樊曉靜,于文濤,蔡春平,林浥,王澤涵,房婉萍,張見(jiàn)明,葉乃興
利用SNP標(biāo)記構(gòu)建茶樹(shù)品種資源分子身份證
樊曉靜1,于文濤2,蔡春平2,林浥1,王澤涵1,房婉萍3,張見(jiàn)明4,葉乃興1
1福建農(nóng)林大學(xué)園藝學(xué)院/茶學(xué)福建省高校重點(diǎn)實(shí)驗(yàn)室,福州 350002;2福州海關(guān)技術(shù)中心/福建省檢驗(yàn)檢疫技術(shù)研究重點(diǎn)實(shí)驗(yàn)室,福州 350001;3南京農(nóng)業(yè)大學(xué)園藝學(xué)院,南京 210095;4武夷學(xué)院科研處,福建武夷山 354300
【】建立茶樹(shù)品種的SNP分子標(biāo)記數(shù)據(jù)庫(kù),結(jié)合茶樹(shù)品種基本信息,將SNP位點(diǎn)組成的DNA指紋圖譜構(gòu)建28位數(shù)字組成的茶樹(shù)品種資源分子身份證,便于茶樹(shù)品種資源的保護(hù)與精準(zhǔn)管理,避免“同名異物、同物異名”的現(xiàn)象。通過(guò)挖掘茶樹(shù)的表達(dá)序列標(biāo)簽,獲得大量的高質(zhì)量表達(dá)序列標(biāo)簽,將其進(jìn)行裝配后,開(kāi)發(fā)候選位點(diǎn),將候選位點(diǎn)與茶樹(shù)全基因組進(jìn)行BLAST,得到其在全基因組染色體上的位置與具體關(guān)聯(lián)基因。以鐵觀(guān)音、福鼎大白茶、龍井43、云抗10號(hào)等103份國(guó)內(nèi)外不同類(lèi)型的茶樹(shù)品種資源為供試材料,提取基因組DNA,利用預(yù)擴(kuò)增技術(shù)和微流體芯片法對(duì)供試茶樹(shù)品種資源進(jìn)行SNP基因分型,獲得SNP位點(diǎn)數(shù)據(jù)及候選SNP位點(diǎn)的信息指數(shù)、觀(guān)測(cè)雜合度、期望雜合度等信息,將多態(tài)性從高到低進(jìn)行排序,進(jìn)行SNP位點(diǎn)組合篩選,得到最優(yōu)SNP位點(diǎn)組合后,結(jié)合茶樹(shù)品種基本信息構(gòu)建茶樹(shù)品種資源分子身份證。從茶樹(shù)的表達(dá)序列標(biāo)簽數(shù)據(jù)庫(kù)中挖掘出1 786個(gè)候選SNP位點(diǎn)。根據(jù)序列保守性,篩選出96個(gè)SNP標(biāo)記位點(diǎn),與最新茶樹(shù)基因組比對(duì)發(fā)現(xiàn)候選位點(diǎn)較均勻地分布于茶樹(shù)全基因組的15條染色體上;對(duì)茶樹(shù)品種資源的候選SNP位點(diǎn)的多態(tài)性信息進(jìn)行分析,剔除10個(gè)不具多態(tài)性的位點(diǎn),剩余86個(gè)位點(diǎn)的信息指數(shù)平均值為0.517,觀(guān)測(cè)雜合度平均值為0.370,期望雜合度平均值為0.346,固定指數(shù)平均值為-0.036,次等位基因頻率平均值為0.269。從86個(gè)SNP位點(diǎn)中篩選出24個(gè)多態(tài)性高的SNP位點(diǎn),組成DNA指紋圖譜,可區(qū)分出全部參試茶樹(shù)品種資源。對(duì)24個(gè)SNP位點(diǎn)組成的DNA指紋圖譜并結(jié)合茶樹(shù)品種資源基本信息進(jìn)行數(shù)字編碼,最終形成由28位數(shù)字組成的茶樹(shù)品種資源分子身份證。依據(jù)SNP標(biāo)記的多態(tài)性信息,篩選SNP位點(diǎn),精準(zhǔn)區(qū)分全部供試茶樹(shù)品種,并將24個(gè)SNP位點(diǎn)所構(gòu)建的茶樹(shù)品種資源DNA指紋圖譜及品種資源的基本屬性信息編碼成特定的數(shù)字串,使每份茶樹(shù)品種資源具有唯一的分子身份證,并生成相應(yīng)的條形碼和二維碼,可快速被掃碼設(shè)備識(shí)別。
茶樹(shù);品種資源;SNP;分子身份證;DNA指紋圖譜
【研究意義】茶樹(shù)((L.) O. Kuntze)為多年生異花授粉植物,具有高度異質(zhì)性和雜合性[1]。中國(guó)西南地區(qū)是茶樹(shù)的起源地[2],茶樹(shù)從起源地向中國(guó)其他地區(qū)和國(guó)外的自然傳播和人為傳播過(guò)程中,積累了自然演化和人工選擇的變異,從而在各茶區(qū)形成了豐富的茶樹(shù)品種資源[3]。然而在茶樹(shù)品種資源的大量引種及頻繁的品種資源交換過(guò)程中,造成同名異物、同物異名的現(xiàn)象[4-5],不僅給茶樹(shù)品種資源保護(hù)利用帶來(lái)諸多困難,也損害了消費(fèi)者的權(quán)益。因而科學(xué)準(zhǔn)確地區(qū)分和鑒定茶樹(shù)品種資源具有重要意義?!厩叭搜芯窟M(jìn)展】傳統(tǒng)使用形態(tài)標(biāo)記、細(xì)胞標(biāo)記等方法來(lái)區(qū)分、鑒定植物品種均有一定局限性。如形態(tài)學(xué)標(biāo)記容易受環(huán)境和植物發(fā)育階段等影響;細(xì)胞學(xué)標(biāo)記容易受制片技術(shù)的影響,且對(duì)于染色體小數(shù)量多的物種,其染色體核型不易區(qū)分清楚[6]。隨著生物信息技術(shù)的進(jìn)步,以生物的遺傳物質(zhì)核酸的多態(tài)性為基礎(chǔ)的分子標(biāo)記得到了快速發(fā)展,DNA分析技術(shù)開(kāi)始大量應(yīng)用于植物學(xué)研究。RAPD、SSR等分子標(biāo)記技術(shù)在研究茶樹(shù)遺傳多樣性、指紋圖譜及分子身份證構(gòu)建等方面已有較多運(yùn)用[7-13]。如安徽茶樹(shù)群體中的SSR遺傳多樣性分析[8]、茶樹(shù)SSR指紋圖譜的構(gòu)建[9-10]、野生茶樹(shù)的RAPD分子標(biāo)記鑒定[11]和名山茶樹(shù)基因身份證的構(gòu)建[13]。Lander[14]在1996年提出SNP的遺傳標(biāo)記技術(shù),作為繼SSR為代表的第二代分子標(biāo)記技術(shù)之后發(fā)展起來(lái)的第三代分子標(biāo)記技術(shù),是指?jìng)€(gè)體間基因組DNA序列同一位置單個(gè)核苷酸變異所引起的多態(tài)性。SNP標(biāo)記具有高密度性,且廣泛存在于基因組中,如人類(lèi)基因組中平均每1 000 bp就會(huì)出現(xiàn)一個(gè)SNP,玉米中平均每57 bp出現(xiàn)一個(gè)SNP[15]。SNP作為第三代分子標(biāo)記,其優(yōu)點(diǎn)在于快速、自動(dòng)化、高通量[16],其多態(tài)性幾乎在所有被研究物種中都被用作有效的遺傳標(biāo)記,包括動(dòng)物[17]和植物[18]。【本研究切入點(diǎn)】目前,關(guān)于茶樹(shù)SNP分子標(biāo)記的研究,主要集中在品種資源鑒定、遺傳多樣性、遺傳關(guān)系的分析及指紋圖譜的構(gòu)建[19-20],對(duì)茶樹(shù)品種資源的分子身份證進(jìn)行構(gòu)建鮮見(jiàn)報(bào)道?!緮M解決的關(guān)鍵問(wèn)題】本研究通過(guò)收集國(guó)內(nèi)外103份茶樹(shù)種質(zhì),利用SNP標(biāo)記并結(jié)合茶樹(shù)品種資源基本信息構(gòu)建茶樹(shù)品種資源分子身份證,以期為茶樹(shù)品種資源保護(hù)鑒定提供一種新思路。
供試茶樹(shù)品種資源來(lái)源于武夷學(xué)院茶樹(shù)種質(zhì)資源圃(福建省武夷山市)和福建省農(nóng)業(yè)科學(xué)院茶葉研究所茶樹(shù)種質(zhì)資源圃(福建省福安市),其中,中國(guó)茶樹(shù)品種資源有101份,來(lái)自華南、西南、江南、江北四大茶產(chǎn)區(qū)的10個(gè)茶葉主產(chǎn)區(qū)省份;國(guó)外茶樹(shù)品種2份,包括日本的玉綠和格魯吉亞的格魯吉亞1號(hào)。茶樹(shù)品種資源詳細(xì)信息見(jiàn)電子附表1。
采用新型植物基因組DNA提取試劑盒(TIANGEN,DP320,北京)提取基因組DNA,利用超微量紫外分光光度計(jì)(Implen,S60716,德國(guó))測(cè)定DNA濃度和純度。提取的基因組DNA于-80℃保存?zhèn)溆谩?/p>
中國(guó)烏龍茶產(chǎn)業(yè)協(xié)同創(chuàng)新中心課題組前期從國(guó)家生物信息中心(national center of biotechnology information,NCBI)的數(shù)據(jù)庫(kù)(http://www.ncbi.nlm.nih. gov/)中下載了茶樹(shù)的表達(dá)序列標(biāo)簽(express sequence tags,EST),獲得大量可用于數(shù)據(jù)挖掘的高質(zhì)量EST。經(jīng)過(guò)軟件CAP3程序?qū)⑿蛄醒b配,再利用Quality SNP在含有6條以上同源序列重疊群中開(kāi)發(fā)候選SNP位點(diǎn),得到了1 786個(gè)候選EST-SNP位點(diǎn)。為確保獲得高質(zhì)量的SNP用于后期驗(yàn)證,之后進(jìn)入人工選擇,要求篩選出的SNP位點(diǎn)前后有60 bp堿基完全保守,最終篩選出用于茶樹(shù)種質(zhì)資源的96個(gè)SNP標(biāo)記位點(diǎn)[20-21]。目前,已有多個(gè)茶樹(shù)全基因組數(shù)據(jù)公布[22-25],將96個(gè)候選位點(diǎn)與最新發(fā)表的茶樹(shù)全基因組[25]進(jìn)行局部序列比對(duì)搜索[26],得到候選SNP位點(diǎn)序列在全基因組染色體與具體基因上的位置。利用Fluidigm 96.96 Dynamic Array? IFC芯片(Integrated Fluidic Circuit; Fluidigm? Corp,USA)進(jìn)行基因分型,該芯片可同時(shí)檢測(cè)96個(gè)樣品和96個(gè)SNP位點(diǎn),且上樣后可自動(dòng)進(jìn)行PCR反應(yīng),芯片讀取圖如電子附圖1。96.96 Dynamic Array? IFC芯片使用方法需根據(jù)樣品實(shí)際情況進(jìn)行改進(jìn);而后使用EP1?成像儀(Fluidigm? Corp, USA)獲得96.96 IFC熒光圖像。
利用Fluidigm SNP Genotyping Analysis軟件(https://www.fluidigm.com/software)進(jìn)行數(shù)據(jù)導(dǎo)出和分析,并確定每個(gè)SNP位點(diǎn)處的樣品基因型是純合子或雜合子。使用GenAlEx6.503軟件分析等位基因頻率(allele frequency)、信息指數(shù)(information index,)、觀(guān)察雜合度(observed heterozygosity,o)、預(yù)期雜合度(expected heterozygosity,e)、固定指數(shù)(fixation index,F(xiàn))和次等位基因頻率(minor allele frequency,MAF)。將茶樹(shù)品種資源基本信息與其DNA指紋圖譜信息結(jié)合,利用在線(xiàn)條碼生成器(http://barcode. cnaidc.com)和二維碼在線(xiàn)生成軟件(http://qr-batch. com/)以數(shù)字條碼的形式構(gòu)建茶樹(shù)品種資源分子身份證。
采用的96個(gè)SNP標(biāo)記位點(diǎn)較均勻地分布于茶樹(shù)全基因組15條染色體上(電子附表2)。對(duì)103份茶樹(shù)品種資源進(jìn)行分析,剔除10個(gè)不具多態(tài)性的引物后,剩余86個(gè)SNP位點(diǎn)多態(tài)性的相關(guān)信息列于電子附表3。根據(jù)統(tǒng)計(jì),這些SNP標(biāo)記多態(tài)性信息指數(shù)()為0.071—0.693,平均值為0.517。觀(guān)測(cè)雜合度(o)范圍為0.027—0.982,平均值為0.370。期望雜合度(e)的范圍在0.026—0.500,平均值為0.346。固定指數(shù)(F)為-0.964—0.462,平均值為-0.036。次等位基因頻率(MAF)范圍在0.013—0.500,平均值為0.269。
信息指數(shù)常用來(lái)評(píng)價(jià)群落的遺傳多樣性,如果每一個(gè)體都屬于不同的種,多樣性指數(shù)就最大;如果每一個(gè)體都屬于同一種,則其多樣性指數(shù)就最小,即多樣性指數(shù)越高,其區(qū)分品種能力卻強(qiáng)。因此,基于103份茶樹(shù)品種資源材料,對(duì)SNP數(shù)據(jù)進(jìn)行統(tǒng)計(jì)分析,從86個(gè)SNP位點(diǎn)中優(yōu)化篩選了24個(gè)多態(tài)性較高的SNP位點(diǎn)(電子附表4,圖1),可將103份茶樹(shù)品種資源完全區(qū)分開(kāi)。DNA指紋圖譜(圖2)顯示每個(gè)SNP位點(diǎn)處的樣品是雜合子(XY)或純合子(XX,YY)。
對(duì)篩選獲得的最佳SNP數(shù)據(jù)進(jìn)行數(shù)字編碼,作為構(gòu)建分子身份證基本信息。在24個(gè)SNP標(biāo)記,共有24種基因型,3種等位基因(XY、XX和YY),因此,每個(gè)位點(diǎn)分別用1—3代表等位基因多態(tài)性。以福鼎大白茶為例,在CS3處的基因型為T(mén)C,對(duì)應(yīng)XY,編碼為1,以此類(lèi)推,將基因型全部轉(zhuǎn)換成24數(shù)字編碼為131132311121332112313231。
藍(lán)色:雜合子(XY);紅色:純合子(XX);綠色:純合子(YY) Blue: Heterozygote (XY); Red: Homozygote (XX); Green: Homozygote (YY)
藍(lán)色:雜合子(XY);紅色:純合子(XX);綠色:純合子(YY)
茶樹(shù)的基本信息由4位數(shù)字組成,其中,茶樹(shù)品種資源類(lèi)型分類(lèi)參考陳亮等[27-28]方法。第1位數(shù)字代表茶組植物具體物種,茶樹(shù)((L.) O.Kuntze)為1,大廠(chǎng)茶(F. C. Zhang)為2,厚軸茶(Chang)為3,大理茶((W. W. Smith) Melchior)為4,禿房茶(Chang)為5;第2—3位數(shù)字代表行政區(qū)劃代碼,如福建為35,浙江為33,云南為53,國(guó)外為00;第4位數(shù)字代表茶樹(shù)品種資源類(lèi)型,野生茶樹(shù)為1,地方品種和地方種質(zhì)為2,優(yōu)良品種(含育成品種)為3,新選品系、株系為4,國(guó)外品種為5。以福鼎大白茶舉例,4位數(shù)字商品碼為1353,其中“1”表示是分類(lèi)上茶組植物種類(lèi),“35”代表該茶樹(shù)種質(zhì)原產(chǎn)地是福建,“3”表示為優(yōu)良品種。
基本商品信息和DNA指紋圖譜共同組成由28位數(shù)字編碼的茶樹(shù)品種資源分子身份證(表1)。以國(guó)家級(jí)品種福鼎大白茶舉例,其品種資源基本信息為:屬茶組植物中的茶樹(shù)(),原產(chǎn)于福建,品種資源類(lèi)型為優(yōu)良品種,轉(zhuǎn)換成數(shù)字碼為1353;其24個(gè)SNP分子標(biāo)記的基因型分別為T(mén)C、TT、AT、CT、GG、GG、CC、TC、TG、TC、TT、AG、GG、TT、CC、AG、CT、TT、CC、AT、GG、GG、CC、TC,轉(zhuǎn)換成24位數(shù)字碼為131132311121332112313231。則福鼎大白茶的分子身份證為1353131132311121332112313231(圖3-A),將其轉(zhuǎn)化為條形碼和二維碼如圖3-B所示。
圖3 福鼎大白茶分子身份證
本研究103份茶樹(shù)品種資源樣品來(lái)源于中國(guó)的四大茶產(chǎn)區(qū),以及日本和格魯吉亞,來(lái)源范圍廣,茶樹(shù)品種資源遺傳多樣性豐富,其中也有遺傳背景相近的茶樹(shù)品種親子代,如福鼎大白茶和云南大葉種的自然雜交后代福云6號(hào)、福云7號(hào)和福云595,及以四川中葉種為母本、云南大葉種為父本的蜀永2號(hào)、蜀永3號(hào)和蜀永703。本研究中所選用的96個(gè)SNP標(biāo)記位點(diǎn)中,多態(tài)性標(biāo)記為86個(gè),占比為89.6%。SNP標(biāo)記一般只有2種堿基組成,因此,被認(rèn)為具有二態(tài)性;由于具有等位基因性的特點(diǎn),其等位基因在任何種群中都可被估算出來(lái)。除此之外,SNP標(biāo)記在不同條件下具有較高的重復(fù)性和準(zhǔn)確性[29-30],這是指紋圖譜和分子身份證建立的重要前提。本研究通過(guò)SNP技術(shù)對(duì)這些茶樹(shù)品種資源進(jìn)行基因分型及統(tǒng)計(jì)分析,使每份品種資源具有唯一的SNP基因型,驗(yàn)證了SNP標(biāo)記技術(shù)的準(zhǔn)確性。與SSR相比,SNP分析不基于DNA大小片段的分離,因此,可通過(guò)高通量的形式自動(dòng)化檢測(cè)。目前常用的高通量、自動(dòng)化程度較高的檢測(cè)分析SNP的方法之一是DNA芯片法[31]。本研究所采用的高通量微流體芯片法具有高通量、試劑和樣品用量少、IFC技術(shù)自動(dòng)操作、試驗(yàn)重復(fù)性好的優(yōu)點(diǎn)[32]。
篩選較少的引物,可以縮短茶樹(shù)品種資源鑒定的時(shí)間,降低應(yīng)用成本。最佳引物的選擇是構(gòu)建指紋圖譜和分子身份證的重要步驟。Pan[33]利用21對(duì)引物對(duì)1 025份甘蔗種質(zhì)構(gòu)建了分子身份證。李春花等[34]采用15對(duì)引物構(gòu)建了48份苦蕎資源的分子身份證。冉昆等[35]利用10對(duì)引物構(gòu)建了45份山東地方種質(zhì)梨的分子身份證。高源等[36]利用TP-M13-SSR分子標(biāo)記技術(shù),通過(guò)篩選引物,對(duì)蘋(píng)果分子身份證進(jìn)行了構(gòu)建。在本研究的96個(gè)SNP標(biāo)記中,去除10個(gè)在試驗(yàn)樣品中表現(xiàn)出多態(tài)性差的標(biāo)記位點(diǎn),再依據(jù)引物的信息指數(shù)(),通過(guò)從高到低排序,逐步增加引物組合數(shù)量,使其能夠區(qū)分更多的品種資源,以獲得最佳的引物。經(jīng)過(guò)分析,本研究最終篩選了24個(gè)SNP標(biāo)記位點(diǎn)能夠?qū)?03份茶樹(shù)品種資源完全區(qū)分,24個(gè)SNP標(biāo)記位點(diǎn)位于茶樹(shù)全基因組的12條染色體上,染色體覆蓋度為80%,覆蓋度較高,有利于茶樹(shù)品種資源的有效鑒別。
表1 103份茶樹(shù)品種資源的分子身份證
作物品種資源的分子身份證與DNA指紋圖譜的功能相同,都是為了區(qū)分不同生物個(gè)體。相對(duì)于指紋圖譜,分子身份證是將作物品種資源的基本信息用特定的數(shù)字編碼為數(shù)字串,并且輔以條形碼、二維碼的形式展現(xiàn),更加簡(jiǎn)明直觀(guān)地區(qū)分品種資源之間的差異。分子身份證因其自身所具有特性,可利用機(jī)器進(jìn)行掃描,達(dá)到方便快捷地識(shí)別大量品種資源,提高品種資源鑒定和評(píng)價(jià)的效率。另外,分子身份證的唯一性,也可有效甄別市場(chǎng)上同名異物、同物異名現(xiàn)象,有利于品種識(shí)別與保護(hù)。許多植物已利用分子標(biāo)記技術(shù)構(gòu)建分子身份證,如水稻[37]、百合[38]、桃[39]、枸杞[40]等。本研究首次利用SNP標(biāo)記技術(shù)將DNA指紋圖譜與品種資源基本信息相結(jié)合,可為每份茶樹(shù)品種資源構(gòu)建獨(dú)有的分子身份證。該身份證信息包括了茶樹(shù)品種資源的分子指紋碼和屬性碼,可快速了解其分子信息、來(lái)源等基本信息。本研究結(jié)果對(duì)于茶樹(shù)品種資源區(qū)分和精準(zhǔn)鑒定、分子數(shù)據(jù)數(shù)字化建立具有重要的意義和實(shí)際應(yīng)用價(jià)值,為茶樹(shù)品種資源DNA分子身份證的構(gòu)建提供了思路。
篩選出24個(gè)最佳SNP位點(diǎn)組合,可精準(zhǔn)區(qū)分全部103份供試茶樹(shù)野生種、地方品種和地方種質(zhì)、優(yōu)良品種、新選品系和株系以及國(guó)外品種。將24個(gè)SNP位點(diǎn)組成茶樹(shù)品種資源DNA指紋圖譜編碼,與茶樹(shù)品種資源的基本屬性信息編碼組成28位數(shù)字的茶樹(shù)品種資源DNA分子身份證,并生成相應(yīng)的條形碼和二維碼,可快速被掃碼設(shè)備識(shí)別。
[1] 陳暄. 茶樹(shù)自交不親和類(lèi)型的鑒定及相關(guān)基因克隆與表達(dá)分析[D]. 南京: 南京農(nóng)業(yè)大學(xué), 2010.
CHEN X. Identification of self-incompatibility model, cloning and expression of correlative gene in(L.) O. Kuntze[D]. Nanjing: Nanjing Agricultural University, 2010. (in Chinese)
[2] 吳覺(jué)農(nóng). 略談茶樹(shù)原產(chǎn)地問(wèn)題. 茶葉, 1981(4): 1-7.
WU J N. Summarize the origin of tea plants. Journal of Tea, 1981(4): 1-7. (in Chinese)
[3] 陳盛相. 茶樹(shù)品種(系)親緣關(guān)系與遺傳多樣性分析[D]. 雅安: 四川農(nóng)業(yè)大學(xué), 2013.
CHEN S X. Analysis of genetic relationship and diversity in tea cultivars [D]. Ya’an: Sichuan Agricultural University, 2013. (in Chinese)
[4] 姜燕華, 張成才, 成浩. 茶樹(shù)良種場(chǎng)不同品種的SSR鑒定研究. 茶葉學(xué)報(bào), 2016, 57(3): 105-112.
JIANG Y H, ZHANG C C, CHENG H. SSR identification of different cultivars of tea plant. Acta Tea Sinica, 2016, 57(3): 105-112. (in Chinese)
[5] 王松琳, 馬春雷, 黃丹娟, 馬建強(qiáng), 金基強(qiáng), 姚明哲, 陳亮. 基于SSR標(biāo)記的白化和黃化茶樹(shù)品種遺傳多樣性分析及指紋圖譜構(gòu)建. 茶葉科學(xué), 2018, 38(1): 58-68.
WANG S L, MA C L, HUANG D J, MA J Q, JIN J Q, YAO M Z, CHEN L. Analysis of genetic diversity and construction of DNA fingerprints of chlorophyll-deficient tea cultivars by SSR markers. Journal of Tea Science, 2018, 38(1): 58-68. (in Chinese)
[6] 沈永寶, 施季森. 植物種或品種鑒定的展望. 江蘇林業(yè)科學(xué), 2004, 31(5): 41-45.
SHEN Y B, SHI J S. Tendency on the identification for plant species or varieties. Journal of Jiangsu Forestry Science & Technology, 2004, 31(5): 41-45. (in Chinese)
[7] 尚衛(wèi)瓊, 李友勇, 劉悅, 段志芬, 楊盛美, 李慧, 許燕, 劉本英. 基于EST-SSR標(biāo)記的西雙版納苦茶資源遺傳多樣性分析. 山西農(nóng)業(yè)科學(xué), 2020, 48(2): 167-171.
SHANG W Q, LI Y Y, LIU Y, DUAN Z F, YANG S M, LI H, XU Y, LIU B Y. Genetic diversity analysis of bitter tea germplasm resource in Xishuangbanna based on EST-SSR markers. Journal of Shanxi Agricultural Sciences, 2020, 48(2): 167-171. (in Chinese)
[8] 丁洲, 李燁昕, 袁藝, 王海燕, 劉學(xué)詩(shī), 江昌俊. 安徽茶區(qū)優(yōu)良群體種的表型性狀和遺傳多樣性分析. 茶葉科學(xué), 2018, 38(2): 155-161.
DING Z, LI Y X, YUAN Y, WANG H Y, LIU X S, JIANG C J. Phenotypic traits and genetic diversity of elite tea population in Anhui (China). Journal of Tea Science, 2018(2): 155-161. (in Chinese)
[9] TAN L Q, PENG M, XU L Y, WANG L Y, CHEN S X, ZOU Y, QI G N, CHENG H. Fingerprinting 128 chinese clonal tea cultivars using ssr markers provides new insights into their pedigree relationships. Tree Genetics & Genomes, 2015,11(5): 1-12.
[10] LIU S, LIU H, WU A, HOU Y, AN Y, WEI C. Construction of fingerprinting for tea plant () accessions using new genomic ssr markers. Molecular Breeding, 2017, 37(8): 93.
[11] 陳亮, 王平盛, 山口聰. 應(yīng)用RAPD分子標(biāo)記鑒定野生茶樹(shù)種質(zhì)資源研究. 中國(guó)農(nóng)業(yè)科學(xué), 2002, 35(10): 1186-1191.
CHEN L, WANG P S, SHAN K C. Identification of wild tea germplasm resources (sp.) using RAPD markers. Scientia Agricultura Sinica, 2002, 35(10): 1186-1191. (in Chinese)
[12] 鄭丹琳, 陳濤林, 葛智文, 陳美麗, 戴斯佳, 羅軍武, 冉立群. 柳州汪洞鄉(xiāng)古茶樹(shù)種質(zhì)資源遺傳多樣性的ISSR分析. 分子植物育種, 2018, 16(11): 3629-3635.
ZHENG D L, CHEN T L, GE Z W, CHEN M L, DAI S J, LUO J W, RAN L Q. ISSR analysis of the genetic diversity of ancient tea plant germplasm resources from Wangdong village in Liuzhou. Molecular Plant Breeding, 2018, 16(11): 3629-3635. (in Chinese)
[13] 劉冠群, 吳祠平, 譚禮強(qiáng), 譚杰, 楊婉君, 唐茜. 利用SSR分子標(biāo)記構(gòu)建名山茶樹(shù)基因身份證. 四川農(nóng)業(yè)大學(xué)學(xué)報(bào), 2019, 37(4): 469-474+503.
LIU G Q, WU S P, TAN L Q, TAN J, YANG W J, TANG Q. Construction of SSR-based molecular IDs for tea planted in Mingshan. Journal of Sichuan Agricultural University, 2019, 37(4): 469-474+503. (in Chinese)
[14] LANDER S E. The New genomics: Global views of biology., 1996, 274(5287): 536-539.
[15] COOPER D N, SMITH B A, COOKE H J, NIEMANN S, SCHMIDTKE J. An estimate of unique DNA sequence heterozygosity in the human genome. Human Genetics, 1985, 69(3): 201-205.
[16] 唐立群, 肖層林, 王偉平. SNP分子標(biāo)記的研究及其應(yīng)用進(jìn)展. 中國(guó)農(nóng)學(xué)通報(bào), 2012, 28(12): 154-158.
TANG L Q, XIAO C L, WANG W P. Research and application progress of SNP markers. Chinese Agricultural Science Bulletin, 2012, 28(12): 154-158. (in Chinese)
[17] KIM J J, HAN B G, LEE H. I, YOO H W, LEE J K. Development of SNP-based human identification system. International Journal of Legal Medicine, 2010, 124(2): 125-131.
[18] GANAL M W, POLLEY A, GRANER E M, PLIESKE J, WIESEKE R, LUERSSEN H, DURSTEWITZ G. Large SNP arrays for genotyping in crop plants. Journal of Biosciences, 2012, 37(5): 821-828.
[19] 徐琪, 鄭舒媛, 闞詩(shī)卓, 鄢波. 不同茶樹(shù)品種PPO基因單核苷酸多態(tài)性分析. 分子植物育種, 2017, 15(3): 1109-1113.
XU Q, ZHENG S Y, KANG S Z, YAN B. Single nucleotide polymorphism of PPO gene in different tea varieties. Molecular Plant Breeding, 2017, 15(3): 1109-1113. (in Chinese)
[20] LIN Y, YU W T, ZHOU L, FAN X J, WANG P J, FANG W P, CAI C P, YE N X. Genetic diversity of oolong tea () germplasms based on the nanofluidic array of single-nucleotide polymorphism (SNP) markers. Tree Genetics & Genomes, 2020, 16(1): 3-14.
[21] FANG W, MEINHARDT L W, TAN H, ZHOU L, MISCHKE S, WANG X, ZHANG D. Identification of the varietal origin of processed loose-leaf tea based on analysis of a single leaf by SNP nanofluidic array. The Crop Journal, 2016, 4(4): 304-312.
[22] XIA E, ZHANG H, SHENG J, LI K, ZHANG Q, KIM C, ZHANG Y, LIU Y, ZHU T, LI W, HUANG H, TONG Y, NAN H, SHI C, SHI C, JIANG J, MAO S, JIAO J, ZHANG D, ZHAO Y, ZHAO Y, ZHANG L, LIU Y, LIU B, YU Y, SHAO S, NI D, EICHLER E E, GAO L. The tea tree genome provides insights into tea flavor and independent evolution of caffeine biosynthesis. Molecular Plant, 2017, 10(6): 866-877.
[23] WEI C, YANG H, WANG S, ZHAO J, LIU C, GAO L, XIA E, LU Y, TAI Y, SHE G, SUN J, CAO H, TONG W, GAO Q, LI Y, DENG W, JIANG X, WANG W, CHEN Q, ZHANG S, LI H, WU J, WANG P, LI P, SHI C, ZHENG F, JIAN J, HUANG B, SHAN D, SHI M, FANG C, YUE Y, LI F, LI D, WEI S, HAN B, JIANG C, YIN Y, XIA T, ZHANG Z, BENNETZEN J L, ZHAO S, WAN X. Draft genome sequence ofvar.provides insights into the evolution of the tea genome and tea quality. Proceedings of the National Academy of Sciences of the USA, 2018, 115(18): E4151-E4158.
[24] ZHANG W, ZHANG Y, QIU H, GUO Y, WAN H, ZHANG X, SCOSSA F, ALSEEKH S, ZHANG Q, WANG P, XU L, SCHMIDT M H, JIA X, LI D, ZHU A, GUO F, CHEN W, NI D, USADEL B, FERNIE A R, WEN W. Genome assembly of wild tea tree DASZ reveals pedigree and selection history of tea varieties. Nature Communications, 2020, 11(1): 3719.
[25] XIA E, TONG W, HOU Y, AN Y, CHEN L, WU Q, LIU Y, YU J, LI F, LI R, LI P, ZHAO H, GE R, HUANG J, MALLANO A I, ZHANG Y, LIU S, DENG W, SONG C, ZHANG Z, ZHAO J, WEI S, ZHANG Z, XIA T, WEI C, WAN X. The reference genome of tea plant and resequencing of 81 diverse accessions provide insights into its genome evolution and adaptation. Molecular Plant, 2020, 13(7): 1013-1026.
[26] ALTSCHUL S F. Basic local alignment search tool. Journal of Molecular Biology, 2012, 215(3): 403-410.
[27] 陳亮, 楊亞軍, 虞富蓮. 茶樹(shù)種質(zhì)資源描述規(guī)范和數(shù)據(jù)標(biāo)準(zhǔn). 北京: 中國(guó)農(nóng)業(yè)出版社, 2005.
CHEN L, YANG Y J, YU F L.Descriptors and Data Standard for Tea(spp.). Beijing: China Agriculture Press, 2005. (in Chinese)
[28] 陳亮, 馬建強(qiáng). 茶樹(shù)非主要農(nóng)作物品種登記要求及進(jìn)展. 中國(guó)茶葉, 2020, 42(3): 8-12.
CHEN L, MA J Q. Requirement and advance of non-major crop cultivar registration of tea plant. China Tea, 2020, 42(3): 8-12. (in Chinese)
[29] 魏中艷, 李慧慧, 李駿, YASIR A.GAMAR, 馬巖松, 邱麗娟. 應(yīng)用SNP精準(zhǔn)鑒定大豆種質(zhì)及構(gòu)建可掃描身份證. 作物學(xué)報(bào), 2018, 44(3): 315-323.
WEI Z Y, LI H H, LI J, GAMAR Y A, MA Y S, QIU L J. Accurate identification of varieties by nucleotide polymorphisms and establishment of scannable variety IDs for soybean germplasm. Acta Agronomica Sinica, 2018, 44(3): 315-323. (in Chinese)
[30] JONES E S, SULLIVAN H, BHATTRAMAKKI D, SMITH J S C. A comparison of simple sequence repeat and single nucleotide polymorphism marker technologies for the genotypic analysis of maize (L.). Theoretical & Applied Genetics, 2007, 115(3): 361-371.
[31] 許家磊, 王宇, 后猛, 李強(qiáng). SNP檢測(cè)方法的研究進(jìn)展. 分子植物育種, 2015, 13(2): 475-482.
XU J L, WANG Y, HOU M, LI Q. Progresson detection methods of SNP. Molecular Plant Breeding, 2015(2): 475-482. (in Chinese)
[32] FANG W, MEINHARDT L W, TAN H, ZHOU L, MISCHKE S, ZHANG D. Varietal identification of tea () using nanofluidic array of single nucleotide polymorphism (SNP) markers. Horticulture research, 2014, 1(1): 14035.
[33] PAN Y. Databasing molecular identities of sugarcane (spp.) clones constructed with microsatellite (SSR) DNA markers. American Journal of Plant Sciences, 2010, 1(2): 87-94.
[34] 李春花, 陳蕤坤, 王艷青, 尹桂芳, 盧文潔, 孫道旺, 吳斌, 王莉花. 利用SSR標(biāo)記構(gòu)建云南苦蕎種質(zhì)資源分子身份證. 分子植物育種, 2019, 17(5): 1575-1582.
LI C H, CHEN R K, WANG Y Q, YIN G F, LU W J, SUN D W, WU B, WANG L H. Establishment of the molecular ID for Yunnan tartary buckwheat germplasm resources based on SSR marker. Molecular Plant Breeding, 2019, 17(5): 1575-1582. (in Chinese)
[35] 冉昆, 隋靜, 王宏偉, 魏樹(shù)偉, 張勇, 董冉, 董肖昌, 王少敏. 利用SSR熒光標(biāo)記構(gòu)建山東地方梨種質(zhì)資源分子身份證. 果樹(shù)學(xué)報(bào), 2018, 35(S1): 73-80.
RAN K, SUI J, WANG H W, WEI S W, ZHANG Y, DONG R, DONG X C, WANG S M. Construction of molecular identity card of Shandong local pear germplasm resources with SSR fluorescent markers. Journal of Fruit Science, 2018, 35(S1): 73-80. (in Chinese)
[36] 高源, 劉鳳之, 王昆, 王大江, 龔欣, 劉立軍. 蘋(píng)果部分種質(zhì)資源分子身份證的構(gòu)建. 中國(guó)農(nóng)業(yè)科學(xué), 2015, 48(19): 3887-3898.
GAO Y, LIU F Z, WANG K, WANG D J, GONG X, LIU L J. Establishment of molecular ID for some apple germplasm resources. Scientia Agricultura Sinica, 2015, 48(19): 3887-3898. (in Chinese)
[37] 陸徐忠, 倪金龍, 李莉, 汪秀峰, 馬卉, 張小娟, 楊劍波. 利用SSR分子指紋和商品信息構(gòu)建水稻品種身份證. 作物學(xué)報(bào), 2014, 40(5): 823-829.
LU X Z, NI J L, LI L, WANG X F, MA H, ZHANG X J, YANG J B. Construction of rice variety indentity using SSR fingerprint and commodity information. Acta Agronomica Sinica, 2014, 40(5): 823-829. (in Chinese)
[38] 徐雷鋒, 葛亮, 袁素霞, 任君芳, 袁迎迎, 李雅男, 劉春, 明軍. 利用熒光標(biāo)記SSR構(gòu)建百合種質(zhì)資源分子身份證. 園藝學(xué)報(bào), 2014, 41(10): 2055-2064.
XU L F, GE L, YUAN S X, REN J F, YUAN Y Y, LI Y N, LIU C, MING J. Using the fluorescent labeled SSR markers to establish molecular identity of lily germplasms. Acta Horticulturae Sinica, 2014, 41(10): 2055-2064. (in Chinese)
[39] 陳昌文, 曹珂, 王力榮, 朱更瑞, 方偉超. 中國(guó)桃主要品種資源及其野生近緣種的分子身份證構(gòu)建. 中國(guó)農(nóng)業(yè)科學(xué), 2011, 44(10): 2081-2093.
CHEN C W, CAO K, WANG L R, ZHU G R, FANG W C. Molecular ID establishment of main China peach varieties and peach related species. Scientia Agricultura Sinica, 2011, 44(10): 2081-2093. (in Chinese)
[40] 尹躍, 趙建華, 安巍, 李彥龍, 何軍, 曹有龍. 利用SSR標(biāo)記構(gòu)建枸杞品種分子身份證. 生物技術(shù)通報(bào), 2018, 34(9): 195-201.
YIN Y, ZHAO J H, AN W, LI Y L, HE J, CAO Y L. Establishment of molecular identity for wolfberry cultivars based on SSR markers. Biotechnology Bulletin, 2018, 34(9): 195-201. (in Chinese)
Construction of Molecular ID for Tea Cultivars by using of Single- nucleotide polymorphism (SNP) Markers
FAN Xiaojing1, YU Wentao2, CAI Chunping2, LIN Yi1, WANG Zehan1, FANG Wanping3, ZHANG Jianming4, YE Naixing1
1College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science in Universities of Fujian Province, Fuzhou 350002;2Technology Centre of Fuzhou Customs District/Fujian Key Laboratory for Technology Research of Inspection and Quarantine, Fuzhou 350001;3College of Horticulture, Nanjing Agricultural University, Nanjing 210095;4Wuyi University, Wuyishan 354300, Fujian
【】In order to facilitate the protection and precise management of tea cultivars and avoid the phenomenon of homonyms and synonyms, single-nucleotide polymorphism (SNP) molecular marker database of tea cultivars was established, and the 28 digit molecular identities of tea cultivars were constructed by DNA fingerprinting of SNP loci and the basic information of tea cultivars.【】By mining the expressed sequence tags (EST) of tea plants, a large number of high-quality ESTs were obtained. Then, the ESTs were assembled to develop candidate SNP loci. And, high-quality SNPs for tea plants were screened. Furthermore, the candidate SNP loci were compared with the whole genome of tea plant to confirm their positions on the chromosomes and specific genes. The genomic DNA was extracted from fresh leaves of 103 tea cultivars. Subsequently, the genotyping of accessions was carried out on microfluidic chips. Information index, observed heterozygosity and expected heterozygosity of the candidate SNPs were obtained. The SNP loci were further screened by their polymorphism, obtaining the optimal combination of SNP loci. The molecular identities of tea cultivars were finally constructed by combining the basic information of tea cultivars.【】A total of 1 786 candidate SNP loci were selected from the EST database of. According to the sequence conservation, 96 SNP loci were selected. Compared with the latest tea plant genome, the candidate loci were evenly distributed on 15 chromosomes of the whole tea plant genome. The polymorphism information of candidate SNP loci of tea cultivars were analyzed, and 10 non-polymorphic loci were eliminated. The average values of information index, observed heterozygosity, expected heterozygosity, fixed index and minor allele frequency of the remaining 86 loci were 0.517, 0.370, 0.346, -0.036, 0.269, respectively. 24 SNPs, with high polymorphism, were screened out from 86 SNPs to distinguish all tea cultivars. Based on the fingerprint of 24 SNP markers and the basic information of tea cultivars, the tea molecular ID, which composed of 28 digits, was formed finally. 【】According to the polymorphism information of SNP markers, the candidate SNP loci were screened. And all tea cultivars were accurately distinguished. Furthermore, The DNA fingerprints of 103 tea cultivars were constructed by the 24 SNP markers and the converted serial codes from information of the tea cultivars, each germplasm thus has a unique molecular identity code, and the bar codes and quick response (QR) codes are generated as the molecular ID card, which can be quickly identified by the code scanning equipment.
; cultivar; SNP; molecular ID; DNA fingerprint
10.3864/j.issn.0578-1752.2021.08.014
2020-08-28;
2020-09-27
福建省“2011協(xié)同創(chuàng)新中心”中國(guó)烏龍茶產(chǎn)業(yè)協(xié)同創(chuàng)新中心專(zhuān)項(xiàng)(閩教科〔2015〕75號(hào))、海關(guān)總署科技項(xiàng)目(2020HK187)、福建農(nóng)林大學(xué)茶產(chǎn)業(yè)鏈科技創(chuàng)新與服務(wù)體系建設(shè)項(xiàng)目(2020-01)、福建張?zhí)旄2枞~發(fā)展基金會(huì)科技創(chuàng)新基金(FJZTF01)
樊曉靜,E-mail:1187248076@qq.com。通信作者葉乃興,E-mail:ynxtea@126.com。通信作者于文濤,E-mail:wtyu@foxmail.com
(責(zé)任編輯 李莉)