国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

咖啡化學成分及其生物活性研究進展

2021-02-05 03:33:08沈曉靜字成庭輝紹良楊俊滔王青曹夢婷范江平
熱帶亞熱帶植物學報 2021年1期
關鍵詞:葫蘆巴小粒綠原

沈曉靜, 字成庭, 輝紹良, 楊俊滔, 王青, 曹夢婷, 范江平

咖啡化學成分及其生物活性研究進展

沈曉靜a,b, 字成庭b*, 輝紹良b, 楊俊滔b, 王青b, 曹夢婷b, 范江平a*

(云南農(nóng)業(yè)大學, a. 食品科學技術學院; b. 理學院,昆明 650201)

咖啡為茜草科(Rubiaceae)咖啡屬()植物,位居世界三大飲品之首,具有降低血糖、保護肝臟和神經(jīng)保護等作用。咖啡化學成分類別較多,包括生物堿、酚酸類、黃酮類、萜類等??Х戎械幕瘜W成分是發(fā)揮其生物學功能和形成特色風味的基礎,對其化學成分來源和生物活性進行綜述,為進一步發(fā)展咖啡產(chǎn)業(yè)提供依據(jù)和理論支撐。

咖啡;化學成分;生物活性;研究進展

咖啡為茜草科(Rubiaceae)咖啡屬()植物,原產(chǎn)于非洲中北部,主要分布在南美、中美洲、非洲和亞洲等少數(shù)國家??Х葘儆?組66種,通常所指的咖啡為真咖啡組()的大粒種()、中粒種()、小粒種()和埃塞爾薩種(),其中小粒咖啡氣味香醇,品質(zhì)較好[1]。1892年由法國傳教士將咖啡引入云南省賓川縣栽培,并不斷擴大,目前中國的咖啡主要在云南和海南種植,且99%以上分布在云南[2],以德宏、普洱、保山、西雙版納、臨滄為主,云南小粒種咖啡經(jīng)國際咖啡組織品嘗專家評鑒為世界高質(zhì)量咖啡。此外,根據(jù)《中華本草》記載,咖啡微苦,澀,平;具有醒神、利尿、健胃的功效,主治精神倦怠、食欲不振,常作為醒神、利尿和健胃藥使用。根據(jù)研究報道,咖啡中所含的化學成分主要包括生物堿、酚酸類、黃酮類、萜類、甾醇脂類和揮發(fā)性成分等,具有胰島素增敏、改善糖代謝、抗糖尿病和肝保護作用等多種藥理活性。本文對咖啡中的化學成分來源及其生物活性進行綜述,旨在為進一步開發(fā)咖啡產(chǎn)業(yè)提供理論支撐。

1 咖啡的主要成分

1.1 生物堿

咖啡堿(1,3,7-三甲基黃嘌呤, caffeine)為咖啡果實中的主要生物堿成分,是咖啡苦味的來源, 廣泛存在于茶葉、可可和咖啡中,是應用較為廣泛的精神類藥物之一。研究表明,咖啡堿具有緩解老年記憶力下降誘發(fā)的健忘癥,同時還可以降低患阿爾茨海默病(AD)[3]、帕金森病(PD)[4]等神經(jīng)退行性疾病的風險。Arendash等[5]的研究表明, 適量攝入咖啡堿可以抑制大鼠記憶力減弱; Zeitlin等[6]證實咖啡堿可能通過促進大腦紋狀體和皮層細胞的存活和對細胞凋亡通路的抑制對AD起保護作用;Nakaso等[7]通過人骨髓神經(jīng)母細胞瘤細胞株(SH-SY5Y) PD模型證實咖啡堿可以降低半胱氨酸的天冬氨酸蛋白水解酶(caspase)-3活性, 減少核碎片和凋亡凝聚的數(shù)量??Х葔A還可以減少1-甲基-4-苯基-1,2,3, 6-四氫吡啶(MPTP)引起的血腦屏障(BBB)滲漏,抑制BBB功能紊亂[8]。常規(guī)劑量的咖啡堿有助于改善輕偏癱性腦卒中。Sun等[9]報道咖啡堿通過其抗氧化性和抗炎性來實現(xiàn)對腦卒中的保護作用??Х纫蜻€與糖尿病的控制有關[10]。

葫蘆巴堿(trigonelline)是一種吡啶衍生物,在咖啡烘焙過程中促進芳香化合物的形成,如N-甲基吡啶(NMP)就是咖啡烘焙過程中葫蘆巴堿的熱降解產(chǎn)物[11]。近年來關于葫蘆巴堿的研究越來越多,生物價值越來越凸顯。Liu等[12]報道葫蘆巴堿可通過降低血糖,增加胰島素細胞的表達,調(diào)節(jié)炎癥反應;通過下調(diào)細胞凋亡蛋白酶3的表達,抑制細胞部分凋亡,提高抗氧化酶活性,從而對1型糖尿病小鼠起保護作用。人參皂苷Rb1和葫蘆巴堿可通過調(diào)節(jié)mir-3550的表達,作用于Wnt/-catenin信號通路預防糖尿病腎損傷的發(fā)展[13]。葫蘆巴堿對結腸炎的心臟組織具有潛在的治療作用[14]。葫蘆巴堿具有神經(jīng)保護作用,是治療神經(jīng)退行性疾病的良好藥物[15]。Fahanik-Babaei等[16]報道葫蘆巴堿具有提高認知和緩解神經(jīng)丟失的作用;可通過恢復肝臟自噬作用對高膽固醇和高脂飲食引起的肝臟脂質(zhì)積累和脂肪毒性起到防止作用[17];可抑制膽堿的腸道微生物代謝及其相關心血管風險[18]。

此外,咖啡中還含有可可堿(theobromine)、茶堿(theophyline)和煙酸(nicotinic acid)。Joseph等[19]報道大果咖啡葉中還有1,3,7,9-四甲基尿酸(theacrine)、大果咖啡堿(liberine)、甲基大果咖啡堿(methylli- betine)(表1)。

1.2 酚酸及其衍生物

目前已從咖啡中分離得到對-羥基苯甲酸(- hydroxybenzoic acid)、香草酸(vanillic acid)、對-香豆酸(-coumaric acid)、阿魏酸(ferulic acid)、綠原酸(chlorogenic acid)、咖啡酸(caffeic acid)、咖啡??鼘幩?caffeoylquinic acid)、二咖啡酰奎寧酸(dicaffe- oylquinic acid)、3--阿魏??鼘幩?3--feruloyl- quinic acid)、3--阿魏酰-4--咖啡??鼘幩?3-- feruloyl-4--caffeoylquinic acid)、3--咖啡酰-4--阿魏??鼘幩?3--caffeoyl-4--feruloylquinic acid)等酚酸類及咖啡酸衍生物(表2)。

綠原酸(chlorogenic acid, CGA)是主要的酚酸類化合物,具有降血脂、抗氧化、抗菌等生物學功能。Nishi等[22]報道綠原酸可以顯著降低膽固醇、甘油三酯、低密度脂蛋白,增加高密度脂蛋白;Xu等[23]證實綠原酸的活性和DNA保護作用。Shi[24]報道綠原酸能逆轉錄皮質(zhì)酮(CORT)誘導的PC12細胞自噬和凋亡,同時還能調(diào)節(jié)PC12細胞的AKT/mTOR通路;Su等[25]報道綠原酸能抑制銅綠假單胞菌P1細胞的胞內(nèi)代謝發(fā)揮抗菌作用。綠原酸能有效降低Cd在空腸的吸收和積累,保護腸道屏障[26]。人體口服葡萄糖2 h的血糖試驗證實綠原酸和葫蘆巴堿有降低早期葡萄糖和胰島素反應的作用[27]。同時, 在咖啡烘焙過程中CGA受熱降解導致苦味酚類化合物和酚類芳香化合物的形成,CGA還可通過摻入蛋白黑素的骨架參與咖啡顏色的形成,是造成咖啡色素沉著和澀味的主要原因。

表1 咖啡中的生物堿類化合物

CA: 小??Х? CR: 中??Х? CL: 大粒咖啡; L: 葉; GB: 生豆; CB: 熟豆。下表同。

CA:; CR:; CL:; L: Leaf; GB: Green bean; CB: Roasted bean. The same is following Tables.

表2 咖啡中的酚酸類化合物

續(xù)表(Continued)

1.3 黃酮類

黃酮類化合物是廣泛存在于自然界植物中的一類活性成分,具有抗氧化、抗癌、抗炎抗菌等多種活性[31–33]。小粒種咖啡中含有兒茶素、表兒茶素、槲皮素等黃酮類化合物(表3)。

1.4 萜類

咖啡中含有大量的萜類化合物,以對-貝殼杉烷型和咖啡醇二萜為主,其中咖啡豆醇、咖啡醇、16--甲基咖啡醇的含量最高。16--甲基咖啡醇一直作為區(qū)別小粒咖啡和中??Х鹊臉酥疚铮珿unning[38]利用600 MHz NMR和LC-MS首次在小??Х群姹憾怪袡z測到16--甲基咖啡醇和16--甲基咖啡豆醇。近年來,邱明華等[39–42]從小??Х仁於怪蟹蛛x鑒定了4個新對-貝殼杉型二萜苷(mascarosidesI~II, pani- culoside VI和cofaryloside I)、1個對-濱海孿生花烷型二萜苷類(villanovane I)和7個對-貝殼杉型二萜苷;從生豆中分離到5個對HL60、A-549、SMMC-7721、MCF-7和SW480腫瘤細胞株無抑制作用的對-貝殼杉型二萜(mascaroside III~V和20-nor-cofaryloside I~II)、8個新咖啡二萜內(nèi)酯化合物(caffarolides A~H), 其中caffarolides C, D和F有一定的體外激活血小板聚集活性,3′10–4g/mL的誘導率分別為(11.4± 5.5)%、(15.8±5.6)%和(7.8±3.3)%; 從日曬豆中分離出4個對-貝殼杉型二萜(caffruenol A, caffruenol B, caffruolide A和caffruolide B),且對脂多糖誘導的264.7巨噬細胞NO的產(chǎn)生具有抑制作用。咖啡中也含有三萜,Wang等[43]首次從云南小??Х雀稍锕麑嵵蟹蛛x出4個新達瑪烷型三萜(caffruonesA~D)。這大大豐富了咖啡中萜類化合物的類型, 并對云南小??Х鹊纳钊胙芯刻峁┝舜罅康膮⒖家罁?jù)。

目前對咖啡中萜類活性成分的研究主要集中于咖啡醇和咖啡豆醇。Hiroaki等[44]報道咖啡豆醇乙酸酯和咖啡醇對人前列腺癌細胞具有抑制作用,并呈劑量依賴關系。Suck等[45]報道咖啡豆醇通過誘導caspase 3依賴途徑抑制乳腺癌細胞增殖和誘導細胞死亡。Lima等[46]研究了咖啡醇對NB4、K562、HL60和KG1白血病細胞系的作用,結果表明咖啡醇對HL60和KG1細胞的細胞毒性最高,能使HL60細胞的增殖降低100%。Ferdrik等[47]研究表明,當咖啡醇濃度為10–8和10–6mol/L時,分別能使胰島素分泌增加12%和16%,若長期暴露則能增加34%和68%,且在10–8mol/L時,人體骨骼肌細胞對葡萄糖的吸收能顯著增加8%。Seo等[48]報道咖啡豆醇能降低脂多糖誘導的白細胞介素1、1、6和腫瘤壞死因子的產(chǎn)生,可抑制脂多糖引起的肝臟炎癥。

表3 咖啡中的黃酮類化合物

P: 果皮。

P: Peel.

表4 咖啡中的萜類化合物

續(xù)表(Continued)

SB: 日曬豆。

SB: Sun bean.

1.5 風味物質(zhì)

20世紀60年代人們開始對咖啡豆風味物質(zhì)進行研究,70年代報道了咖啡生豆中風味前體與烘焙咖啡中香氣成分的相關性[53]。細胞壁多糖、脂質(zhì)、蛋白質(zhì)、蔗糖、綠原酸、咖啡因和葫蘆巴堿是成熟咖啡種子的主要貯藏化合物,這些物質(zhì)在烤焙過程中主要通過Maillard反應、Strecker降解、焦糖化反應形成咖啡香味??Х鹊奶卣餍燥L味物質(zhì)主要有28種[54],(1) 醛酮類物質(zhì)與焦糖味/甜味有關:異丁醛、2-甲基丁醛、異戊醛、2,3-丁二酮、2,3-戊二酮、4-羥基-2,5-二甲基-3(2H)-呋喃酮、5-乙基-4-羥基-2-甲基-3(2H)-呋喃酮和香蘭素;(2) 含硫化合物與硫磺/焙炒氣味有關:2-糠基硫醇、2-甲基-3-呋喃硫醇、3-甲硫基丙醛、3-硫基-3-甲基-1-甲酸丁酯、3-甲基-2-丁烯-1-硫醇、甲硫醇和二甲基三硫化合物;(3) 吡嗪類化合物與泥土氣味有關:2-乙基-3,5-二甲基吡嗪、2-乙烯基-3,5-二甲基吡嗪、2,3-二乙基- 5-甲基吡嗪、2-乙烯基-3-乙基-5-甲基吡嗪和2-甲氧基-3-異丁基吡嗪;(4) 酚、醛類化合物與煙熏/酚類香味有關:愈創(chuàng)木酚、4-乙基愈創(chuàng)木酚、4-乙烯基愈創(chuàng)木酚、乙醛、丙醛和(F)--大馬酮;(5) 呋喃酮類化合物與辛辣味有關:3-羥基-4,5-二甲基-2(5H)-呋喃酮和3-羥基-4-甲基-5-乙基-2(5H)-呋喃酮。陳祎平等[55]從咖啡油的水蒸氣蒸餾部分中共鑒定了以醛類、呋喃類、酚類、噻唑類、烯烴類、烷烴類、酯類、酮類、吡咯類、噻吩類、羧酸類、吡嗪類為主的12類揮發(fā)性成分。詹家芬等[56]從老撾咖啡中鑒定了包括醇類、酚類、醚類、醛類、酮類、酸類、酯類、烴類及氮氧化合物的77種揮發(fā)性成分。Hafsah等[57]利用氣相色譜-質(zhì)譜聯(lián)用技術(GC-MS)從中??Х然ㄖ需b定了101種揮發(fā)性化合物,從咖啡豆中共鑒定了72種揮發(fā)性化合物。

1.6 其他成分

此外,咖啡中還含有蒽酮類化合物芒果苷(mangiferin)和異芒果苷(isomangiferin),香豆素類化合物東崀菪素(scopoletin),以及類胡蘿卜素和葉黃素類化合物[28]。小粒咖啡熟豆中還含有五羥色胺類化合物scorodocarpines D~F[58]??Х确N子中含有-谷甾醇(-sitosterol)、豆甾醇(stigmasterol)、菜油甾醇(campesterol)、膽甾醇(cholesterol)、5-燕麥甾烯醇(5-avenasterol)、7-燕麥甾烯醇(7-avenasterol)、7-豆甾烯醇(7-stigmastenol)等甾醇成分[59];脂類主要有肉豆寇酸、棕櫚酸、硬脂酸、油酸、亞油酸、花生酸油等[59]。

2 咖啡的生物活性

咖啡中含有大量的生物活性物質(zhì),具有抗氧化、降脂、降血糖、神經(jīng)保護等多種生物活性。

2.1 抗氧化

Yashin等[60]對咖啡的抗氧化活性進行了全面的綜述,包括體外抗氧化性研究和測定方法,指出烤焙咖啡的抗氧化活性和總抗氧化物含量與茶、可可和紅酒相當,且咖啡豆中的主要抗氧化劑綠原酸含量在烤焙后顯著降低。

2.2 降脂作用

Duangjai等[61]采用3T3-L1脂肪細胞來評估不同顏色(綠色、黃色和紅色)的咖啡果對脂肪生成和/或脂肪分解的影響,結果表明不同顏色的生咖啡果在3T3-L1脂肪細胞中均具有抑制脂肪生成的活性,其中紅色干咖啡能減少約47%的脂肪積累。此外,除了黃色新鮮咖啡外的所有咖啡提取物主要成分(蘋果酸、奎寧酸和綠原酸)都能增加甘油的釋放。同時研究還證實了小??Х裙饽芡ㄟ^下調(diào)NPC1L調(diào)制的LXR活性和膠束配合物的形成抑制腸內(nèi)膽固醇的吸收而在體外和體內(nèi)發(fā)揮降低膽固醇的作用[62]。

2.3 降血糖

糖尿病(DM)是一種由胰島素相對或絕對缺乏引起的血糖水平增加的慢性疾病,在糖尿病的治療中以藥物治療和飲食管理為主。咖啡中的咖啡因、綠原酸、葫蘆巴堿和其他主要成分都有降低血糖的作用。Sake等[63]對小粒咖啡及其葉乙醇提取物進行降血糖藥效研究,咖啡提取物可以顯著降低小鼠的血糖含量??Х却季哂袧撛诘目固悄虿∽饔?,可以增加葡萄糖刺激的胰島素分泌,增加人體骨骼肌細胞對葡萄糖的攝取[64]。

2.4 神經(jīng)保護

流行病學研究表明,習慣性飲用咖啡可能會降低患阿爾茨海默病的風險[65],且男性原發(fā)性帕金森病患者的咖啡攝入量與震顫嚴重程度負相關[66]。在阿爾茨海默病的APP/PS2轉基因小鼠模型中,證實咖啡中的綠原酸具有預防認知功能障礙的作用。免疫組織化學分析表明,咖啡多酚對淀粉樣蛋白(A)海馬的斑塊數(shù)量有明顯減少作用。

2.5 其他作用

云南小粒咖啡果皮的粗提物對受損人臍靜脈內(nèi)皮細胞有一定的保護和恢復作用[67]。咖啡提取物與Vc聯(lián)合使用可起到抗腫瘤作用[68]。綠咖啡豆的甲醇提取物具有一定的抗炎活性[69]??Х染哂懈闻K保護作用,飲用咖啡能降低肝細胞癌復發(fā)的風險并增加原位肝移植后的生存機會[70]??Х扰c非酒精性脂肪肝的患病風險呈負相關[71]。

3 展望

咖啡作為世界三大飲品之首,與我們的日常生活息息相關,對咖啡化學成分的研究是進一步開發(fā)和提升咖啡利用的重要環(huán)節(jié)。當前,我國咖啡產(chǎn)業(yè)面臨的主要問題是缺乏品牌效應和附加值低。為解決我國咖啡產(chǎn)業(yè)面臨的這一困境,我國咖啡加工企業(yè)積極探索咖啡的精深加工工藝,力求將資源優(yōu)勢轉變?yōu)榻?jīng)濟優(yōu)勢。但這種局面的改變必須建立在對我國咖啡深入研究的基礎上。

(1) 咖啡的化學成分豐富,是影響咖啡生物活性和風味的關鍵,因此對其化學成分的研究將是進一步完善和推進咖啡研究的基礎,也是提高咖啡風味的關鍵。

(2) 通過對咖啡進行全面深入的研究,綜合利用將是進一步開發(fā)利用咖啡的重要環(huán)節(jié),如咖啡花、咖啡葉、咖啡殘渣等??Х然ㄖ泻蟹宇悺⒖Х纫蚝秃J巴堿等活性物質(zhì),具有抗氧化能力,且具有轉化為生物糖的潛質(zhì)。其次,咖啡葉中所含咖啡因較少,可作為茶替代品。

(3) 云南小??Х绕焚|(zhì)較好,其二萜類成分具有獨特性,因此探明其化學成分與風味之間的關系,對提高咖啡品質(zhì)及其重要。

[1] HUANG J X, LI G P, YANG S G. Brief introduction of coffee species and fine varieties [J]. Nongcun Shiyong Jishu, 2009(1): 42–43.黃家雄, 李貴平, 楊世貴. 咖啡種類及優(yōu)良品種簡介 [J]. 農(nóng)村實用技術, 2009(1): 42–43.

[2] LI W R, ZHOU S Z. Development status and prospects of coffee industry in China [J]. Chin J Trop Agric, 2011, 31(10): 105–108. doi: 10.3969/j.issn.1009-2196.2011.10.025. 李維銳, 周仕崢. 我國咖啡產(chǎn)業(yè)發(fā)展現(xiàn)狀及前景 [J]. 熱帶農(nóng)業(yè)科學, 2011, 31(10): 105–108. doi: 10.3969/j.issn.1009-2196.2011.10.025.

[3] LAURENT C, EDDARKAOUI S, DERISBOURG M, et al. Beneficial effects of caffeine in a transgenic model of Alzheimer’s disease-like tau pathology [J]. Neurobiol Aging, 2014, 35(9): 2079–2090. doi: 10.1016/ j.neurobiolaging.2014.03.027.

[4] SINGH S, SINGH K, PATEL S, et al. Nicotine and caffeine-mediated modulation in the expression of toxicant responsive genes and vesi- cular monoamine transporter-2 in 1-methyl 4-phenyl-1,2,3,6-tetra- hydropyridine-induced Parkinson’s disease phenotype in mouse [J]. Brain Res, 2008, 1207: 193–206. doi: 10.1016/j.brainres.2008.02.023.

[5] ZEITLIN R, PATEL S, BURGESS S, et al. Caffeine induces beneficial changes in PKA signaling and JNK and ERK activities in the striatum and cortex of Alzheimer’s transgenic mice [J]. Brain Res, 2011, 1417: 127–136. doi: 10.1016/j.brainres.2011.08.036.

[6] ARENDASH G W, REZAI-ZADEH K, CAO C H, et al. Caffeine: Evidence for protection against, and treatment for, Alzheimer’s disease by direct suppression of disease pathogenesis [J]. Alzheimers Dement, 2007, 3(S3): S166. doi: 10.1016/j.jalz.2007.04.355.

[7] NAKASO K, ITO S, NAKASHIMA K. Caffeine activates the PI3K/ Akt pathway and prevents apoptotic cell death in a Parkinson’s disease model of SH-SY5Y cells [J]. Neurosci Lett, 2008, 432(2): 146–150. doi: 10.1016/j.neulet.2007.12.034.

[8] CHEN X S, LAN X, ROCHE I, et al. Caffeine protects against MPTP- induced blood-brain barrier dysfunction in mouse striatum [J]. J Neurochem, 2008, 107(4): 1147–1157. doi: 10.1111/j.1471-4159.2008. 05697.x.

[9] SUN L Y, TIAN X, GOU L S, et al. Beneficial synergistic effects of concurrent treatment with theanine and caffeine against cerebral ischemia-reperfusion injury in rats [J]. Can J Physiol Pharmacol, 2013, 91(7): 562–569. doi: 10.1139/cjpp-2012-0309.

[10] BOJAR D, SCHELLER L, HAMRI G C E, et al. Caffeine-inducible gene switches controlling experimental diabetes [J]. Nat Commun, 2018, 9(1): 2318. doi: 10.1038/s41467-018-04744-1.

[11] RIEDEL A, HOCHKOGLER C M, LANG R, et al. N-methyl-pyridi- nium, a degradation product of trigonelline upon coffee roasting, stimulates respiratory activity and promotes glucose utilization in HepG2 cells [J]. Food Funct, 2014, 5(3): 454–462. doi: 10.1039/c3fo 60320b.

[12] LIU L, DU X H, ZHANG Z, et al. Trigonelline inhibits caspase 3 to protectcells apoptosis in streptozotocin-induced type 1 diabetic mice [J]. Eur J Pharmacol, 2018, 836: 115–121. doi: 10.1016/j.ejphar.2018. 08.025.

[13] SHAO X N, CHEN C, MIAO C S, et al. Expression analysis of microRNAs and their target genes during experimental diabetic renal lesions in rats administered with ginsenoside Rb1 and trigonelline [J]. Die Pharm, 2019, 74(8): 492–498. doi: 10.1691/ph.2019.8903.

[14] OMIDI-ARDALI H, LORIGOOINI Z, SOLTANI A, et al. Inflam- matory responses bridge comorbid cardiac disorder in experimental model of IBD induced by DSS: Protective effect of the trigonelline [J]. Inflammopharmacology, 2019, 27(6): 1265–1273. doi: 10.1007/s1078 7-019-00581-w.

[15] ZHOU J Y, ZHOU S W. Protection of trigonelline on experimental diabetic peripheral neuropathy [J]. Evid Based Compl Alternat Med, 2012, 2012: 164219. doi: 10.1155/2012/164219.

[16] FAHANIK-BABAEI J, BALUCHNEJADMOJARAD T, NIKBAKHT F, et al. Trigonelline protects hippocampus against intracerebral A(1– 40) as a model of Alzheimer's disease in the rat: insights into under- lying mechanisms [J]. Metab Brain Dis, 2019, 34(1): 191–201. doi: 10. 1007/s11011-018-0338-8.

[17] SHARMA L, LONE N A, KNOTT R M, et al. Trigonelline prevents high cholesterol and high fat diet induced hepatic lipid accumulation and lipo-toxicity in C57BL/6J mice, via restoration of hepatic auto- phagy [J]. Food Chem Toxicol, 2018, 121: 283–296. doi: 10.1016/j. fct.2018.09.011.

[18] ANWAR S, BHANDARI U, PANDA B P, et al. Trigonelline inhibits intestinal microbial metabolism of choline and its associated cardiova- scular risk [J]. J Pharm Biomed Anal, 2018, 159: 100–112. doi: 10. 1016 j.jpba.2018.06.027.

[19] PETERMANN J B, BAUMANN T W. Metabolic Relations between methylxanthines and methyluric acids inL. [J]. Plant Physiol, 1983, 73(4): 961–964. doi: 10.1104/pp.73.4.961.

[20] RODRIGUES N P, BRAGAGNOLO N. Identification and quanti- fication of bioactive compounds in coffee brews by HPLC-DAD-MSn [J]. J Food Compos Anal, 2013, 32: 105–115. doi: 10. 1016/j.jfca.2013. 09.002.

[21] CAPORASO N, WHITWORTH M B, GREBBY S, et al. Non- destructive analysis of sucrose, caffeine and trigonelline on single green coffee beans by hyperspectral imaging [J]. Food Res Int, 2018, 106: 193–203. doi: 10.1016/j.foodres.2017.12.031.

[22] NISHI, AHAD A, KUMAR P. Hypolipidemic effect of chlorogenic acid in a hypercholesterolemic rat model [J]. Int J Pharm Bio Sci, 2013, 4(1): 582–586.

[23] XU J G, HU Q P, LIU Y. Antioxidant and DNA-protective activities of chlorogenic acid isomers [J]. J Agric Food Chem, 2012, 60(46): 11625–11630. doi: 10.1021/jf303771s.

[24] SHI X W, ZHOU N, CHENG J Y, et al. Chlorogenic acid protects PC12 cells against corticosterone-induced neurotoxicity related to inhibition of autophagy and apoptosis [J]. BMC Pharmacol Toxicol, 2019, 20(1): 56. doi: 10.1186/s40360-019-0336-4.

[25] SU M M, LIU F, LUO Z, et al. The antibacterial activity and mecha- nism of chlorogenic acid against foodborne pathogen[J]. Foodborne Pathog Dis, 2019, 16(12): 823–830. doi: 10.1089/fpd.2019.2678.

[26] XUE Y W, HUANG F, TANG R X, et al. Chlorogenic acid attenuates cadmium-induced intestinal injury in Sprague-Dawley rats [J]. Food Chem Toxicol, 2019, 133: 110751. doi: 10.1016/j.fct.2019.110751.

[27] van DIJK A E, OLTHOF M R, MEEUSE J C, et al. Acute effects of decaffeinated coffee and the major coffee components chlorogenic acid and trigonelline on glucose tolerance [J]. Diabetes Care, 2009, 32(6): 1023–1025. doi: 10.2337/dc09-0207.

[28] CHEN X M. A review on coffee leaves: Phytochemicals, bioactivities and applications [J]. Crit Rev Food Sci Nutri, 2019, 59(6): 1008–1025. doi: 10.1080/10408398.2018.1546667.

[29] ASAMENEW G, KIM H W, LEE M K, et al. Comprehensive charac- terization of hydroxycinnamoyl derivatives in green and roasted coffee beans: A new group of methyl hydroxycinnamoyl quinate [J]. Food Chem, 2019, X2: 100033. doi: 10.1016/j.fochx.2019.100033.

[30] SITTIPOD S, SCHWARTZ E, PARAVISINI L, et al. Identification of flavor modulating compounds that positively impact coffee quality [J]. Food Chem, 2019, 301: 125250. doi: 10.1016/j.foodchem.2019.125250.

[31] SHI X W, ZHOU N, CHENG J Y, et al. Chlorogenic acid protects PC12 cells against corticosterone-induced neurotoxicity related to inhibition of autophagy and apoptosis [J]. BMC Pharmacol Toxicol, 2019, 20(1): 56. doi: 10.1186/s40360-019-0336-4.

[32] WENZEL U, KUNTZ S, BRENDE M D, et al. Dietary flavone is a potent apoptosis inducer in human colon carcinoma cells [J]. Cancer Res, 2000, 60(14): 3823–3831.

[33] ZENG C Z, LIU Z X, WU Y X, et al. Studies on flavonoids extraction by ultrasonic technology from glycyrrhiza and their bacteriostatic activity [J]. Lishizhen Med Mat Med Res, 2007, 18(10): 2402–2403. doi: 10.3969/j.issn.1008-0805.2007.10.036.曾超珍, 劉志祥, 吳耀輝, 等. 超聲波提取甘草黃酮及其抑菌活性研究 [J]. 時珍國醫(yī)國藥, 2007, 18(10): 2402–2403. doi: 10.3969/j. issn.1008-0805.2007.10.036.

[34] RATANAMARNO S, SURBKAR S. Caffeine and catechins in fresh coffee leaf () and coffee leaf tea [J]. Maejo Int J Sci Technol, 2017, 11(3): 211–218.

[35] ZHANG Y H, FU X P, LIANG W J, et al. Antioxidant activity and compsition of anthocyanins of crude extracts from Yunnan arabica coffee husk [J]. Food Sci Technol, 2016, 41(5): 219–223. doi: 10. 13684/j.cnki.spkj.2016.05.041.張云鶴, 付曉萍, 梁文娟, 等. 云南小粒種咖啡果皮粗提物花青素成分及抗氧化活性研究 [J]. 食品科技, 2016, 41(5): 219–223. doi: 10.13684/j.cnki.spkj.2016.05.041.

[36] SAMUEL C V M, WAGNER L A, TOHGE T, et al. In high-light- acclimated coffee plants the metabolic machinery is adjusted to avoid oxidative stress rather than to benefit from extra light enhancement in photosynthetic yield [J]. PLoS One, 2014, 9(4): e94862. doi: 10.1371/ journal.pone.0094862.

[37] PATAY E B, NéMETH T, NéMETH T S, et al. Histological and phytochemical studies ofB. Heyne ex Schult., compared withL. [J]. Farmacia, 2016, 64(1): 125–130.

[38] GUNNING Y, DEFERNEZ M, WATSON A D, et al. 16--methyl- cafestol is present in ground roast arabica coffees: Implications for authenticity testing [J]. Food Chem, 2018, 248: 52–60. doi: 10.1016/j. foodchem.2017.12.034.

[39] WANG X, PENG X R, LU J, et al. Ent-kaurane diterpenoids from the cherries of[J]. Fitoterapia, 2019, 132: 7–11. doi: 10. 1016/j.fitote.2018.08.023.

[40] WANG X, MENG Q Q, PENG X R, et al. Identification of new diterpene esters from green Arabica coffee beans, and their platelet aggregation accelerating activities [J]. Food Chem, 2018, 263: 251–257. doi: 10.1016/j.foodchem.2018.04.081.

[41] SHU Y, LIU J Q, PENG X R, et al. Characterization of diterpenoid glucosides in roasted puer coffee beans [J]. J Agric Food Chem, 2014, 62(12): 2631–2637. doi: doi.org/10.1021/jf500788t.

[42] CHU R, WAN L S, PENG X R, et al. Characterization of new ent- kaurane diterpenoids of Yunnan Arabica coffee beans [J]. Nat Prod Bioprospect, 2014, 6(4): 217–223. doi: 10.1007/s13659-016-0099-1.

[43] WANG X, PENG X R, LU J, et al. New dammarane triterpenoids, caffruones A-D, from the cherries of[J]. Nat Prod Bioprospect, 2018, 8(6): 413–418. doi: 10.1007/s13659-018-0181-y.

[44] IWAMOTO H, IZUMI K, NATSAGDORJ A, et al. Coffee diterpenes kahweol acetate and cafestol synergistically inhibit the proliferation and migration of prostate cancer cells [J]. Prostate, 2019, 79(5): 468– 479. doi: 10.1002/pros.23753.

[45] OH S H, HWANG Y P, CHOI J H, et al. Kahweol inhibits proliferation and induces apoptosis by suppressing fatty acid synthase in HER2- overexpressing cancer cells [J]. Food Chem Toxicol, 2018, 121: 326– 335. doi: 10.1016/j.fct.2018.09.008.

[46] LIMA C S, SPINDOLA D G, BECHARA A, et al. Cafestol, a diterpene molecule found in coffee, induces leukemia cell death [J]. Biomed Pharmacother, 2017, 92: 1045–1054. doi: 10.1016/j.biopha.2017.05.109.

[47] MELLBYE F B, JEPPESEN P B, HERMANSEN K, et al. Cafestol, a bioactive substance in coffee, stimulates insulin secretion and increases glucose uptake in muscle cells: Studies[J]. J Nat Prod, 2015, 78(10): 2447–2451. doi: 10.1021/acs.jnatprod.5b00481.

[48] SEO H Y, KIM M K, LEE S H, et al. Kahweol ameliorates the liver inflammation through the inhibition of NF-κB and STAT3 activation in primary kupffer cells and primary hepatocytes [J]. Nutrients, 2018, 10(7): 863. doi: 10.3390/nu10070863.

[49] LANG R, FROMME T, BEUSCH A, et al. 2---d-Glucopyranosyl- carboxyatractyligenin fromL. inhibits adenine nucleotide translocase in isolated mitochondria but is quantitatively degraded during coffee roasting [J]. Phytochemistry, 2013, 93: 124–135. doi: 10. 1016/j.phytochem.2013.03.022.

[50] SPEER K, HRUSCHKA A, KURZROCK T, et al. Diterpenes in coffee [M]// PARLIAMENT T H, HO C T, SCHIEBERLE P. Caffeinated Beverages, Health Benefits, Physiological Effects, and Chemistry. Washington, DC: American Chemical Society, 2000: 241–251.

[51] LANG R, FROMME T, BEUSCH A, et al. Raw coffee based dietary supplements contain carboxyatractyligenin derivatives inhibiting mito- chondrial adenine-nucleotide-translocase [J]. Food Chem Toxicol, 2014, 70: 198–204. doi: 10.1016/j.fct.2014.05.017.

[52] LAM L K T, SPARNINS V L, WATTENBERG L W. Isolation and identification of kahweol palmitate and cafestol palmitate as active constituents of green coffee beans that enhance glutathione S-trans- ferase activity in the mouse [J]. Cancer Res, 1982, 42(4): 1193–1198.

[53] ADANE T G, BYUNG S C. Coffee Flavor [M]// Encyclopedia of Food Chemistry. Amsterdam: Elsevier, 2019: 48–53.

[54] ZENG F K, OU S Y. Coffee Flavor Chemistry [M]. Guangzhou: Jinan University Press, 2014: 1–128. 曾凡逵, 歐仕益. 咖啡風味化學 [M]. 廣州: 暨南大學出版社, 2014: 1–128.

[55] CHEN Y P, LIANG Z Y, LIN Y Q, et al. Preliminary analysis of odor composition in coffee oil from coffee grounds [J]. Food Sci, 2004, 25(11): 230–232. doi: 10.3321/j.issn:1002-6630.2004.11.058.陳祎平, 梁振益, 林尤全, 等. 咖啡油香氣成分的初步分析 [J]. 食品科學, 2004, 25(11): 230–232. doi: 10.3321/j.issn:1002-6630.2004.11.058.

[56] ZHAN J F, LU S M, QU G F, et al. Analysis on volatile and semi- volatie components of Laos’s coffee [J]. Food Res Dev, 2008, 29(2): 125–129. doi: 10.3969/j.issn.1005-6521.2008.02.041.詹家芬, 陸舍銘, 曲國福, 等. 老撾咖啡的揮發(fā)和半揮發(fā)性成分提取分析 [J]. 食品研究與開發(fā), 2008, 29(2): 125–129. doi: 10.3969/j. issn.1005-6521.2008.02.041.

[57] HAFSAH H, IRIAWATI I, SYAMSUDIN T S. Dataset of volatile compounds from flowers and secondary metabolites from the skin pulp, green beans, and peaberry green beans of robusta coffee [J]. Data Brief, 2020, 29: 105219. doi: 10.1016/j.dib.2020.105219.

[58] SHU Y. Studies on the chemical constituents and bioactivity of roasted coffee beans ofgrowing in Yunnan [D]. Hefei: Hefei University of Technology, 2014. 疏義. 云南小??Х仁於够瘜W成分和生物活性研究 [D]. 合肥: 合肥工業(yè)大學, 2014.

[59] QIU M H, ZHANG Z R, LI Z R, et al. Review of research on the chemical constituents and bioactivities of coffee [J]. Plant Sci J, 2014, 32(5): 540–550. doi: 10.11913/PSJ.2095-0837.2014.50540.邱明華, 張枝潤, 李忠榮, 等. 咖啡化學成分與健康 [J]. 植物科學學報, 2014, 32(5): 540–550. doi: 10.11913/PSJ.2095-0837. 2014.50540.

[60] YASHIN A, YASHIN Y, WANG J Y, et al. Antioxidant and antiradical activity of coffee [J]. Antioxidants, 2013, 2(4): 230–245. doi: 10.3390/ antiox2040230.

[61] DUANGJAI A, NUENGCHAMNONG N, SUPHROM N, et al. Potential of coffee fruit extract and quinic acid on adipogenesis and lipolysis in 3T3-L1 adipocytes [J]. Kobe J Med Sci, 2018, 64(3): E84– E92.

[62] ONTAWONG A, DUANGJAI A, MUANPRASAT C, et al. Lipid- lowering effects ofpulp aqueous extract in caco-2 cells and hypercholesterolemic rats [J]. Phytomedicine, 2019, 52: 187–197. doi: 10.1016/j.phymed.2018.06.021.

[63] MARTINA S J, GOVINDAN P A P, WAHYUNI A S, et al. The difference in effect of Arabica coffee Gayo beans and leaf (Gayo) extract on decreasing blood Sugar levels in healthy mice [J]. Open Access Maced J Med Sci, 2019, 7(20): 3363–3365. doi: 10.3889/oamjms.2019.423.

[64] MELLBYE F B, JEPPESEN P B, SHOKOUH P, et al. Cafestol, a bioactive substance in coffee, has antidiabetic properties in KKAy mice [J]. J Nat Prod, 2017, 80(8): 2353–2359. doi: 10.1021/acs.jnatprod.7b0 0395.

[65] ISHIDA K, YAMAMOTO M, MISAWA K, et al. Coffee polyphenols prevent cognitive dysfunction and suppress amyloidplaques in APP/ PS2 transgenic mouse [J]. Neurosci Res, 2020, 154: 35–44. doi: 10. 1016/j.neures.2019.05.001

[66] CHO B H, CHOI S M, KIM B C. Gender-dependent effect of coffee consumption on tremor severity in de novo Parkinson’s disease [J]. BMC Neurol, 2019, 19(1): 194. doi: 10.1186/s12883-019-1427-y.

[67] FU X P, ZHANG Y H, GU D H, et al. Effect on anti-oxidative injuries of human umbilical vein endothelial cell of crude extracts from Yunnan arabica coffee husk [J]. Food Sci Technol, 2016, 41(12): 183–188. doi: 10.13684/j.cnki.spkj.2016.12.037.付曉萍, 張云鶴, 谷大海, 等. 云南小粒種咖啡果皮粗提取物對人臍靜脈內(nèi)皮細胞抗氧化損傷的研究 [J]. 食品科技, 2016, 41(12): 183–188. doi: 10.13684/j.cnki.spkj.2016.12.037.

[68] El-GARAWANI I M, EL-NABI S H, EL-SHAFEY S, et al.bean extracts and vitamin C: A novel combination unleashes MCF-7 cell death [J]. Curr Pharm Biotechnol, 2020, 21(1): 23–26. doi: 10.2174/1389201020666190822161337.

[69] PERGOLIZZI S, D’ANGELO V, ARAGONA M, et al. Evaluation of antioxidant and anti-inflammatory activity of green coffee beans methanolic extract in rat skin [J]. Nat Prod Res, 2020, 34(11): 1535– 1541. doi: 10.1080/14786419.2018.1523161.

[70] WILTBERGER G, WU Y, LANGE U, et al. Protective effects of coffee consumption following liver transplantation for hepatocellular carci- noma in cirrhosis [J]. Aliment Pharmacol Ther, 2019, 49(6): 779–788. doi: 10.1111/apt.15089.

[71] VITAGLIONE P, MAZZONE G, LEMBO V, et al. Coffee prevents fatty liver disease induced by a high-fat diet by modulating pathways of the gut-liver axis [J]. J Nutri Sci, 2019, 8: e15. doi: 10.1017/jns. 2019.10.

Advances on Chemical Components and Biological Activities of Coffee

SHEN Xiao-jinga,b, ZI Cheng-tingb*, HUI Shao-liangb, YANG Jun-taob, WANG Qingb, CAO Meng-tingb, FAN Jing-pinga*

(a. College of Food Science and Technology; b. College of Science, Yunnan Agricultural University, Kunming 65020, China)

Coffee, one of the three top drinks in the world, belongs to(Rubiaceae), which can reduce blood sugar, protect liver and neuro. The chemical constituents of coffee are rich, including alkaloids, phenolic acid, flavonoid, terpene, etc. The chemical constituents are the basis of biological activities and forming the characteristic flavor of coffee. The main chemical constituents and biological activities of coffee were comprehensivelyreviewed, which would provide relevant basis and theoretical support for the further development of coffee industry.

Coffee; Chemical constituents; Biological activities; Review

10.11926/jtsb.4249

2020–05–13

2020–07–01

國家自然科學基金云南聯(lián)合基金項目(U1902206); 云南省教育廳科學研究基金項目(2020J0241)資助

This work was supported by the Nation-Yunnan Joint Natural Science Foundation of China (Grant No. U1902206); and the Project for Scientific Research of Yunnan Education Department (Grant No. 2020J0241).

沈曉靜(1988~ ),女,實驗師,主要從事天然產(chǎn)物研究、食品功能因子開發(fā)和利用。E-mail: 690361382@qq.com

E-mail: zichengting@126.com; 1993033@ynau.edu.cn

猜你喜歡
葫蘆巴小粒綠原
小?;ㄉ缕贩N引種鑒定試驗初報
葫蘆巴籽中葫蘆巴堿的提取及應用研究進展
我們都是一條魚
葫蘆巴的應用及研究進展
廣東飼料(2019年4期)2019-03-19 13:41:07
蔓三七葉中分離綠原酸和異綠原酸及其抗氧化活性研究
綠原酸對3T3-L1前脂肪細胞分化的抑制作用
中成藥(2018年11期)2018-11-24 02:56:46
金銀花中綠原酸含量不確定度的評定
中成藥(2017年10期)2017-11-16 00:50:42
長江師范學院作品欣賞(三)
大眾文藝(2017年1期)2017-03-08 11:31:04
芽菜用小粒大豆新品種吉育109的選育
大豆科技(2015年5期)2015-12-29 12:09:28
葫蘆巴堿檢測方法的研究進展
榆社县| 留坝县| 富川| 六安市| 姜堰市| 右玉县| 古蔺县| 鄢陵县| 白银市| 沂源县| 洛隆县| 右玉县| 双鸭山市| 珠海市| 油尖旺区| 沂源县| 石门县| 江陵县| 烟台市| 南康市| 东山县| 平南县| 清丰县| 金溪县| 庆元县| 河西区| 遵义市| 南阳市| 阜阳市| 敦化市| 裕民县| 宿州市| 岚皋县| 休宁县| 修文县| 奈曼旗| 五河县| 临海市| 林甸县| 白城市| 昔阳县|