蒲武軍,杜爭光
一類分數階比率依賴型捕食系統(tǒng)的動力學分析
*蒲武軍,杜爭光
(隴南師范高等??茖W校數學系,甘肅,隴南 742500)
討論了一類食餌帶有疾病的分數階比率依賴型捕食系統(tǒng)的動力學行為。利用線性化方法定性分析了各類平衡點的穩(wěn)定性,并給出了其正平衡點局部漸近穩(wěn)定的充分條件。數值模擬顯示,參數和階數對平衡點的收斂速度及其穩(wěn)定性產生很重要的影響。
分數階;比率依賴型捕食系統(tǒng);局部漸近穩(wěn)定性;Hopf分支
近年來,隨著計算機技術的不斷發(fā)展,分數階計算引起了許多學者的關注,并成功應用到工程技術領域[1-2],特別是許多應用數學工作者[3-7]用分數階計算模擬現實過程。靳楨[8]研究了一類食餌帶有疾病的比率依賴型捕食系統(tǒng),討論了其平衡點的穩(wěn)定性。受此啟發(fā),本文考慮如下分數階模型:
引理1[10]考慮如下的自治系統(tǒng):
引理2[11]考慮如下的分數階系統(tǒng):
情形1:
情形2:
方程(8)三個特征根可表示為
其中
證明:結論(i)和(iii)顯然成立,故只需證明結論(ii)成立即可,注意到
圖1 易感者S,感染者I,捕食者R的收斂性及其相圖
圖2 不同參數下易感者S,感染者I,捕食者R的收斂性及其相圖
圖3 α=0.988時,易感者S,感染者I,捕食者R的振蕩及正平衡點附近的周期性閉軌
圖4 α=0.988時,易感者S,感染者I,捕食者R發(fā)散及正平衡點不穩(wěn)定
[1] Laskin N.Fractional market dynamics[J] .Physica A,2000,287(3):482-492.
[2] Duarte F B, Machado J T. Chaotic phenomena and fractional-order dynamics in the trajectory control of redundant manipulators[J] . Nonlinear Dynam,2002,29 (1–4):315-342.
[3] Bozkurt. F, Yousef A. Flip bifurcation and stability analysis of a fractional-order population dynamics with Allee effect[J] .Journal of Interdisciplinary Mathematics,2019,22(6):1035-1050.
[4] 蒲武軍,杜爭光.一類分數階廣義捕食者-食餌模型的動力學分析[J].西北師范大學學報:自然科學版,2018, 5:10-15.
[5] 劉娜,方潔,鄧瑋,等. 一類分數階復值SIR傳染病模型的穩(wěn)定性分析[J].數學的實踐與認識,2019,23:256-261.
[6] 趙新俊,鄭義. 分數階SIR傳染病模型的穩(wěn)定性分析[J]. 生物數學學報,2018,1:11-16.
[7] 杜爭光. 具有Holling Ⅳ型功能反應的分數階捕食者-食餌模型的動力學分析[J].井岡山大學學報:自然科學版,2019,40(3):9-13.
[8] Jin Z, Haque M.Global stability analysis of an eco-epidemiological model of thesalton sea[J]. J. Biological Systems,2006,14(3):373-385.
[9] Podlubny I. Fractional Differential Equations:An Introduction to Fractional Derivatives,Fractional Differential Equations,to Methods of their Solution and Some of their Applications[M].Academic press,1998.
[10] Matignon D.Stability result on fractional differential equations with applications to control processing[C]. IMACS-SMC proceedings,Lille,France,1996:963-968.
[11] Petras I. Fractional-order Nonlinear Systems:Modeling,Analysis and Simulation[M]. London,Beijing Springer:HEP,2011.
[12] Li Y, Chen Y. Podlubny I,Stability of fractional-order nonlinear dynamic systems:Lyapunov directmethod and generalized Mittag-Leffler stability[J]. Comput. Math. Appl,2010,59:1810-1821.
[13] Muhammed ?i?ek, Yakar CoGkun, OLur Bülent. Stability,Boundedness,and Lagrange Stability of Fractional Differential Equations with Initial Time Difference[J].The Scientific WorldJournal,2014,Article ID 939027:1-7.
DYNAMICS OF A RATIO-DEPENDENT PREDATOR-PREY OF FRACTIONAL ORDER SYSTEM
*PU Wu-jun, DU Zheng-guang
(Department of Mathematics, Longnan Teachers College, Longnan, Gansu 742500, China)
In this paper, we studied the dynamic behavior of a fractional-order ratio-dependent predator–prey system with disease on the prey. The stability of all kinds of equilibrium points of the system was qualitatively analyzed with the linearization method, the sufficient conditions for the local asymptotic stability of the positive equilibrium point of the system were given, and the numerical simulation showed that the parameters and order of the system had an important influence on the convergence rate and stability of the equilibrium point.
fractional-order; ratio-dependent predator-prey model; local asymptotic stability; Hopf bifurcation
O157.13
A
10.3969/j.issn.1674-8085.2021.02.003
1674-8085(2021)02-0014-05
2020-10-14;
2020-12-04
隴南市2019年科技指導性計劃項目(2019-ZD-14)
*蒲武軍(1979-),男,甘肅莊浪人,講師,碩士,主要從事生物數學方面的研究(E-mail:puwj2005@163.com);
杜爭光(1973-),男,甘肅禮縣人,副教授,主要從事應用微分方程方面的研究(E-mail:lnsz_dzg@163.com).