方良才,李貴紅,李丹丹,李浩哲,劉 嘉
淮北蘆嶺煤礦煤層頂板水平井煤層氣抽采效果分析
方良才1,李貴紅2,李丹丹2,李浩哲2,劉 嘉2
(1. 淮北礦業(yè)(集團(tuán))有限責(zé)任公司,安徽 淮北 235000;2. 中煤科工集團(tuán)西安研究院有限公司,陜西 西安 710077)
淮北蘆嶺煤礦為高瓦斯突出礦井,煤層碎軟低滲,瓦斯抽采困難。應(yīng)用“十二五”期間開發(fā)的緊鄰煤層頂板水平井分段壓裂煤層氣高效抽采技術(shù),試驗(yàn)井已取得產(chǎn)氣突破。為了深入分析評(píng)價(jià)地面煤層氣抽采對(duì)煤礦瓦斯災(zāi)害的防治效果,基于目標(biāo)煤層特征,分析煤層頂板水平井的產(chǎn)氣規(guī)律,利用產(chǎn)能數(shù)值模擬技術(shù),對(duì)生產(chǎn)井?dāng)?shù)據(jù)進(jìn)行了歷史擬合,在此基礎(chǔ)上,進(jìn)行水平井產(chǎn)能預(yù)測,分析水平井抽采過程中煤層氣含量和儲(chǔ)層壓力變化趨勢。結(jié)果表明:水平井抽采影響范圍主要為裂縫和近井筒區(qū)域,井筒–裂縫系統(tǒng)外部區(qū)域受影響較??;水平井影響范圍隨抽采時(shí)間的延長逐漸增大,預(yù)測1、3、5、8、10 a的影響面積分別為0.113、0.193、0.242、0.311、0.350 km2;隨著水平井抽采時(shí)間的延長,剩余含氣量和儲(chǔ)層壓力逐漸降低,預(yù)測水平井抽采5 a,水平井控制范圍內(nèi)瓦斯含量最低可降至2.86 m3/t,平均可降至4.2 m3/t,降低50.6%。儲(chǔ)層壓力最低可降至0.85 MPa,平均可降至2.30 MPa,降低66.2%。煤層頂板水平井技術(shù)對(duì)煤層氣開發(fā)和瓦斯災(zāi)害防治效果顯著,是實(shí)現(xiàn)碎軟低滲煤層瓦斯地面預(yù)抽的有效手段。
煤層氣;碎軟低滲煤層;煤層頂板;水平井;抽采效果;淮北蘆嶺煤礦
我國華北東部、華南、西南地區(qū)石炭–二疊紀(jì)煤田廣泛分布著碎軟煤層[1-5],該類煤層塑性強(qiáng),連續(xù)性差,物性差,孔隙率<2%,滲透率<1×10–4μm2 [6-9]。在煤層中直接壓裂不能形成有效壓裂裂縫和滲流通道,煤層氣抽采難度大。碎軟煤層的存在也是煤與瓦斯突出事故的主要誘因[10-11]?;幢钡V區(qū)是我國典型的高瓦斯突出礦區(qū),地質(zhì)構(gòu)造復(fù)雜,瓦斯災(zāi)害嚴(yán)重,曾發(fā)生過多起瓦斯突出和爆炸事故,采煤前開展瓦斯預(yù)抽極為必要。通常井下采用常規(guī)底板巖巷穿層鉆孔或煤巷順層水平鉆孔預(yù)抽瓦斯,由于煤層碎軟低滲,單孔瓦斯抽采量低,抽采達(dá)標(biāo)時(shí)間長,采掘接替矛盾十分突出。
“十二五”期間,淮北礦業(yè)集團(tuán)與中煤科工集團(tuán)西安研究院有限公司合作,首次將緊鄰碎軟低滲煤層頂板水平分段壓裂煤層氣高效抽采技術(shù)應(yīng)用于淮北蘆嶺煤礦,獲得了碎軟低滲煤層單井產(chǎn)氣量突破[12-14]。水平井組排采4 a累計(jì)抽采煤層氣超590萬m3,取得了良好的產(chǎn)氣效果。然而,目前對(duì)于地面煤層氣抽采效果缺乏分析與評(píng)價(jià),對(duì)于煤層氣抽采過程中煤層氣含量和儲(chǔ)層壓力的變化規(guī)律缺乏定量研究。筆者選取LG01水平井,分析其儲(chǔ)層特征及工程施工情況,運(yùn)用產(chǎn)能數(shù)值模擬技術(shù),在對(duì)生產(chǎn)數(shù)據(jù)進(jìn)行歷史擬合的基礎(chǔ)上,開展煤層氣抽采效果評(píng)價(jià),以期為類似區(qū)域的工程應(yīng)用提供借鑒。
淮北蘆嶺煤礦位于安徽省淮北煤田東南部的宿州礦區(qū),宿東向斜西南翼的東南段。礦區(qū)主采煤層為下二疊統(tǒng)下石盒子組8、9和10號(hào)煤層,頂板水平井煤層氣抽采目標(biāo)煤層為8號(hào)煤。
8號(hào)煤層厚度0.30~17.75 m,平均8.96 m,全區(qū)可采,為特厚煤層,含1~2層夾矸,有軟硬分層。煤層堅(jiān)硬程度多為松軟級(jí),為中變質(zhì)煙煤,主要為氣煤和弱黏煤。工程井鉆遇8號(hào)煤層深度為729.6~ 740.5 m。試井測試結(jié)果顯示,儲(chǔ)層壓力5.58 MPa,壓力梯度0.759 MPa/hm,屬于欠壓儲(chǔ)層。
煤層孔隙率和滲透率是煤層氣井產(chǎn)量的重要影響因素。8號(hào)煤層孔隙率1.9%,注入/壓降試井測試滲透率(8~10)×10–5μm2。為碎粒–糜棱結(jié)構(gòu)煤,此類煤層由于后期擠壓和揉搓作用,煤中裂隙被壓縮、扭曲、變形以致不復(fù)存在,加之不同程度裂隙堵塞,煤層滲透性大大降低。
測試結(jié)果表明,8號(hào)煤層空氣干燥基含氣量為5.13~14.59 m3/t。但由于煤體結(jié)構(gòu)破碎,鉆孔繩索取心過程中損失氣量較大,在一定程度上影響測試結(jié)果。8號(hào)煤干燥無灰基Langmuir體積20.31~21.39 cm3/g,平均20.85 cm3/g,Langmuir壓力2.72~2.93 MPa,平均2.82 MPa。
煤層頂?shù)装寰阅鄮r或粉砂巖為主。由LG01-V井取心資料分析可知,在井深729 m鉆遇8號(hào)煤層,直接頂板為厚約0.8 m的結(jié)構(gòu)不完整炭質(zhì)泥巖,炭質(zhì)泥巖上覆堅(jiān)硬塊狀泥巖(5.3 m),泥巖上覆為厚度2 m的細(xì)砂巖。
LG01井組包含一口直井LG01-V和一口對(duì)接水平井LG01-H[15-16]。水平井沿最小水平主應(yīng)力鉆進(jìn),以便于在后期壓裂時(shí)形成橫切縫,獲得最大產(chǎn)能[17-18]。二開鉆進(jìn)時(shí),首先鉆進(jìn)導(dǎo)眼揭露的目標(biāo)煤層,回填后側(cè)鉆至二開著陸點(diǎn)并下套管固井。三開完鉆深度1 485.96 m,水平段長度585.96 m。導(dǎo)眼及水平井井眼軌跡如圖1所示。
為便于水力壓裂裂縫穿層擴(kuò)展,溝通井筒與下部煤層,采用隨鉆測井技術(shù)控制水平井水平段軌跡。水平井井筒距離煤層頂面距離不宜過大或過小,若距離過大,不利于裂縫穿層擴(kuò)展,同時(shí)會(huì)在頂板內(nèi)形成較多的無效裂縫;若距離過小,則不利于井筒的穩(wěn)定和快速鉆進(jìn)。LG01-H水平井施工過程中,控制水平井井筒距離煤層頂面0.5~1.5 m。
圖1 導(dǎo)眼及水平段井眼軌跡
2.2.1 射孔方案
對(duì)于水平井LG01-H,由于最大主應(yīng)力為垂向應(yīng)力,因此,當(dāng)射孔孔眼位于水平井井筒頂部或底部時(shí),裂縫起裂壓力最低[19]。水力壓裂目的在于溝通井筒與下部煤層,因此,采用深穿透射孔,0°相位射孔,孔眼位于水平井井筒底部(圖2),以誘導(dǎo)裂縫向井筒下部延伸,溝通煤層。單段射孔孔眼長度3 m,射孔孔眼密度10個(gè)/m。
圖2 定向深穿透射孔示意圖
2.2.2 壓裂施工
根據(jù)煤儲(chǔ)層特點(diǎn),采用清水壓裂,支撐劑選用石英砂,前置液階段注入20~40目(0.42~0.84 mm)石英砂段塞,打磨射孔孔眼、堵塞遠(yuǎn)端裂隙、減小濾失促進(jìn)主裂縫延伸,攜砂液階段注入16~20目(0.84~1.19 mm)石英砂,支撐主裂縫,增大裂縫導(dǎo)流能力。
壓裂施工中,壓裂段間距74~107 m,采用橋塞射孔聯(lián)作分段壓裂工藝對(duì)水平井分7段進(jìn)行壓裂,壓裂液總注入量6 627 m3,支撐劑總注入量542 m3。各壓裂段壓裂液及支撐劑注入情況如圖3和圖4所示。可以看出,各壓裂段壓裂液注入量整體平穩(wěn),壓裂段3—7比壓裂段1、2注入支撐劑量多10~20 m3。
圖3 水平井各壓裂段壓裂液注入情況
圖4 水平井各壓裂段支撐劑注入情況
2.2.3 裂縫監(jiān)測
在壓裂施工過程中,采用微地震監(jiān)測技術(shù)對(duì)裂縫形態(tài)及規(guī)模實(shí)時(shí)監(jiān)測??紤]施工成本,僅對(duì)壓裂段1和4進(jìn)行微地震監(jiān)測,解釋得到裂縫形態(tài)均為垂直縫。壓裂段1裂縫總長度169.1 m,裂縫高度20.5 m;壓裂段4裂縫總長度163.2 m,裂縫高度17.6 m。從微地震事件空間分布可知裂縫實(shí)現(xiàn)了跨界面穿層擴(kuò)展,溝通了井筒與下部煤層,可以為煤層氣滲流進(jìn)入井筒提供通道。
LG01水平井排采曲線如圖5所示。井組于2015年1月19日開始排采,動(dòng)液面距離8號(hào)煤層702 m,3個(gè)月后開始產(chǎn)氣,見氣時(shí)間為2015年4月16日,動(dòng)液面降至距離8號(hào)煤層241 m,初始套壓0.27 MPa,產(chǎn)氣量23.1 m3/d。1個(gè)月后產(chǎn)氣量上升至2 000 m3/d,中間間斷下降,后持續(xù)上升,2015年12月底達(dá)到10 000 m3/d,維持3個(gè)月之久,在2017年1月降至5 000 m3/d,2018年9月底降至3 000 m3/d。排采至2017年7月時(shí),動(dòng)液面距號(hào)8煤的距離降至50 m以下,此后一直維持在43 m左右,截至2018年9月,尚未暴露8號(hào)煤層。如果以3 000 m3/d來計(jì)穩(wěn)產(chǎn)期,LG01井于2015年6月進(jìn)入穩(wěn)產(chǎn)階段,至2018年9月穩(wěn)產(chǎn)39個(gè)月,穩(wěn)產(chǎn)期內(nèi)平均產(chǎn)氣量4 887 m3/d,截至2018年9月累計(jì)產(chǎn)氣590萬m3。2018年9月后,水平井產(chǎn)量低于3 000 m3/d,產(chǎn)量進(jìn)入遞減階段,截至2020年9月累計(jì)產(chǎn)氣727萬m3。
圖5 LG01井產(chǎn)氣量及距8號(hào)煤層動(dòng)液面高度
根據(jù)LG01井組周圍的勘探井?dāng)?shù)據(jù)以及前期的煤層氣開發(fā)直井?dāng)?shù)據(jù),圈定模擬范圍,目標(biāo)水平井組位于模型中部。模擬區(qū)域及網(wǎng)格情況如圖6所示。
圖6 煤層氣產(chǎn)能數(shù)值模擬模型
基于煤層實(shí)驗(yàn)/試驗(yàn)參數(shù),參考煤層氣井產(chǎn)能數(shù)值模擬方法[20-21],應(yīng)用分段壓裂水平井產(chǎn)能數(shù)值模擬技術(shù),采用定井底流壓的工作制度進(jìn)行生產(chǎn),對(duì)LG01水平井生產(chǎn)數(shù)據(jù)進(jìn)行了歷史擬合,得到的產(chǎn)氣曲線如圖7所示。歷史擬合曲線表明,計(jì)算結(jié)果與實(shí)際生產(chǎn)數(shù)據(jù)接近,變化趨勢一致。實(shí)際生產(chǎn)數(shù)據(jù)累計(jì)產(chǎn)氣量594.5萬m3,歷史擬合結(jié)果為592.7萬m3,相對(duì)誤差僅為–0.31%,具有較高的擬合精度。工程參數(shù)和經(jīng)過歷史擬合得到的儲(chǔ)層參數(shù)見表1,該修正參數(shù)能夠更加真實(shí)客觀地反映煤層的特征和產(chǎn)氣潛力,據(jù)此可對(duì)頂板水平井產(chǎn)能進(jìn)行更加準(zhǔn)確、合理的評(píng)價(jià)。
圖7 LG01井產(chǎn)氣量歷史擬合曲線
表1 LG01井基本參數(shù)與擬合值
以歷史擬合結(jié)果為基礎(chǔ),采用校正后的儲(chǔ)層參數(shù),對(duì)LG01-H水平井產(chǎn)量進(jìn)行預(yù)測,累計(jì)生產(chǎn)時(shí)間為10 a,截止日期2025-01-18。排采條件設(shè)置為定壓生產(chǎn),壓力為0.513 MPa,產(chǎn)氣量預(yù)測結(jié)果如圖8所示。
至2020年1月19日,實(shí)際累計(jì)產(chǎn)氣686.7萬m3,數(shù)值模擬預(yù)測累計(jì)產(chǎn)氣691.1萬m3。數(shù)值模擬與實(shí)際生產(chǎn)數(shù)據(jù)誤差較小,證明通過歷史擬合獲得的數(shù)值模擬模型能夠較為精確地預(yù)測水平井產(chǎn)能情況。
從圖8中可以看出,由于水平井組已進(jìn)入排采后期,氣井產(chǎn)量進(jìn)入遞減階段。井組排采至1、3、5、8、10 a時(shí)的日產(chǎn)氣量分別為9 640.06、3 259.76、1 764.45、1 156.81、987.86 m3,累計(jì)產(chǎn)氣量分別為87.11、520.48、686.12、836.30、912.97萬m3。預(yù)測結(jié)果表明,水平井井組產(chǎn)氣潛力巨大,生產(chǎn)至10 a時(shí),產(chǎn)量仍舊保持在1 000 m3/d左右,10 a累計(jì)產(chǎn)氣量超過900萬m3,既能夠獲得很好的產(chǎn)氣效果,又能減少井下瓦斯抽采的工作量。
圖8 LG-01井產(chǎn)氣量預(yù)測
根據(jù)產(chǎn)能預(yù)測結(jié)果,得出LG01井組附近抽采3 a和5 a時(shí)剩余含氣量分布情況(圖9),抽采3 a和5 a時(shí)儲(chǔ)層壓力隨時(shí)間的變化情況如圖10所示。
從圖9和圖10可以看出,隨著生產(chǎn)時(shí)間的增加,水平井抽采影響范圍逐漸擴(kuò)大,首先為裂縫周圍區(qū)域,隨后為裂縫間區(qū)域,最后以水平井為中心向四周逐漸擴(kuò)大。水平井影響范圍主要為圍繞井筒–裂縫系統(tǒng)的橢圓形,并且水平井抽采影響范圍主要為裂縫和近井筒區(qū)域,井筒–裂縫系統(tǒng)外部區(qū)域受影響較小。這是由于8號(hào)煤碎軟低滲,水力壓裂裂縫是瓦斯的主要運(yùn)移通道,煤層瓦斯解吸后主要通過人工裂縫進(jìn)入井筒。
隨著水平井抽采時(shí)間的延長,預(yù)測1、3、5、8、10 a的影響范圍面積分別為0.113、0.193、0.242、0.311、0.350 km2。定義寬度為裂縫長度(平均約160 m)、長度為水平井段長度(約600 m)的矩形區(qū)域?yàn)樗骄刂品秶椴?0 a時(shí)水平井影響范圍可達(dá)水平井控制范圍面積的3.6倍。
預(yù)測水平井抽采5 a,水平井控制范圍內(nèi)瓦斯氣含量最低可降至2.86 m3/t,平均可降至4.2 m3/t,較初始的8.5 m3/t降低了4.3 m3/t,降低了50.6%。儲(chǔ)層壓力最低可降至0.85 MPa,平均可降至2.30 MPa,降低了66.2%。由此可知,水平井抽采煤層氣可顯著降低瓦斯含量和儲(chǔ)層壓力。
圖9 煤層剩余氣含量隨生產(chǎn)時(shí)間的變化情況
圖10 煤儲(chǔ)層壓力隨生產(chǎn)時(shí)間的變化情況
以上數(shù)值模擬結(jié)果表明,煤層頂板水平井技術(shù)瓦斯抽采效果顯著,能夠顯著降低水平井控制區(qū)域內(nèi)的瓦斯含量和瓦斯壓力,影響范圍廣,對(duì)于保障煤礦安全生產(chǎn)具有十分重要的意義,是實(shí)現(xiàn)碎軟低滲煤層瓦斯地面預(yù)抽的有效手段。
a. 淮北蘆嶺煤礦應(yīng)用的緊鄰碎軟低滲煤層頂板巖層分段壓裂水平井抽采模式,典型LG01水平井組穩(wěn)產(chǎn)期39個(gè)月,穩(wěn)產(chǎn)期內(nèi)平均產(chǎn)氣量4 887 m3/d,獲得良好的產(chǎn)氣效果。
b. 隨著水平井排采,裂縫周邊及裂縫間區(qū)域首先受到影響,隨后以水平井為中心向四周逐漸擴(kuò)大。預(yù)測抽采10 a影響區(qū)域范圍0.35 km2,是水平井控制范圍的3.6倍,水平井井組周圍剩余氣含量和儲(chǔ)層壓力逐漸降低;預(yù)測水平井抽采5 a,井筒控制范圍內(nèi)瓦斯氣含量平均可降低50.6%。儲(chǔ)層壓力平均可降低66.2%。
c. 煤層頂板水平井煤層氣抽采技術(shù)具有煤層氣開發(fā)和瓦斯抽采的雙重效益,是實(shí)現(xiàn)碎軟低滲煤層瓦斯地面預(yù)抽的有效手段。
[1] 張群. 關(guān)于我國煤礦區(qū)煤層氣開發(fā)的戰(zhàn)略性思考[J]. 中國煤層氣,2007,4(4):3–5. ZHANG Qun. Strategic thinking on coal mine methane development in China[J]. China Coalbed Methane,2007,4(4):3–5.
[2] 李樹剛,包若羽,張?zhí)燔姡? 本煤層瓦斯抽采鉆孔合理密封深度確定[J]. 西安科技大學(xué)學(xué)報(bào),2019,39(2):183–188. LI Shugang,BAO Ruoyu,ZHANG Tianjun,et al. Determining the rational sealing depth for horizontal gas drainage borehole[J]. Journal of Xi’an University of Science and Technology,2019,39(2):183–188.
[3] 桑樹勛,周效志,劉世奇,等. 應(yīng)力釋放構(gòu)造煤煤層氣開發(fā)理論與關(guān)鍵技術(shù)研究進(jìn)展[J]. 煤炭學(xué)報(bào),2020,45(7):2531–2543. SANG Shuxun,ZHOU Xiaozhi,LIU Shiqi,et a1. Research advances in theory and technology of the stress release applied extraction of coalbed methane from tectonically deformed coals[J]. Journal of China Coal Society,2020,45(7):2531–2543.
[4] 孟中澤,劉明舉,孟磊,等. 淮南礦區(qū)C13–1煤層構(gòu)造軟煤分布特征及其主控因素分析[J]. 中國煤炭,2010,36(2):72–76. MENG Zhongze,LIU Mingju,MENG Lei,et al. An analysis of the distribution characteristics of tectonic soft coal in C13-1 coal seam of Huainan coal mine area and its main control factors[J]. China Coal,2010,36(2):72–76.
[5] 周培明,高為,鄧蘭,等. 織納煤田晚二疊世構(gòu)造煤區(qū)域分布及構(gòu)造控制[J]. 煤田地質(zhì)與勘探,2020,48(3):29–34. ZHOU Peiming,GAO Wei,DENG Lan,et al. Regional distribution and geotectonic control of Late Permian tectonically deformed coal in Zhina coalfield[J]. Coal Geology & Exploration,2020,48(3):29–34.
[6] JIANG Bo,QU Zhenghui,WANG Geoff G X,et al. Effects of structural deformation on formation of coalbed methane reservoirs in Huaibei coalfield,China[J]. International Journal of Coal Geology,2010:82(3/4):175–183.
[7] 姜波,琚宜文. 構(gòu)造煤結(jié)構(gòu)及其儲(chǔ)層物性特征[J]. 天然氣工業(yè),2004,24(5):27–29.JIANG Bo,JU Yiwen. Tectonic coal structure and its petro-physical features[J]. Natural Gas Industry,2004,24(5):27–29.
[8] 琚宜文,姜波,王桂樑,等. 構(gòu)造煤結(jié)構(gòu)及儲(chǔ)層物性[M]. 徐州:中國礦業(yè)大學(xué)出版社,2005:33–36. JU Yiwen,JIANG Bo,WANG Guiliang,et al. Tectonic coals:structures and physical properties of reservoirs[M]. Xuzhou:China University of Mining and Technology Press,2005:33–36.
[9] 董夔,賈建稱,鞏澤文,等. 淮北許疃礦構(gòu)造煤孔隙結(jié)構(gòu)及壓敏效應(yīng)[J]. 煤田地質(zhì)與勘探,2019,47(2):58–65. DONG Kui,JIA Jiancheng,GONG Zewen,et al. Study on pore structure and pressure-sensitive effect of tectonic coal in Huaibei Xutuan mine[J]. Coal Geology & Exploration,2019,47(2):58–65.
[10] 韓付濤,楊曉峰,趙旭光. 平煤十三礦構(gòu)造煤發(fā)育特點(diǎn)與分布規(guī)律[J]. 能源與環(huán)保,2018,40(5):148–150.HAN Futao,YANG Xiaofeng,ZHAO Xuguang. Characteristics and distribution regularity of tectonic coal development in No.13 Coal Mine of Pingdingshan Tian’an Coal Industry Co. Ltd.[J]. China Energy and Environmental Protection,2018,40(5):148–150.
[11] 高魁,劉澤功,劉健,等. 構(gòu)造軟煤的物理力學(xué)特性及其對(duì)煤與瓦斯突出的影響[J]. 中國安全科學(xué)學(xué)報(bào),2013,23(2):129–133. GAO Kui,LIU Zegong,LIU Jian,et al. Physical and mechanical characteristics of tectonic soft coal and their effects on coal and gas outburst[J]. China Safety Science Journal,2013,23(2):129–133.
[12] 巫修平. 碎軟低滲煤層頂板水平井分段壓裂裂縫擴(kuò)展規(guī)律及機(jī)制研究[D]. 北京:煤炭科學(xué)研究總院,2017. WU Xiuping. Research on control mechanism of fracture propagation of multi-stage hydraulic fracturing horizontal well in roof of broken soft and low permeable coal seam[D]. Beijing:China Coal Research Institute,2017.
[13] 張群,葛春貴,李偉,等. 碎軟低滲煤層頂板水平井分段壓裂煤層氣高效抽采模式[J]. 煤炭學(xué)報(bào),2018,43(1):150–159. ZHANG Qun,GE Chungui,LI Wei,et al. A new model and application of coalbed methane high efficiency production from broken soft and low permeable coal seam by roof strata-in horizontal well and staged hydraulic fracture[J]. Journal of China Coal Society,2018,43(1):150–159.
[14] 許耀波,朱玉雙,張培河. 緊鄰碎軟煤層的頂板巖層水平井開發(fā)煤層氣技術(shù)[J]. 天然氣工業(yè),2018,38(9):70–75. XU Yaobo,ZHU Yushuang,ZHANG Peihe. Application of CBM horizontal well development technology in the roof strata close to broken-soft coal seams[J]. Natural Gas Industry,2018,38(9):70–75.
[15] 李彬剛. 蘆嶺煤礦碎軟低滲煤層高效抽采技術(shù)[J]. 煤田地質(zhì)與勘探,2017,45(4):81–84. LI Bingang. Technology of CBM extraction in the crushed and soft coal seam in Luling Coal Mine[J]. Coal Geology & Exploration,2017,45(4):81–84.
[16] 于洋,周池明,張浩. 定向射孔橋塞分段壓裂技術(shù)在提高煤層氣采收率中的應(yīng)用[J]. 鉆采工藝,2016,39(1):63–64. YU Yang,ZHOU Chiming,ZHANG Hao. Application of directional perforation bridge plug staged fracturing technology in improving the recovery rate of coalbed methane[J]. Drilling & Production Technology,2016,39(1):63–64.
[17] 吳奇. 水平井體積壓裂改造技術(shù)[M]. 北京:石油工業(yè)出版社,2013:19–20. WU Qi. Horizontal well volume fracturing technology[M]. Beijing:Petroleum Industry Press,2013:19–20.
[18] ECONOMIDES M,MARTIN A N. How to decide between horizontal transverse horizontal longitudinal and vertical fractured completions[C]//SPE Annual Technical Conference and Exhibition. Italy:Society of Petroleum Engineers,2010.
[19] 虞建業(yè),沈飛,顧慶宏,等. 水平井射孔參數(shù)對(duì)壓裂起裂壓力的影響[J]. 油氣地質(zhì)與采收率,2011,18(1):105–107. YU Jianye,SHEN Fei,GU Qinghong ,et al. Influence of perforation parameters on hydraulic fracturing of fracture pressure in horizontal well[J]. Petroleum Geology and Recovery Efficiency,2011,18(1):105–107.
[20] 張群. 煤層氣儲(chǔ)層數(shù)值模擬模型及應(yīng)用的研究[D]. 北京:煤炭科學(xué)研究總院,2003.ZHANG Qun. Study of coal seam gas reservoir simulation numerical model and application[D]. Beijing:China Coal Research Institute,2003.
[21] 王曉梅,張群,張培河,等. 煤層氣井歷史擬合方法探討[J].煤田地質(zhì)與勘探,2003,33(1):20–22. WANG Xiaomei,ZHANG Qun,ZHANG Peihe,et al. Discussion on the method of history matching of coalbed methane well[J]. Coal Geology & Exploration,2003,33(1):20–22.
Analysis on the CBM extraction effect of the horizontal wells in the coal seam roof in Luling coal mine in Huaibei
FANG Liangcai1, LI Guihong2, LI Dandan2, LI Haozhe2, LIU Jia2
(1. Huaibei Coal Mining Group Co. Ltd., Huaibei 235000, China; 2. Xi’an Research Institute Co. Ltd., China Coal Technology and Engineering Group Corp., Xi’an 710077, China)
Huaibei Luling Coal Mine is a mine with high risk of gas outburst. The coal seams are broken and soft have low permeability, the gas extraction is difficult. The high-efficiency gas extraction technology of staged hydraulic fracturing horizontal well next to seam roof, developed during the 12th Five Year Plan, was applied. The pilot test achieved a breakthrough in gas production. However, there are few researches on the effect of horizontal well drainage on the prevention and control of gas disasters. In this paper, the reservoir characteristics of the target coal seams and the gas production law of the pilot horizontal well were analyzed. Then, the numerical simulation technology was employed to historically match the production data. On this basis, the horizontal well production was predicted for ten years. The change law of coalbed methane gas content and reservoir pressure over time in the process of horizontal well extraction was analyzed. And the effect of coalbed methane extraction on coal mine gas control was evaluated. The results show that: The influence area of horizontal well drainage is mainly near the hydraulic fracture and wellbore, and the area outside the wellbore-fracture system is less affected; The influence area of horizontal well gradually increases with the production time. It is predicted that the area of influence scope of 1 a, 3 a, 5 a, 8 a, and 10 a is 0.113, 0.193, 0.242, 0.311, 0.350 km2, respectively; With the drainage time, the gas content and reservoir pressure gradually decrease. It is predicted that after 5 years of production, the gas content within the control range of the horizontal well can be reduced to 2.86 m3/t at the lowest, and the average can be reduced to 4.2 m3/t, with a reduction ratio of 50.6%. The reservoir pressure can be reduced to 0.85 MPa at the lowest, and 2.30 MPa on average, with a reduction ratio of 66.2%; Coal seam roof horizontal well technology has significant effects on coalbed methane development and gas disaster prevention and control, and is an effective method to achieve ground pre-drainage of gas from broken, soft and low-permeability coal seams.
coalbed methane; broken-soft and low-permeability coal seam; the roof of coal seam; horizontal well; extractive effect; Luling Mine in Huaibei
請(qǐng)聽作者語音介紹創(chuàng)新技術(shù)成果等信息,歡迎與作者進(jìn)行交流
TE35
A
10.3969/j.issn.1001-1986.2020.06.021
1001-1986(2020)06-0155-06
2020-11-18;
2020-12-18
國家科技重大專項(xiàng)課題(2016ZX05045-002);陜西省創(chuàng)新人才推動(dòng)計(jì)劃(2018TD-039);天地科技股份有限公司科技創(chuàng)新創(chuàng)業(yè)資金專項(xiàng)項(xiàng)目(2018-TD-QN049)
National Science and Technology Major Project(2016ZX05045-002);Shaanxi Province Innovative Talent Promotion Program(2018TD-039);Tiandi Science and Technology Co., Ltd. Innovation Venture Capital Special Project(2018-TD-QN049)
方良才,1966年生,男,正高級(jí)工程師,從事礦井安全技術(shù)與管理研究工作. E-mail:fanglc126126@126.com
李浩哲,1990年生,男,河南洛陽人,碩士,從事煤層氣開發(fā)與儲(chǔ)層改造研究工作. E-mail:lihaozhe@cctegxian.com
方良才,李貴紅,李丹丹,等. 淮北蘆嶺煤礦煤層頂板水平井煤層氣抽采效果分析[J]. 煤田地質(zhì)與勘探,2020,48(6):155–160.
FANG Liangcai,LI Guihong,LI Dandan,et al.Analysis on the CBM extraction effect of the horizontal wells in the coal seam roof in Luling coal mine in Huaibei[J]. Coal Geology & Exploration,2020,48(6):155–160.
(責(zé)任編輯 范章群)