李博文,朱鴻斌,郭建斌,董仁杰
鳥糞石沉淀法脫除氨氮對(duì)雞糞厭氧發(fā)酵過(guò)程的影響
李博文1,朱鴻斌2,郭建斌1※,董仁杰1
(1. 中國(guó)農(nóng)業(yè)大學(xué)工學(xué)院,北京 100083;2. 中國(guó)華電科工集團(tuán)有限公司,北京 100160)
為緩解雞糞厭氧發(fā)酵過(guò)程中產(chǎn)生的氨氮抑制,采用投加鎂磷鹽的方式,在厭氧發(fā)酵過(guò)程中原位脫除氨氮,考察鳥糞石沉淀法脫除氨氮對(duì)雞糞厭氧發(fā)酵過(guò)程的影響及鎂磷鹽的利用效率。試驗(yàn)向穩(wěn)定運(yùn)行的半連續(xù)厭氧反應(yīng)器內(nèi)投加MgCl2·6H2O和K2HPO4·3H2O,理論脫除速率為3 000 mg/d。第一次加鹽脫除氨氮后,試驗(yàn)組反應(yīng)器內(nèi)氨氮濃度由2 937 mg/L降低至1 466 mg/L,平均產(chǎn)甲烷量為0.39 L/g,相較對(duì)照組的0.33 L/g提高了18%,鎂磷鹽利用率為91%;第二次加鹽脫除氨氮后,試驗(yàn)組氨氮濃度由2 232 mg/L降低至762 mg/L,平均產(chǎn)甲烷量為0.33 L/g,相較對(duì)照組的0.30 L/g提高了10%,鎂磷鹽利用率為90%。研究表明鳥糞石沉淀法能較好的與厭氧發(fā)酵過(guò)程相耦合,在脫除氨氮緩解抑制的同時(shí),提高系統(tǒng)甲烷產(chǎn)量,并回收部分氮磷資源。
甲烷;發(fā)酵;氨氮;鳥糞石
隨著中國(guó)經(jīng)濟(jì)的快速發(fā)展,人們對(duì)于肉蛋奶等產(chǎn)品的需求也不斷提高,畜禽養(yǎng)殖業(yè)的快速發(fā)展也帶來(lái)了大量的畜禽糞污[1]。厭氧消化是一種有效的廢棄物資源化利用技術(shù),但在厭氧發(fā)酵過(guò)程中雞糞及豬糞等畜禽糞污中高含量的尿素、蛋白質(zhì)等有機(jī)質(zhì)被分解產(chǎn)生氨氮,氨氮濃度通常達(dá)到3 000 mg/L以上時(shí),會(huì)開始產(chǎn)生氨氮抑制現(xiàn)象[2],降低產(chǎn)氣率[3-4]。厭氧反應(yīng)氨抑制可以通過(guò)降低氨氮濃度和提高微生物耐受能力等方法來(lái)解除,如稀釋、調(diào)節(jié)進(jìn)料碳氮比、沉淀、吸附、馴化、添加微量元素等[5-10]。
鳥糞石沉淀法是利用鎂磷和氨形成不溶的磷酸銨鎂沉淀來(lái)除磷脫氮[11],生成的磷酸銨鎂含有高含量的P2O5和氮素,是一種優(yōu)良的緩釋肥[12]。Rahman等[13]綜述了影響鳥糞石沉淀的因素,其中鎂磷摩爾比、pH、投加試劑的種類及其他離子的存在(如Ca2+、Fe2+等)是影響磷酸銨鎂反應(yīng)的主要因素。國(guó)內(nèi)外已有許多研究探索了添加不同鎂源或調(diào)控反應(yīng)條件以優(yōu)化鳥糞石結(jié)晶過(guò)程來(lái)回收氮磷資源,主要集中在污水、厭氧消化液等養(yǎng)分回收領(lǐng)域[14-15]。但是,將鳥糞石沉淀法與厭氧發(fā)酵相結(jié)合,實(shí)現(xiàn)厭氧反應(yīng)過(guò)程實(shí)時(shí)原位脫氨的研究較少。本研究采用鳥糞石沉淀法在雞糞中溫厭氧發(fā)酵過(guò)程中脫除氨氮,研究鳥糞石沉淀法脫氨對(duì)厭氧消化系統(tǒng)產(chǎn)甲烷的影響。旨在通過(guò)鳥糞石沉淀法在解除雞糞厭氧發(fā)酵過(guò)程中氨氮抑制的同時(shí),提高厭氧發(fā)酵過(guò)程產(chǎn)甲烷能力,為鳥糞石沉淀法與厭氧消化過(guò)程相結(jié)合提供參考依據(jù)。
試驗(yàn)采用的雞糞取自中國(guó)農(nóng)業(yè)大學(xué)蛋雞養(yǎng)殖基地。為確保進(jìn)料均勻,將取回的雞糞加水稀釋后過(guò)0.850 mm篩,除去羽毛蛋殼及沙子等雜質(zhì)后置于4 ℃冷庫(kù)備用。接種污泥取自實(shí)驗(yàn)室運(yùn)行良好的中溫雞糞厭氧反應(yīng)器,反應(yīng)器在水力停留時(shí)間為15 d,進(jìn)料TS為5%的條件下穩(wěn)定運(yùn)行了150 d,沒(méi)有發(fā)生明顯的氨抑制現(xiàn)象。進(jìn)料雞糞和污泥的理化指標(biāo)如表1所示。
表1 原料及接種污泥的性質(zhì)
本研究為半連續(xù)厭氧發(fā)酵試驗(yàn),采用2個(gè)總?cè)莘e為15 L、有效容積為10 L的CSTR反應(yīng)器,罐體外層帶有水浴夾層,通過(guò)水浴鍋控制溫度,反應(yīng)器頂部配有攪拌電機(jī)及配套的調(diào)速控制器。2反應(yīng)器各接種10 L污泥后啟動(dòng),攪拌轉(zhuǎn)速120 r/min,在中溫條件(35±2)℃下進(jìn)行。試驗(yàn)的水力停留時(shí)間為15 d,初始有機(jī)負(fù)荷(以體積濃度計(jì))為1.5 g/(L?d),后續(xù)具體運(yùn)行情況如表2所示。反應(yīng)器所產(chǎn)沼氣通過(guò)集氣袋收集,每日測(cè)定氣體產(chǎn)量、甲烷濃度,及發(fā)酵液pH值,每3~4 d測(cè)定發(fā)酵液中的氨氮及有機(jī)酸濃度。采用MgCl2·6H2O和K2HPO4·3H2O分別作為鎂磷鹽添加進(jìn)行脫氨操作,脫氨期間,每日將43.5 g MgCl2·6H2O及48.8 g K2HPO4·3H2O與進(jìn)料雞糞混合后投入試驗(yàn)組反應(yīng)器內(nèi)。在此期間,每日對(duì)出料中的氨氮及有機(jī)酸濃度進(jìn)行測(cè)定。脫氨操作每次僅對(duì)單個(gè)反應(yīng)器進(jìn)行,另一反應(yīng)器不做處理正常進(jìn)出料。在第36~41天對(duì)反應(yīng)器A進(jìn)行脫氨操作,在第56~62 天對(duì)反應(yīng)器B進(jìn)行脫氨操作,來(lái)緩解反應(yīng)器內(nèi)氨氮累積產(chǎn)生的抑制現(xiàn)象,第一次加鹽時(shí)反應(yīng)器在OLR為2 g/(L?d)的條件下運(yùn)行了13 d,此時(shí)反應(yīng)系統(tǒng)氨氮已經(jīng)達(dá)到較高水平,產(chǎn)氣量出現(xiàn)下降,第二次加鹽時(shí)為反應(yīng)器在OLR為2 g/(L·d)的條件下運(yùn)行了33 d,此時(shí)反應(yīng)系統(tǒng)已經(jīng)運(yùn)行了2個(gè)水力停留時(shí)間,處于穩(wěn)定運(yùn)行狀態(tài)。
表2 試驗(yàn)運(yùn)行方案
注:(I)A組脫氨/B組正常進(jìn)料;(II) B組脫氨/A組正常進(jìn)料,下同。
Note: (I) Ammonia nitrogen removal for group A/Normal feeding for group B; (II) Ammonia nitrogen removal for group B/Normal feeding for group A, the same below.
氨氮脫除量計(jì)算方法根據(jù)物質(zhì)守恒定律及經(jīng)驗(yàn)分析得出。
對(duì)反應(yīng)器進(jìn)行第次脫除氨氮操作時(shí),反應(yīng)器內(nèi)部的氨氮平衡為
根據(jù)未處理反應(yīng)器出料中的氨氮濃度,可推算出每日進(jìn)料引入的氨氮含量X
將計(jì)算得到的進(jìn)料氨氮含量帶入進(jìn)行脫除氨氮的反應(yīng)器的氨氮平衡公式中,可計(jì)算得到沉淀脫氨操作脫除的氨氮含量Z
沼氣采用濕式氣體流量計(jì)及沼氣分析儀分別測(cè)定產(chǎn)氣量及甲烷含量。采用玻璃電極法測(cè)定發(fā)酵液pH值;揮發(fā)性脂肪酸(Volatile Fatty Acid /VFA)采用GC測(cè)定[16];氨氮采用水楊酸-次氯酸鹽光度法測(cè)定[17]。
圖1反映了兩組反應(yīng)器中氨氮濃度動(dòng)態(tài)變化情況,在反應(yīng)器初始運(yùn)行階段,有機(jī)負(fù)荷為1.5 g/(L?d),此時(shí)兩組反應(yīng)器內(nèi)氨氮濃度維持在1 452~1 829 mg/L之間,提升有機(jī)負(fù)荷至2 g/(L?d)后,兩反應(yīng)器內(nèi)的氨氮濃度迅速上升至2 600 mg/L以上,最高時(shí)達(dá)到3 219 mg/L,對(duì)兩反應(yīng)器進(jìn)行脫除氨氮操作時(shí),氨氮濃度均迅速下降。在試驗(yàn)運(yùn)行的第36~41天進(jìn)行第一次加鹽,加鹽后試驗(yàn)組(反應(yīng)器A)氨氮濃度從2 937 mg/L降低至1 466 mg/L,隨后反應(yīng)器A中的氨氮濃度在1 122~2 033 mg/L內(nèi)浮動(dòng);在試驗(yàn)運(yùn)行的第56~62天進(jìn)行第二次加鹽后,試驗(yàn)組(反應(yīng)器B)氨氮濃度從2 232 mg/L降低至762 mg/L,在停止加鹽17 d后與對(duì)照組(反應(yīng)器A)氨氮濃度達(dá)到一致。在半連續(xù)厭氧消化系統(tǒng)中,含氮有機(jī)物分解轉(zhuǎn)化產(chǎn)生氨氮,穩(wěn)定后反應(yīng)器中的氨氮濃度處于動(dòng)態(tài)平衡。利用鳥糞石沉淀法脫除氨氮時(shí),氨氮濃度迅速降低,打破了原先的平衡。加鹽結(jié)束后,系統(tǒng)中的氨氮濃度維持在較低水平,氨氮脫除效果明顯。
國(guó)內(nèi)外已有許多利用鳥糞石沉淀法回收廢水或沼液中氨氮和磷的相關(guān)研究。Li等在pH值為8.5~9的條件下,利用鳥糞石法去除垃圾滲濾液中的氨氮,氨氮的去除率超過(guò)96%[18]。Yetilmezsoy等利用鳥糞石法去除雞糞廢水中的氨氮,研究結(jié)果表明,在pH 9的條件下的去除效果最好,此時(shí)氨氮的去除率為85.4%[19]。郝曉地等對(duì)磷酸銨鎂沉淀形成的最佳條件進(jìn)行了研究,試驗(yàn)結(jié)果表明,在自來(lái)水反應(yīng)體系中,當(dāng)pH值在7.0~7.5時(shí),鳥糞石純度最高,隨著pH值升高,沉淀中磷酸銨鎂的含量逐漸降低[20]。在本研究中,采用鳥糞石沉淀法原位脫除雞糞沼液中的氨氮,脫除反應(yīng)過(guò)程中pH值介于6.9~7.8之間,根據(jù)氨氮脫除量計(jì)算公式推算出第一次沉淀脫除氨氮操作共去除16 462 mg氨氮,而理論氨氮去除量為18 000 mg,鹽利用效率為91%。第二次沉淀脫除氨氮操作共去除氨氮18 945 mg,理論氨氮去除量為21 000 mg,鹽利用效率為90%,脫除效率與前人的研究結(jié)果相似,表明在厭氧消化的過(guò)程中利用鳥糞石沉淀法脫除氨氮,可以高效利用試劑以調(diào)控消化系統(tǒng)氨氮的含量。同時(shí),在反應(yīng)器出料的固相中發(fā)現(xiàn)了白色顆粒狀磷酸銨鎂結(jié)晶。與前人研究不同的是,本研究在系統(tǒng)pH值為6.9~7.8的條件下也獲得了較高的鹽利用率,這可能由于系統(tǒng)中的氨氮濃度過(guò)高,促使鳥糞石反應(yīng)發(fā)生并消耗掉了大部分的鎂磷鹽。
半連續(xù)厭氧發(fā)酵試驗(yàn)過(guò)程中甲烷產(chǎn)量的變化如圖2所示。在1~22 d,兩反應(yīng)器在1.5 g/(L?d)有機(jī)負(fù)荷的條件下運(yùn)行,產(chǎn)氣量在0.37~0.55 L/g范圍內(nèi)波動(dòng),兩組反應(yīng)器產(chǎn)氣量無(wú)顯著差異,平行性較好,且均未產(chǎn)生抑制現(xiàn)象。在23~35 d,反應(yīng)器有機(jī)負(fù)荷提升至2 g/(L?d),此時(shí)氨氮濃度上升到2 600~3 219 mg/L(如圖1),產(chǎn)生抑制現(xiàn)象,產(chǎn)氣呈現(xiàn)緩慢下降趨勢(shì),逐漸由該負(fù)荷初期的0.54 L/g下降到第35天的0.43 L/g。在36~41 d時(shí),對(duì)反應(yīng)器A進(jìn)行連續(xù)6 d的脫除氨氮處理,反應(yīng)器B正常進(jìn)料,在此期間試驗(yàn)組(反應(yīng)器A)的產(chǎn)甲烷量由0.44 L/g上升至0.46 L/g,而對(duì)照組(反應(yīng)器B)的產(chǎn)甲烷量由0.43 L/g降低至0.40 L/g。加鹽有效緩解了氨氮抑制,加鹽期間甲烷產(chǎn)量與未加鹽組相比提升了15%。在42~56 d,即停止加鹽后的15 d內(nèi),試驗(yàn)組(反應(yīng)器A)的平均產(chǎn)甲烷量為0.39 L/g,而對(duì)照組(反應(yīng)器B)為0.33 L/g,采用配對(duì)t檢驗(yàn)的方式對(duì)15 d內(nèi)的單位產(chǎn)甲烷量進(jìn)行統(tǒng)計(jì)分析,二者有顯著性差異(< 0.05),脫氮后的平均單位產(chǎn)甲烷量相較對(duì)照組提升18%。值得注意的是,反應(yīng)器A在停止加鹽后的日產(chǎn)甲烷量顯著低于加鹽過(guò)程中的日產(chǎn)甲烷量,這可能是由于加鹽過(guò)程中引入了大量的鉀離子對(duì)厭氧消化系統(tǒng)產(chǎn)生了抑制作用而造成的。Chen等的研究表明,在未馴化的厭氧系統(tǒng)中,鉀離子的濃度超過(guò)3 g/L就會(huì)抑制系統(tǒng)的產(chǎn)甲烷量[21]。在56~62 d,對(duì)反應(yīng)器B進(jìn)行連續(xù)7 d的脫除氨氮處理后,產(chǎn)甲烷量由0.30 L/g下降至0.28 L/g,減少了6.7%,反應(yīng)器A正常進(jìn)料,產(chǎn)甲烷量由0.38 L/g下降至0.32 L/g,減少了15.8%。在62~80 d,即停止加鹽后的15 d內(nèi),試驗(yàn)組(反應(yīng)器B)的平均單位VS產(chǎn)甲烷量為0.33 L/g,而對(duì)照組(反應(yīng)器A)為0.30 L/g,采用配對(duì)t檢驗(yàn)的方式對(duì)15 d內(nèi)的單位產(chǎn)甲烷量進(jìn)行統(tǒng)計(jì)分析,二者有顯著性差異(< 0.05),進(jìn)行脫除氨氮后的單位產(chǎn)甲烷量相較對(duì)照組提升10%。
兩次脫除氨氮后反應(yīng)器單位產(chǎn)甲烷量提升程度不同可能是由于氨氮濃度不同所致。研究認(rèn)為,在厭氧發(fā)酵過(guò)程中,氨氮濃度超過(guò)3 000 mg/L時(shí),系統(tǒng)將會(huì)受到抑制[22]。完成第一次氨氮脫除后,試驗(yàn)組(反應(yīng)器A)的氨氮濃度降低至1 500 mg/L左右,而對(duì)照組(反應(yīng)器B)的氨氮濃度在2 800 mg/L左右;而完成第二次氨氮脫除后,試驗(yàn)組(反應(yīng)器B)的氨氮濃度降低至800 mg/L左右,但此時(shí)對(duì)照組(反應(yīng)器A)的氨氮濃度也僅在1 800 mg/L左右。較低的氨氮濃度對(duì)厭氧發(fā)酵過(guò)程的抑制程度也相對(duì)較低,從而導(dǎo)致第二次脫除氨氮時(shí)的產(chǎn)甲烷量較第一次提升程度低。
兩次脫除氨氮的操作均使得甲烷產(chǎn)量有所提升,這與前人的研究結(jié)果相似。Romero-Güiza等向穩(wěn)定運(yùn)行的中溫厭氧反應(yīng)器中添加5和30 kg/m3由低品位氧化鎂配制而成的穩(wěn)定劑,使甲烷產(chǎn)量增加了25%和40%,與本研究的結(jié)果相似[7]。然而,Uludag-Demirer等在研究時(shí)發(fā)現(xiàn),在批式厭氧發(fā)酵過(guò)程中添加鎂磷會(huì)導(dǎo)致了系統(tǒng)產(chǎn)甲烷量的降低[23],這與本文研究結(jié)果相反。這可能是由于試驗(yàn)為批式試驗(yàn)且所用的發(fā)酵底物不同導(dǎo)致的。批式發(fā)酵過(guò)程中無(wú)法進(jìn)行物料交換,容易造成產(chǎn)物抑制,而半連續(xù)進(jìn)料發(fā)酵試驗(yàn)中,水解產(chǎn)酸與產(chǎn)甲烷過(guò)程同時(shí)進(jìn)行,不斷與外界進(jìn)行物料交換,能有效避免發(fā)酵過(guò)程中的產(chǎn)物抑制,使發(fā)酵過(guò)程處于穩(wěn)定狀態(tài)[24]。且Uludag-Demirer等的研究中以牛糞為原料,最終發(fā)酵液的氨氮濃度也僅在300 mg/L附近,通常不會(huì)產(chǎn)生氨氮抑制。因此,添加鎂磷試劑,可能會(huì)引入較多的陽(yáng)離子或改變發(fā)酵過(guò)程的pH從而造成總產(chǎn)氣量降低。
圖3顯示了厭氧發(fā)酵過(guò)程中沼液總有機(jī)酸含量變化情況,總有機(jī)酸含量是指示厭氧發(fā)酵過(guò)程穩(wěn)定及效率的重要指標(biāo)。試驗(yàn)結(jié)果顯示,在1~35 d,2反應(yīng)器正常進(jìn)料,總有機(jī)酸濃度上升至2 500 mg/L左右,出現(xiàn)了一定程度的積累。在36~41 d進(jìn)行脫除氨氮處理后,試驗(yàn)組(反應(yīng)器A)中總有機(jī)酸含量顯著降低,從2 317 mg/L降低至72 mg/L(< 0.05)。后續(xù)發(fā)酵過(guò)程中試驗(yàn)組的總有機(jī)酸含量也在很低的水平內(nèi)波動(dòng),未再發(fā)生積累。而對(duì)照組(反應(yīng)器B)中總有機(jī)酸含量則持續(xù)上升至3 730 mg/L(第55天)。在進(jìn)行第二次氨氮脫除操作后,試驗(yàn)組(反應(yīng)器B)中的總有機(jī)酸含量也發(fā)生下降,在第63 天時(shí)濃度為2 321 mg/L。在停止加鹽后,總有機(jī)酸含量繼續(xù)下降至第79天的25 mg/L,與對(duì)照組在相同水平。在厭氧消化系統(tǒng)中,總有機(jī)酸含量受到產(chǎn)酸菌和產(chǎn)甲烷菌的雙重影響,產(chǎn)酸菌將可溶性有機(jī)物先降解成小分子的VFA,再經(jīng)產(chǎn)甲烷菌將VFA轉(zhuǎn)化為甲烷,在穩(wěn)定的厭氧消化系統(tǒng)中,各過(guò)程處于動(dòng)態(tài)平衡中[22]。兩次脫除氨氮處理后,試驗(yàn)組的總有機(jī)酸含量均顯著降低,推測(cè)加入鎂磷等試劑脫除氨氮后,系統(tǒng)內(nèi)產(chǎn)酸菌受到抑制或甲烷菌活性提高或兩者同時(shí)發(fā)生。Romero-Güiza等的研究結(jié)果表明,陽(yáng)離子對(duì)于產(chǎn)酸菌可能會(huì)產(chǎn)生抑制作用而導(dǎo)致VFA含量的降低[25],在本試驗(yàn)中,停止加鹽后,總有機(jī)酸的含量保持在較低水平,未發(fā)生累積,證明采用鳥糞石沉淀法脫除氨氮時(shí)主要是通過(guò)恢復(fù)產(chǎn)甲烷菌的活性來(lái)實(shí)現(xiàn)的。
1)研究結(jié)果表明,鳥糞石沉淀法與雞糞厭氧消化過(guò)程耦合效果良好。向半連續(xù)厭氧消化反應(yīng)器中投加MgCl2·6H2O和K2HPO4·3H2O,能夠有效降低雞糞中溫厭氧消化過(guò)程中產(chǎn)生的氨氮,緩解氨抑制,恢復(fù)產(chǎn)甲烷菌活性,促進(jìn)有機(jī)酸的轉(zhuǎn)化,進(jìn)而提高產(chǎn)甲烷量。
2)以3 000 mg/d的去除速率,通過(guò)向半連續(xù)厭氧消化反應(yīng)器中投加MgCl2·6H2O和K2HPO4·3H2O的方式來(lái)脫除氨氮后,試驗(yàn)組產(chǎn)甲烷量較對(duì)照組提高了10%~18%,外源性鎂磷鹽利用率在90%左右,具有較高的鹽利用效率。
3)投加外源性MgCl2·6H2O和K2HPO4·3H2O會(huì)釋放H+,降低發(fā)酵液pH,容易導(dǎo)致厭氧消化系統(tǒng)酸化。前人研究指出鳥糞石回收的最適pH值為8.5~9.0,而本研究中系統(tǒng)pH值在6.9~7.8之間也獲得了較高的鎂磷鹽利用率,這可能由于系統(tǒng)中的氨氮濃度過(guò)高,促使鳥糞石反應(yīng)發(fā)生并消耗掉了大部分的鎂磷鹽。
[1] 羅娟,趙立欣,姚宗路,等. 規(guī)模化養(yǎng)殖場(chǎng)畜禽糞污處理綜合評(píng)價(jià)指標(biāo)體系構(gòu)建與應(yīng)用[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(17):182-189.
Luo Juan, Zhao Lixin, Yao Zonglu, et al. Construction and application of comprehensive evaluation index system for waste treatment on intensive livestock farms[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(17): 182-189. (in Chinese with English abstract)
[2] Morozova I, Nikulina N, Oechsner H, et al. Effects of increasing nitrogen content on process stability and reactor performance in anaerobic digestion[J]. Energies, 2020, 13(5): 1-19.
[3] Molaey R, Bayrakdar A, Sürmeli R ?, et al. Anaerobic digestion of chicken manure: Mitigating process inhibition at high ammonia concentrations by selenium supplementation[J]. Biomass & Bioenergy, 2018, 108: 439-446.
[4] Calli B, Mertoglu B, Inanc B, et al. Effects of high free ammonia concentrations on the performances of anaerobic bioreactors[J]. Process Biochemistry, 2005, 40(3/4): 1285-1292.
[5] Hejnfelt A, Angelidaki I. Anaerobic digestion of slaughterhouse by-products[J]. Biomass & Bioenergy, 2009, 33(8): 1046-1054.
[6] Vries J W D, Vinken T M W J, Hamelin L, et al. Comparing environmental consequences of anaerobic mono- and co-digestion of pig manure to produce bio-energy-A life cycle perspective[J]. Bioresource Technology, 2012, 125(12): 239-248.
[7] Romero-Güiza M S, Astals S, Chimenos J M, et al. Improving anaerobic digestion of pig manure by adding in the same reactor a stabilizing agent formulated with low-grade magnesium oxide[J]. Biomass & Bioenergy, 2014, 67: 243-251.
[8] Zhang N, Stanislaus M S, Hu X, et al. Strategy of mitigating ammonium-rich waste inhibition on anaerobic digestion by using illuminated bio-zeolite fixed-bed process[J]. Bioresource Technology, 2016, 222: 59-65.
[9] Sung S, Tao L. Ammonia inhibition on thermophilic anaerobic digestion [J]. Chemosphere, 2003, 53(1): 43-52.
[10] Banks C J, Zhang Y, Jiang Y, et al. Trace element requirements for stable food waste digestion at elevated ammonia concentrations[J]. Bioresource Technology, 2012, 104: 127-135.
[11] 李金頁(yè),鄭平. 鳥糞石沉淀法在廢水除磷脫氮中的應(yīng)用[J]. 中國(guó)沼氣,2004,22(1):7-10.
Li Jinye, Zheng Ping. Applications of struvite precipitation in removal of phosphorus and nitrogen from wastewater[J]. China Biogas, 2004, 22(1): 7-10. (in Chinese with English abstract)
[12] 陳靜霞,李詠梅. 鳥糞石沉淀法預(yù)處理高氨氮廢水的鎂鹽研究[J]. 環(huán)境工程學(xué)報(bào),2011,5(12):2663-2667.
Chen Jingxia, Li Yongmei. Study on magnesium agents for the pretreatment of high-strength ammonia wastewater by struvite precipitation[J]. Chinese Journal of Environmental Engineering, 2011, 5(12): 2663-2667. (in Chinese with English abstract)
[13] Rahman M M, Salleh M, Rashid U, et al. Production of slow release crystal fertilizer from wastewaters through struvite crystallization: A review[J]. Arabian Journal of Chemistry, 2014, 7: 139-155.
[14] Suzuki K, Tanaka Y, Kuroda K, et al. Removal and recovery of phosphorous from swine wastewater by demonstration crystallization reactor and struvite accumulation device[J]. Bioresource Technology, 2007, 98(8): 1573-1578.
[15] Doyle J D, Parsons S A. Struvite formation, control and recovery[J]. Water Research, 2002, 36(16): 3925-3940.
[16] 喬瑋,任征然,李晨艷,等. 自攪拌厭氧折流板反應(yīng)器連續(xù)處理豬場(chǎng)廢水的效果[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(20):210-215.
Qiao Wei, Ren Zhengran, Li Chenyan, et al. Continuous anaerobic treatment of swine wastewater by using self-agitation anaerobic baffled reactor[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(20): 210-215. (in Chinese with English abstract)
[17] 國(guó)家環(huán)境保護(hù)總局. 水和廢水監(jiān)測(cè)分析方法(第四版)[M]. 北京:中國(guó)環(huán)境科學(xué)出版社,2002
[18] Li X Z, Zhao Q L, Hao X D. Ammonium removal from landfill leachate by chemical precipitation[J]. Waste Management, 1999, 19(6): 409-415.
[19] Yetilmezsoy K, Sapci-Zengin Z. Recovery of ammonium nitrogen from the effluent of UASB treating poultry manure wastewater by MAP precipitation as a slow release fertilizer[J]. Journal of Hazardous Materials, 2009, 166(1): 260-269.
[20] 郝曉地,蘭荔,王崇臣,等. MAP沉淀法目標(biāo)產(chǎn)物最優(yōu)形成條件及分析方法[J]. 環(huán)境科學(xué),2009,30(4):1120-1125.
Hao Xiaodi, Lan Li, Wang Chongchen, et al. Optimal formation conditions and analytical methods of the target product by MAP precipitation[J]. Environmental Science, 2009, 30(4): 1120-1125. (in Chinese with English abstract)
[21] Chen Y, Cheng J J. Effect of potassium inhibition on the thermophilic anaerobic digestion of swine waste[J]. Water Environment Research, 2007, 79(6): 667-674.
[22] 野池達(dá)野. 甲烷發(fā)酵(劉兵,薛詠海)[M]. 北京:化學(xué)工業(yè)出版社,2014.
[23] Uludag-Demirer S, Demirer G N, Frear C, et al. Anaerobic digestion of dairy manure with enhanced ammonia removal[J]. Journal of Environmental Management, 2008, 86(1): 193-200.
[24] 郭建斌,董仁杰,程輝彩,等. 溫度與有機(jī)負(fù)荷對(duì)豬糞厭氧發(fā)酵過(guò)程的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2011,27(12):217-222.
Guo Jianbin, Dong Renjie, Cheng Huicai, et al. Effect of temperature and organic loading rates on anaerobic digestion of pig manure[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(12): 217-222. (in Chinese with English abstract)
[25] Romero-Güiza M S, Astals S, Mata-Alvarez J, et al. Feasibility of coupling anaerobic digestion and struvite precipitation in the same reactor: Evaluation of different magnesium sources[J]. Chemical Engineering Journal, 2015, 270: 542-548.
[26] Karthikeyan O P, Joseph K. Chemical precipitation of ammonia-N as struvite from landfill leachate effect of molar ratio upon recovery[J]. Journal of Solid Waste Technology & Management, 2008, 34(1): 20-26.
[27] 鄧玉營(yíng),阮文權(quán),郁莉,等. pH調(diào)控對(duì)瘤胃液接種稻秸厭氧消化中水解菌及產(chǎn)甲烷菌的影響[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2018,37(4):813-819.
Deng Yuying, Ruan Wenquan, Yu Li, et al. The effect of pH adjustment on hydrolytic bacteria and methanogens during rumen fluid derived anaerobic digestion of rice straw[J]. Journal of Agro-Environment Science, 2018, 37(4): 813-819. (in Chinese with English abstract)
Effect of ammonia nitrogen removal by struvite precipitation method on the anaerobic digestion of chicken manure
Li Bowen1, Zhu Hongbin2, Guo Jianbin1※, Dong Renjie1
(1.,,100083,;2..,.,100160,)
Anaerobic digestion has been widely utilized to dispose of agricultural organic wastes. The renewable energy of methane can be produced during the treatment, together with the digestates rich in the nutrients for the fertilizer. However, the ammonia nitrogen can be tended to accumulate during anaerobic digestion, when using a large proportion of protein-rich substrates, such as chicken manure, pig manure, and kitchen wastes. Once the concentration of ammonia nitrogen reaches over 3 000 mg/L in the anaerobic process, the ammonia inhibition is likely to happen, resulting in the decrease of microorganisms’ activities and methane production during anaerobic digestion. Struvite precipitation can be a useful way to remove the ammonia nitrogen and phosphorus in the digestates and wastewater. Many studies have been reported to optimize the reaction conditions, such as the molar ratio of Mg to P, pH level, and temperature, to recover the struvite. However, there are only a few studies to combine struvite precipitation with anaerobic digestion. This study aims to investigate the effect of in-situ struvite precipitation on the anaerobic digestion of chicken manure. The MgCl2·6H2O and K2HPO4·3H2O were mixed into the feeding substrate in the stable running reactors for 6-7 consecutive days to remove NH4+-N. The theoretical removal rate was at the speed of 3 000 mg/d. Some parameters were detected, including the concentration of ammonia nitrogen, methane yield, total volatile fatty acids (TVFA), and pH during anaerobic digestion. After the first operation of adding MgCl2·6H2O and K2HPO4·3H2O, the concentration of ammonia nitrogen and TVFA were reduced from 2 937 to 1 466 mg/L, and 2 317 to 72 mg/L, respectively, whereas, the methane production was 0.39 L/gVS increased by 18%, compared with the control group (0.33 L/gVS), where the utilization rate of magnesium and phosphate was 91%. After the second operation, the concentration of ammonia nitrogen and TVFA were reduced from 2 232 to 762 mg/L, and 2 321 to 25 mg/L, respectively, whereas, the methane production was 0.33 L/gVS increased by 10% approximately, compared with the control group (0.30 L/gVS), where the utilization rate of magnesium and phosphorus was 90%. The results demonstrated that the addition of exogenous MgCl2·6H2O and K2HPO4·3H2O greatly contributed to mitigating the ammonia inhibition by struvite precipitation during the anaerobic digestion. An optimum pH was 8.5-9 (Li et al, 1990) for the struvite precipitation in the nutrient recovery of wastewater. A high utilization rate of magnesium and phosphorus was also achieved, when the pH of the system was 6.9-7.8, due to the high ammonia nitrogen concentration in the system. As such, it can be widely expected to promote the struvite precipitation to consume most of the magnesium phosphate salts. The exogenous MgCl2·6H2O and K2HPO4·3H2O can release H+ in the system, when the struvite was formed the lower pH to consume the alkalinity in the digester, easily leading to the acidification of anaerobic digestion. Consequently, the amount of exogenous MgCl2·6H2O and K2HPO4·3H2O needs to be controlled within a reasonable range for the stable anaerobic process.
methane; fermentation; ammonia nitrogen; struvite
李博文,朱鴻斌,郭建斌,等. 鳥糞石沉淀法脫除氨氮對(duì)雞糞厭氧發(fā)酵過(guò)程的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(22):220-225.doi:10.11975/j.issn.1002-6819.2021.22.025 http://www.tcsae.org
Li Bowen, Zhu Hongbin, Guo Jianbin, et al. Effect of ammonia nitrogen removal by struvite precipitation method on the anaerobic digestion of chicken manure[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(22): 220-225. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.22.025 http://www.tcsae.org
2021-08-17
2021-10-29
國(guó)家自然科學(xué)基金項(xiàng)目(U20A2086);中德國(guó)際研究培訓(xùn)項(xiàng)目(糧食-飼料-能源玉米生產(chǎn)系統(tǒng)磷資源高效利,328017493/GRK 2366);中國(guó)農(nóng)業(yè)大學(xué)2115人才工程資助
李博文,博士生,研究方向?yàn)檗r(nóng)業(yè)廢棄物處理與資源化利用技術(shù)。Email:bowenlinz@cau.edu.cn
郭建斌,博士,副教授,研究方向?yàn)檗r(nóng)業(yè)廢棄物處理與資源化利用技術(shù)。Email:jianbinguo@cau.edu.cn
10.11975/j.issn.1002-6819.2021.22.025
S216.4;X705
A
1002-6819(2021)-22-0220-06