journal of Xi'an Highway University,1999,19(1):24—29. (In Chinese)
[8] ? ?李冰河,謝康和,應(yīng)宏偉,等. 變荷載下軟粘土非線性一維固結(jié)半解析解[J]. 巖土工程學報,1999,21(3):288—293.
LI B H,XIE K H,YING H W,et al. Semi-analytical solution of one dimensional non-linear consolidation of soft clay under time-dependent loading[J]. Chinese Journal of Geotechnical Engineering,1999,21(3):288—293. (In Chinese)
[9] ? ?謝康和,鄭輝,李冰河,等. 變荷載下成層地基一維非線性固結(jié)分析[J]. 浙江大學學報(工學版),2003,37(4):426—431.
XIE K H,ZHENG H,LI B H,et al. Analysis of one dimensional nonlinear consolidation of layered soils under time-dependent loading[J].Journal of Zhejiang University (Engineering Science),2003,37(4):426—431. (In Chinese)
[10] ZHUANG Y C,XIE K H,LI X B. Nonlinear analysis of consolidation with variable compressibility and permeability[J]. Journal of Zhejiang University(Science A),2005,6(3):181—187.
[11] ?BARDEN L,BERRY P L. Consolidation of normally consolidated clay[J]. Journal of the Soil Mechanics and Foundation Division,ASCE,1965,91(S 5):15—35.
[12] ?MESRI G,POKHSAR A. Theory of consolidation for clays[J]. Journal of the Geotechnical Engineering Division,ASCE,1974,100(8):889—903.
[13] ?POSKITT T J. The consolidation of saturated clay with variable permeability and compressibility[J]. Géotechnique,1969,19(2):234—252.
[14] ?DUNCAN J M. Limitations of conventional analysis of consolidation settlement[J]. Journal of Geotechnical Engineering,1993,119(9):1333—1359.
[15] ?王宏志,陳仁朋,周萬歡,等. 雙層地基一維非線性固結(jié)的DQM解[J]. 水利學報,2004,35(4):8—14.
WANG H Z,CHEN R P,ZHOU W H,et al. Computation of 1-D nonlinear consolidation in double-layer foundation by using differential quadrature method[J].Journal of Hydraulic Engineering,2004,35(4):8—14.(In Chinese)
[16] ?GRAY H. Simultaneous consolidation of contiguous layers of unlike compressible soils[J]. Transactions of the American Society of Civil Engineering,1945,110:1327—1356.
[17] ?SCHIFFMAN R L,STEIN J R. One-dimensional consolidation of layered systems[J]. Journal of Soil Mechanics and Foundations Division,ASCE,1970,96(4):1499—1504.
[18] ?方開澤. 半透水邊界一維固結(jié)的特征值解法[J]. 水利學報,1989,20(3):48—53.
FANG K Z. Eigenvalue method for one dimensional consolidation of soil with impede boundary[J]. Journal of Hydraulic Engineering,1989,20(3):48—53.(In Chinese)
[19] ?梅國雄,夏君,梅嶺. 基于不對稱連續(xù)排水邊界的太沙基一維固結(jié)方程及其解答[J]. 巖土工程學報,2011,33(1):28—31.
MEI G X,XIA J,MEI L. Terzaghis one-dimensional consolidation equation and its solution based on asymmetric continuous drainage boundary[J].Chinese Journal of Geotechnical Engineering,2011,33(1):28—31. (In Chinese)
[20] ?蔡烽,何利軍,周小鵬,等. 連續(xù)排水邊界下一維固結(jié)不排水對稱面的有限元分析[J]. 巖土工程學報,2012,34(11):2141—2147.
CAI F,HE L J,ZHOU X P,et al. Finite element analysis of one-dimensional consolidation of undrained symmetry plane under continuous drainage boundary[J].Chinese Journal of Geotechnical Engineering,2012,34(11):2141—2147. (In Chinese)
[21] ?LIU J C,LEI G H. One-dimensional consolidation of layered soils with exponentially time-growing drainage boundaries[J]. Computers and Geotechnics,2013,54:202—209.
[22] ?WANG L,SUN D A,LI P C,et al. Semi-analytical solution for one-dimensional consolidation of fractional derivative viscoelastic saturated soils[J]. Computers and Geotechnics,2017,83:30—39.
[23] ?WANG L,SUN D A,QIN A F. Semi-analytical solution to one-dimensional consolidation for unsaturated soils with exponentially time-growing drainage boundary conditions[J]. International Journal of Geomechanics,2018,18(2):04017144.
[24] ?WU W B,ZONG M F,EL NAGGAR M H,et al. Analytical solution for one-dimensional consolidation of double-layered soil with exponentially time-growing drainage boundary[J]. International Journal of Distributed Sensor Networks,2018,14(10):1—11.
[25] ?宗夢繁,吳文兵,梅國雄,等. 連續(xù)排水邊界條件下土體一維非線性固結(jié)解析解[J]. 巖石力學與工程學報,2018,37(12):2829—2838.
ZONG M F,WU W B,MEI G X,et al. An analytical solution for one-dimensional nonlinear consolidation of soils with continuous drainage boundary[J]. Chinese Journal of Rock Mechanics and Engineering,2018,37(12):2829—2838. (In Chinese)
[26] ?田乙,吳文兵,蔣國盛,等. 連續(xù)排水邊界下分數(shù)階黏彈性飽和土體一維固結(jié)分析[J].巖土力學,2019,40(8):3054—3061.
TIAN Y,WU W B,JIANG G S,et al. One-dimensional consolidation of viscoelastic saturated soils with fractional order derivative based on continuous drainage boundary[J]. Rock and Soil Mechanics,2019,40(8):3054—3061.(In Chinese)
[27] ?李稱,吳文兵,梅國雄,等. 不同排水條件下城市固廢一維降解固結(jié)解析解[J]. 巖土力學,2019,40(8):3071—3080.
LI C,WU W B,MEI G X,et al. Analytical solution for 1D degradation-consolidation of municipal solid waste under different drainage conditions[J]. Rock and Soil Mechanics,2019,40(8):3071—3080. (In Chinese)