Paulo FLORES 張昭
摘要:冬小麥澇漬脅迫頻發(fā)不僅嚴(yán)重影響區(qū)域糧食安全和生態(tài)安全,還威脅社會經(jīng)濟(jì)穩(wěn)定和可持續(xù)發(fā)展。為識別冬小麥澇漬脅迫及判別其脅迫程度,本研究設(shè)置冬小麥澇漬脅迫梯度盆栽試驗(yàn),采用ASD地物光譜儀和Gaiasky-mini2推掃式成像光譜儀分別測定葉片及冠層高光譜數(shù)據(jù),結(jié)合植被指數(shù)、歸一化均值距離和光譜微分差信息熵等方法,監(jiān)測冬小麥?zhǔn)欠裨馐軡碀n脅迫并判別其澇漬脅迫程度。試驗(yàn)結(jié)果顯示,簡單比值色素指數(shù)SRPI是識別澇漬脅迫冬小麥的最優(yōu)植被指數(shù)。紅光吸收谷(RW:640~680nm)是識別冬小麥澇漬脅迫程度的最優(yōu)波段,在RW波段內(nèi),抽穗、開花和灌漿期的光譜微分差信息熵可判別冬小麥澇漬脅迫程度,脅迫程度越大,光譜微分差信息熵越大。本研究為澇漬脅迫監(jiān)測提供了一種新方法,在澇漬脅迫精確防控中具有較好的應(yīng)用前景。
關(guān)鍵詞:高光譜遙感;澇漬脅迫;植被指數(shù);光譜微分差信息熵;冬小麥
中圖分類號:S127;TP79文獻(xiàn)標(biāo)志碼:A文章編號:202105-SA001
引用格式:楊菲菲,劉升平,諸葉平,李世娟.基于高光譜遙感的冬小麥澇漬脅迫識別及程度判別分析[J].智慧農(nóng)業(yè)(中英文),2021, 3(2): 35-44.
YANG Feifei, LIU Shengping, ZHU Yeping, LI Shijuan. Identification and level discrimination of waterlogging stress in winter wheat using hyperspectral. remote sensing[J]. Smart Agriculture, 2021, 3(2): 35-44. (in Chinese with English abstract)
1引言
農(nóng)業(yè)生產(chǎn)對氣候條件具有較強(qiáng)的依賴性。澇漬災(zāi)害作為主要自然災(zāi)害之一,正成為制約作物生長的明顯因素。澇漬災(zāi)害是一種慢性災(zāi)害現(xiàn)象,監(jiān)測困難。傳統(tǒng)的監(jiān)測方法主要包括檢測土壤水分和作物體內(nèi)水分狀況等,存在勞動強(qiáng)度大、觀測不及時(shí)等缺陷。高光譜遙感信息豐富、無破壞性,可為監(jiān)測澇漬脅迫提供一種無損、實(shí)時(shí)、可信的方法?;诟吖庾V遙感對澇漬脅迫進(jìn)行早期監(jiān)測,盡早提供有關(guān)植被狀況信息,對制定精確的生產(chǎn)投入管理方案至關(guān)重要[1]。
目前基于高光譜遙感監(jiān)測作物環(huán)境脅迫程度的研究主要集中于監(jiān)測重金屬脅迫和病害脅迫程度。其中,劉美玲等[2]基于光譜高頻組份的分維數(shù)診斷水稻鉛污染脅迫水平,表明結(jié)合小波變換、分形分析和模糊數(shù)學(xué)可有效實(shí)現(xiàn)光譜弱信息提取、度量及建模,以監(jiān)測重金屬脅迫程度;Zhang等[3]研究發(fā)現(xiàn)冠層空氣溫差分布的平均值和標(biāo)準(zhǔn)差是較好的水稻重金屬脅迫水平判別指標(biāo);Li等[4]利用多源遙感數(shù)據(jù)的互補(bǔ)特性,融合高光譜遙感和雷達(dá)遙感監(jiān)測稻田重金屬脅迫程度;楊興川等[5]研究發(fā)現(xiàn),在單葉尺度下,基于785nm波段的二次曲線模型反演煙煤病嚴(yán)重程度的效果較為理想;Stefan等[6]通過高光譜成像,結(jié)合單純形體積最大化和支持向量機(jī)的組合自動量化大麥白粉病癥狀,實(shí)現(xiàn)在每個(gè)測量日對所有栽培品種疾病嚴(yán)重程度的準(zhǔn)確評估;Gui等[7]提出卷積神經(jīng)網(wǎng)絡(luò)和支持向量機(jī)相結(jié)合的方法檢測大豆早期花葉病毒病,模型識別準(zhǔn)確率較高。部分研究集中于判別凍害脅迫、粉塵脅迫、干旱脅迫及鹽脅迫程度。其中,王慧芳等[8]利用主成分分析方法構(gòu)建冬小麥凍害嚴(yán)重度反演模型,模型效果達(dá)到極顯著;Liang等[9]設(shè)計(jì)粉塵脅迫歸一化指數(shù),結(jié)合隨機(jī)森林分類算法預(yù)測小麥葉片的粉塵脅迫程度,精度較高;Zhang和Zhou[10]基于干旱脅迫梯度試驗(yàn),研究發(fā)現(xiàn)綠色葉綠素指數(shù),紅邊葉綠素指數(shù)和紅邊歸一化指數(shù)對冠層水分含量和平均葉片等效水厚度的變化最為明顯;Miguel等[11]分別基于主成分分析和計(jì)算紅邊區(qū)域二階導(dǎo)數(shù)近似值的指數(shù)建立鹽度效應(yīng)監(jiān)測模型,研究不同鹽度水平對萵苣的影響,兩種模型均可有效監(jiān)測鹽脅迫程度,但基于指數(shù)的模型更簡單易用。
對作物澇漬脅迫的研究方向主要包括檢測單一澇漬脅迫的發(fā)生,建立澇漬脅迫下生理生化參數(shù)反演模型[12]及區(qū)分不同環(huán)境脅迫,而對判別澇漬脅迫程度的研究較少。其中,熊勤學(xué)等[13]建議用670~2400nm波段光譜的均值差異反映小麥?zhǔn)軡n情況;Xia等[14]結(jié)合二次判別分析、K- 最近鄰和支持向量機(jī)等方法,發(fā)現(xiàn)利用高光譜成像技術(shù)檢測油菜澇漬脅迫可行;Zhao等[15]基于高光譜圖像和卷積神經(jīng)網(wǎng)絡(luò)檢測棉花澇漬脅迫;高小梅等[16]結(jié)合相關(guān)分析和神經(jīng)網(wǎng)絡(luò)方法,建立基于高光譜和數(shù)字圖像特征指標(biāo)的受漬冬小麥葉綠素儀(Soil and Plant Analyzer Develotrnent,SPAD)值估算模型;Emengini等[17]研究發(fā)現(xiàn)高光譜和熱紅外遙感結(jié)合可能區(qū)分石油污染、澇漬及油漬脅迫。植被原始光譜在采集中易受噪聲、土壤背景信息等因素影響,澇漬脅迫對作物光譜的影響微弱而難于探測,光譜微分可減弱背景信息對原始光譜信號的影響,通過計(jì)算不同曲線光譜微分的差值,可進(jìn)一步減少光譜噪聲的影響[18]。因此,可以結(jié)合植被指數(shù)和歸一化均值距離識別冬小麥澇漬脅迫,并結(jié)合光譜微分差信息嫡對其澇漬脅迫程度進(jìn)行判別。
本研究以長江中下游地區(qū)的江蘇省揚(yáng)州市為研究區(qū),基于盆栽試驗(yàn),于拔節(jié)期對冬小麥進(jìn)行不同梯度的澇漬脅迫處理,采用冬小麥葉片光譜、冠層高光譜成像數(shù)據(jù),結(jié)合植被指數(shù)、歸一化均值距離和光譜微分差信息嫡等方法,理清澇漬脅迫下冬小麥葉片及冠層光譜特征,識別冬小麥澇漬脅迫并對其脅迫程度進(jìn)行判別。
2材料與方法
2.1試驗(yàn)設(shè)計(jì)
研究對象為冬小麥(品種:揚(yáng)幅麥4號(YF4)、濟(jì)麥31號(JM31)、濟(jì)麥38號(JM38))。試驗(yàn)于2018—2019年在揚(yáng)州大學(xué)盆栽試驗(yàn)場遮雨棚內(nèi)進(jìn)行。2018年11月10日播種,播種密度為每盆8穴,每穴2粒,待生長到三葉一心時(shí)定苗至每盆8株,共189盆。2019年5 月28日收獲。盆底內(nèi)徑20cm,口內(nèi)徑28cm,高29cm,空盆重0.54kg。每盆裝風(fēng)干輕壤土10kg與5.28g復(fù)合肥,復(fù)合肥N-P-K比例為15%-15%-15%,播種后覆土1kg,拔節(jié)期追施復(fù)合肥3.52 g。
于冬小麥拔節(jié)期(2019年3月15日)開始采用稱重法控水,進(jìn)行澇漬脅迫梯度試驗(yàn),控制拔節(jié)期澇漬脅迫水平(對照CK,漬水ML,淹水SL),脅迫時(shí)間(5 d,10 d,15 d)及小麥品種(YF4、JM31、JM38)三個(gè)因子。其中,CK處理控制土壤相對含水量為70%~80%,ML處理控制土壤相對含水量為85%~90%,SL處理保留土壤表層水層1.5cm左右;YF4為正常品種,JM31為對水分高度敏感品種,JM38為對水分高度不敏感品種。于2019年3月30日結(jié)束所有澇漬處理,此后等量控制澆水,直至成熟收獲。試驗(yàn)共21組處理,每個(gè)處理設(shè)9次重復(fù),共189次試驗(yàn)。
2.2數(shù)據(jù)采集
試驗(yàn)數(shù)據(jù)的獲取頻率為從小麥拔節(jié)期第一次漬水日開始,選擇晴朗無風(fēng)天氣,試驗(yàn)當(dāng)天在10:00—14:00測量盆栽冬小麥的葉片及冠層光譜數(shù)據(jù),每7d測量一次,陰雨天延后,直至小麥成熟。
(1)葉片光譜數(shù)據(jù)。采用美國ASD公司(Analytical. Spectral. Devices)生產(chǎn)的便攜式地物光譜儀(Field Spec3)測量冬小麥葉片光譜反射率,光譜采樣間隔為1.4nm (采樣范圍350~1000nm)和2nm(采樣范圍1000~2500nm),重采樣間隔1nm。利用自帶光源型手持葉片光譜探測器夾取葉片中間部位測量光譜,各處理測定5盆,每盆測定4次,取均值作為該處理的冬小麥葉片光譜反射率,測量前使用標(biāo)準(zhǔn)白板進(jìn)行定標(biāo)校正,測量過程中每隔30min進(jìn)行一次標(biāo)準(zhǔn)白板校正。
(2)冠層光譜數(shù)據(jù)。采用四川雙利合普公司生產(chǎn)的Gaiasky-mini2推掃式成像光譜儀(光譜范圍400~1000nm,采樣間隔4nm)測量冬小麥冠層光譜反射率。采用三腳架支起Gaiasky- mini2成像光譜儀,鏡頭垂直向下,距小麥冠層1m拍攝,各處理測定5盆,取均值作為該處理的冬小麥冠層光譜反射率,測量前使用標(biāo)準(zhǔn)白板進(jìn)行定標(biāo)校正。盆栽冬小麥冠層高光譜數(shù)據(jù)采集現(xiàn)場圖見圖lo
2.3數(shù)據(jù)處理與分析方法
2.3.1植被指數(shù)
植被指數(shù)可綜合相關(guān)光譜信號,在增強(qiáng)植被信息的同時(shí)減弱土壤等非植被信息的影響,有效反映植被與土壤等背景之間的差異性,各個(gè)植被指數(shù)在一定條件下能用來定量說明植被的生長狀況。結(jié)合已有研究[13,19],本研究選擇可能反映作物水分狀況的植被指數(shù)如表1所示。
2.3.2歸一化均值距離
Fisher準(zhǔn)則是特征選擇的有效方法之一,其主要思想是鑒別性能較強(qiáng)的特征表現(xiàn)為類內(nèi)距離盡可能小,類間距離盡可能大,即類別間相對距離可度量類別可分性[26],傳統(tǒng)常用距離包括歐氏距離、馬氏距離和漢明距離等[27]。本研究引入歸一化均值距離定量評估不同植被指數(shù)識別澇漬脅迫冬小麥能力的優(yōu)劣,距離越大,說明植被指數(shù)識別能力越強(qiáng)[28]。綜合分析最優(yōu)植被指數(shù)值的相對大小和變化趨勢可以判斷冬小麥?zhǔn)欠裨馐軡碀n脅迫。歸一化均值距離原理為:
(7)
其中,μ和μ分別為對照、澇漬脅迫下植被指數(shù)均值;σ和σ分別為對照、澇漬脅迫下植被指數(shù)的標(biāo)準(zhǔn)差。
2.3.3光譜微分差信息熵
信息論之父Shannon[29]借鑒熱力學(xué)熵的概念,提出“信息熵”解決信息的量化度量問題。信息熵可定義為離散隨機(jī)事件發(fā)生的概率,可理解為消除不確定性所需信息量的度量,即未知事件可能含有的信息量,需要引入消除不確定性的信息量越多,則信息熵越高,反之則越低;也可作為一個(gè)系統(tǒng)復(fù)雜程度的度量,系統(tǒng)越復(fù)雜,出現(xiàn)不同情況的種類越多,則信息熵越高,反之則越低。本研究引入信息熵的思想衡量與評價(jià)冬小麥?zhǔn)軡碀n脅迫影響的程度以及光譜由此產(chǎn)生的弱畸變,依據(jù)信息熵定義,構(gòu)建光譜微分差信息熵,脅迫程度越大,光譜差異越大,其所對應(yīng)的光譜微分差信息熵值就越大[30],計(jì)算公式如下[18]:
(8)
(9)
其中,i對應(yīng)6種澇漬脅迫下光譜;j為某一波段范圍內(nèi)波段數(shù);SD為澇漬脅迫下小麥一階微分光譜值;為正常小麥一階微分光譜值。
3結(jié)果與分析
葉片光譜數(shù)據(jù)采用手持葉片光譜探測器夾取冬小麥葉片中間部位量測得到,未受背景信息的影響,而冠層高光譜影像數(shù)據(jù)不僅包含冬小麥冠層高光譜數(shù)據(jù),還包括土壤等背景信息。因此,本研究在對冠層高光譜影像數(shù)據(jù)進(jìn)行輻射定標(biāo)、幾何校正等預(yù)處理后,基于隨機(jī)森林算法對冠層高光譜影像數(shù)據(jù)進(jìn)行批處理,其中每幅影像均被分為冬小麥、盆、草和土壤四部分,通過計(jì)算混淆矩陣,可以得到總體分類精度和kappa系數(shù)分別為95.86%和0.9438,精度較高。提取分類后冬小麥的冠層光譜數(shù)據(jù),進(jìn)行后續(xù)處理。
3.1光譜特征分析
植被反射光譜與葉片內(nèi)部結(jié)構(gòu)、色素含量、含水率等密切相關(guān)。冬小麥?zhǔn)艿綕碀n脅迫后,生理特性會發(fā)生敏感變化,從而引起葉片及冠層光譜反射率的改變。
澇漬脅迫是土壤水分長期影響植被生長發(fā)育所導(dǎo)致的一種慢性災(zāi)害現(xiàn)象,且具有滯后性,因此很難在遭受澇漬脅迫的拔節(jié)期就識別出澇漬脅迫冬小麥。為盡早識別冬小麥澇漬脅迫,分析遭受脅迫后第一個(gè)生育期冬小麥光譜反射率的變化,即對抽穗期對照及澇漬脅迫(包括所有漬水及淹水處理)后冬小麥葉片及冠層光譜反射率分別取平均,得到光譜特征對比結(jié)果(圖2),其中冬小麥葉片光譜數(shù)據(jù)對照及澇漬脅迫樣本數(shù)分別為60和360,冠層光譜數(shù)據(jù)對照及澇漬脅迫樣本數(shù)分別為15和90。
由圖2可知,冬小麥在澇漬脅迫后,與對照冬小麥葉片的光譜曲線在紅光吸收谷(RW:640~680nm),紅邊(RE:670~737 nm),近紅外(NIR:750~900 nm),1428~1456 nm波段和1650~1800 nm波段出現(xiàn)較明顯變化。冬小麥在澇漬脅迫下,受葉片中色素含量的影響,綠峰(550 nm)附近吸收減弱,綠峰有抬升的趨勢;澇漬脅迫導(dǎo)致葉片光合作用能力下降,NDVI指數(shù)降低,即在RW波段偏高,NIR波段降低;受葉綠素和氮素等影響[31,32],RE波段范圍內(nèi),光譜有藍(lán)移或向短波方向移動的現(xiàn)象。澇漬脅迫會延緩冬小麥根系生長,降低根系導(dǎo)水率,引起葉片水分虧缺,導(dǎo)致葉片水勢降低,1428~1456 nm波段可體現(xiàn)葉片水勢;1650~1800 nm位于大氣吸收波段,難以獲得高質(zhì)量的野外數(shù)據(jù),本節(jié)不再贅述。冠層光譜曲線變化趨勢和葉片光譜基本相同,但差異更為明顯,這可能由于澇漬脅迫不僅對冬小麥葉片生理特性造成影響,還影響了作物冠層的形狀結(jié)構(gòu)等。
3.2澇漬脅迫識別分析
為有效綜合各有關(guān)光譜信號,增強(qiáng)植被信息,減少非植被信息,選取NDVI、SIPI、NDWI、GNDVI、PRI和SRPI六個(gè)植被指數(shù)對拔節(jié)期及之后全生育期的冬小麥葉片光譜進(jìn)行處理分析,以識別澇漬脅迫下的冬小麥。由圖3可知,在整個(gè)生育期,正常與澇漬脅迫冬小麥的NDVI和SIPI沒有恒定規(guī)律,因此上述2個(gè)指數(shù)無法準(zhǔn)確識別出澇漬脅迫下的冬小麥;GNDVI和NDWI在拔節(jié)期后的生育期可識別澇漬脅迫后的冬小麥,但上述2個(gè)指數(shù)在脅迫前就具有差異性,在識別澇漬脅迫冬小麥時(shí)具有系統(tǒng)性誤差,從而導(dǎo)致其無法在脅迫初期準(zhǔn)確區(qū)分正常及澇漬脅迫的冬小麥;PRI和SRPI可以在整個(gè)生育期內(nèi)識別出澇漬脅迫下的冬小麥。綜上,PRI和SRPI更適合用來識別澇漬脅迫的冬小麥。
為選取可識別澇漬脅迫的最優(yōu)指數(shù),基于公式(7)計(jì)算對照與澇漬樣本植被指數(shù)之間的歸一化均值距離,并進(jìn)行對比分析,來判斷其識別能力的優(yōu)劣,結(jié)果見表2。
由表2可見,在澇漬脅迫前(2019年3月15日),正常與澇漬脅迫冬小麥SRPI之間的歸一化均值距離是0.11,PRI的是0.28,其值較小,說明正常與漬害脅迫冬小麥的可分性較弱,這也與圖3所示一致。之后,除成熟期5月5日外,正常與脅迫冬小麥SRPI之間的距離均大于PRI,這可能由于成熟期冬小麥葉片開始衰老,萎蔫變黃,其他影響因素較多所致。因此,SRPI區(qū)分正常及澇漬脅迫冬小麥的能力比PRI強(qiáng),且具有較強(qiáng)的敏感性及穩(wěn)定性。
3.3脅迫程度判別分析
不同程度澇漬脅迫下冬小麥葉片光譜差異較小,難以對澇漬脅迫程度進(jìn)行預(yù)測和區(qū)分。因此本節(jié)采用不同脅迫程度冠層光譜數(shù)據(jù),基于前人研究[31-33].和以上結(jié)果,選取以下波段范圍進(jìn)行分析:紅光吸收谷(RW:640~680 nm)、紅邊(RE:670~737 nm)和近紅外區(qū)(NIR:750~900 nm),結(jié)合光譜微分差信息熵方法,對澇漬脅迫下的冬小麥進(jìn)行脅迫程度判別分析。
結(jié)合3.1和3.2的分析,可知冬小麥于拔節(jié)期遭受澇漬脅迫后,抽穗、開花及灌漿期是識別澇漬冬小麥的最佳生育期,拔節(jié)期差異不明顯可能是由于澇漬脅迫對植被的影響具有滯后性,成熟期冬小麥葉片開始衰老,萎蔫變黃,其他影響因素較多。因此對這3個(gè)生育期冬小麥的冠層光譜數(shù)據(jù)進(jìn)行微分處理,獲取對照和不同澇漬脅迫程度下冬小麥一階微分光譜數(shù)據(jù),計(jì)算RW、RE和NIR波段范圍內(nèi)澇漬脅迫與對照組冬小麥光譜微分之差(圖4),并基于公式(8)和公式(9)計(jì)算RW、RE和NIR波段范圍內(nèi)的光譜微分差信息熵,結(jié)果如表3所示。
土壤相對含水量相同時(shí),澇漬脅迫程度隨處理天數(shù)的增加而增大;處理天數(shù)相同時(shí),脅迫程度隨土壤相對含水量的增加而增大。即脅迫程度:ML5d<ML10d<ML15d,SL5d<SL10d<SL15d;ML5d<SL5d,ML10d<SL10d,ML15d<SL15d。在對冬小麥冠層光譜進(jìn)行微分后,背景信息對原始光譜信號的影響被減弱,通過計(jì)算不同澇漬處理下的光譜微分差,可進(jìn)一步減少光譜噪聲的影響,增強(qiáng)不同澇漬脅迫程度間的光譜差異。由圖4可知,紅光吸收谷(RW:640~680 nm),紅邊(RE:670~737 nm)和近紅外(NIR:750~900nm)波段冬小麥光譜微分差已有較明顯差異。引入信息熵來衡量這種差異性,由表3可得,在RW波段范圍內(nèi),澇漬脅迫程度越大,其對應(yīng)的光譜微分差信息熵越大,從ML5d的0.677增大至USL15d的1.023,基本呈現(xiàn)CK<ML5d<ML10d<SL5d<ML15d<SL10d<SL15d的規(guī)律;而在RE和NIR波段范圍內(nèi),光譜微分差信息熵變化沒有任何規(guī)律。因此紅光吸收谷(RW:640~680 nm)波段光譜微分差信息熵可作為識別冬小麥?zhǔn)軡碀n脅迫的指標(biāo),這一波段范圍內(nèi)光譜微分差信息熵越大,表示冬小麥澇漬脅迫程度越大。
4討論
本研究通過設(shè)置冬小麥澇漬脅迫梯度盆栽試驗(yàn),期望找到識別澇漬脅迫及判別脅迫程度的相應(yīng)指標(biāo)和方法。分析冬小麥光譜變化特征,結(jié)合植被指數(shù)、歸一化均值距離和光譜微分差信息熵,識別澇漬脅迫并判別脅迫程度。
分析冬小麥的光譜變化特征,澇漬脅迫冬小麥的光譜響應(yīng)特征在RW、RE、NIR和1650~1800nm波段發(fā)生較明顯變化??赡苡捎谶@幾個(gè)波段對影響光譜響應(yīng)特征的生理參數(shù)敏感,如色素、營養(yǎng)素、干物質(zhì)含量、葉片內(nèi)部結(jié)構(gòu)、葉水勢等。采用表1所示六個(gè)植被指數(shù),對冬小麥拔節(jié)期及之后全生育期的冬小麥葉片光譜進(jìn)行處理分析,得出SRPI是識別澇漬脅迫冬小麥的最優(yōu)植被指數(shù),該植被指數(shù)的優(yōu)異表現(xiàn)可能來自于其對葉黃素循環(huán)色素的環(huán)氧化狀態(tài)和光合效率極敏感[34,35]。在RW波段內(nèi),抽穗、開花和灌漿期的光譜微分差信息熵可判別冬小麥澇漬脅迫程度,脅迫程度越大,光譜微分差信息熵越大。前人研究表明,RW波段對色素含量更為敏感[36,37],而光譜微分差信息熵可減少光譜噪聲及背景的影響。
由于各品種冬小麥對澇漬脅迫的響應(yīng)特征基本一致,且本研究主要目的為找出冬小麥澇漬脅迫識別指數(shù)與脅迫程度判別指標(biāo),因此未對小麥品種間的差異性進(jìn)行討論。
5結(jié)論
本研究設(shè)置澇漬脅迫梯度盆栽試驗(yàn),通過分析冬小麥光譜變化特征,得出SRPI是識別澇漬脅迫的最優(yōu)植被指數(shù),在紅光吸收谷波段范圍內(nèi),可以采用光譜微分差信息熵作為識別冬小麥澇漬脅迫程度的指標(biāo)。
本研究結(jié)果可對澇漬脅迫精確防控提供理論意義和實(shí)踐應(yīng)用價(jià)值,可為其他環(huán)境脅迫監(jiān)測研究提供參考。本研究尚存不足之處,如盆栽試驗(yàn)與田間實(shí)際環(huán)境存在差別、缺少獨(dú)立的試驗(yàn)驗(yàn)證等,后續(xù)研究可以增加盆栽及田間試驗(yàn),結(jié)合交叉驗(yàn)證等,進(jìn)一步驗(yàn)證本研究方法識別澇漬脅迫及判別脅迫程度的可行性。
參考文獻(xiàn):
[1] NGUYEN LTT, OSANAI Y, LAI K, et al. Responses of the soil microbial. community to nitrogen fertilizer regimes and historical. exposure to extreme weather events: Flooding or prolonged-drought[J]. Soil Biology and Biochemistry, 2018, 118: 227-236.
[2]劉美玲,劉湘南,曹仕,等.基于高光譜高頻組份分形特征的水稻鉛脅迫評估[J].遙感學(xué)報(bào),2011, 15(4): 811-830.
LIU M, LIU X, CAO S, et al. Assessment of Pb-induced stress levels on rice based on fractal. characteristic of spectral. high-frequency components[J]. Journal. of Remote Sensing, 2011, 15(4): 811-830.
[3] ZHANG B, LIU X, LIU M, et al. Thermal. infrared imaging of the variability of canopy-air temperature difference distribution for heavy metal. stress levels discrimination in rice[J]. Journal. of Applied Remote Sensing, 2017, 11(2): ID 026036.
[4] LI X, LI L, LIU X. Collaborative inversion heavy metal. stress in rice by using two-dimensional. spectral. feature space based on HJ-1 A HSI and radarsat-2 SAR remote sensing data[J]. International. Journal. of Applied Earth Observation & Geoinformation, 2019, 78: 39-52.
[5]楊興川,羅紅霞,趙文吉,等.植被葉片光譜特征對煙煤病脅迫程度的響應(yīng)模型研究[J].光譜學(xué)與光譜分析,2017, 37(9): 2873-2878.
YANG X, LUO H, ZHAO W, et al. Study on the response model of spectral. signatures of vegetation leaves on the stress level for sooty mould[J]. Spectroscopy and Spectral. Analysis, 2017, 37(9): 2873-2878.
[6] STEFAN T, JAN B, ANGELINA S, et al. Quantitative assessment of disease severity and rating of barley cultivars based on hyperspectral. imaging in a non-invasive, automated phenotyping platfonn[J]. Plant Methods, 2018, 14(1): ID 45.
[7] GUI J, FEI J, WU Z, et al. Grading method of soybean mosaic disease based on hyperspectral. imaging tech- nology[J/OL]. Information Processing in Agriculture,2020. https://doi.org/10.1016/j.inpa.2020.10.006
[8]王慧芳,王紀(jì)華,董瑩瑩,等.冬小麥凍害脅迫高光譜分析與凍害嚴(yán)重度反演[J].光譜學(xué)與光譜分析,2014, 34(5): 1357-1361.
WANG H, WANG J, DONG Y, et al. Monitoring freeze stress levels on winter wheat from hyperspectral. reflectance data using principal. component analysis[J]. Spectroscopy and Spectral. Analysis, 2014, 34(5): 1357- 1361.
[9] LIANG L, XIANG L, QIN S, et al. Diagnosis the dust stress of wheat leaves with hyperspectral. indices and random forest algorithm[C]//IEEE International. Geoscience and Remote Sensing Symposium. Piscataway,New York, USA: IEEE, 2016.
[10] ZHANG F, ZHOU G. Estimation of canopy water content by means of hyperspectral. indices based on drought stress gradient experiments of maize in the north plain China[J]. Remote Sensing, 2015, 7(11): 15203-15223.
[11] MIGUEL L, BELEN D, LOURDES L, et al. Hyperspectral. imaging to evaluate the effect of irrigation water salinity in lettuce[J]. Applied Sciences, 2016, 6(12): ID 412.
[12]楊菲菲,李世娟,劉升平,等.作物環(huán)境脅迫高光譜遙感監(jiān)測研究進(jìn)展[J].中國農(nóng)業(yè)科技導(dǎo)報(bào),2020, 22(4): 85-93.
YANG F, LI S, LIU S, et al. Research progress on hyperspectral. remote sensing monitoring of crop environmental. stress[J]. Journal. of Agricultural. Science and Technology, 2020, 22(4): 85-93.
[13]熊勤學(xué),王曉玲,王有寧.小麥漬害光譜特征分析[J].光譜學(xué)與光譜分析,2016, 36(8): 2558-2561.
XIONG Q, WANG X, WANG Y. Spectral. characteristics analysis of wheat damaged by subsurface waterlogging[J]. Spectroscopy and Spectral. Analysis, 2016, 36 (8): 2558-2561.
[14] XIA J, CAO H, YANG Y, et al. Detection of waterlogging stress based on hyperspectral. images of oilseed rape leaves (Brassica napus L.) [J]. Computers and Electronics in Agriculture, 2019, 159: 59-68.
[15] ZHAO J, PAN F, LI Z, et al. Detection of cotton waterlogging stress based on hyperspectral. images and convolutional. neural. network[J]. International. Journal. of Agricultural. and Biological. Engineering, 2021, 14(2): 167-174.
[16]高小梅,李燕麗,盧碧林,等.基于高光譜和數(shù)字圖像特征指數(shù)的受漬冬小麥SPAD估算[J].應(yīng)用生態(tài)學(xué)報(bào),2021,32(3): 959-966.
GAO X, LI Y, LU B, et al. Estimation of SPAD value in waterlogged winter wheat based on characteristic indices of hyperspectral. and digital. image[J]. Chinese Journal. of Applied Ecology, 2021, 32(3): 959-966.
[17] EMENGINI E, BLACKBURN A, THEOBALD J. Discrimination of plant stress caused by oil pollution and waterlogging using hyperspectral. and thermal. remote sensing[J]. Journal. of Applied Remote Sensing, 2013, 7 (4): 87-97.
[18]郭輝,楊可明,張文文,等.銅鉛離子脅迫下玉米污染程度的光譜識別[J].光譜學(xué)與光譜分析,2018, 38(1): 212-217.
GUO H, YANG K, ZHANG W, et al. Spectra recognition of com pollution degree under copper and lead ion stress[J]. Spectroscopy and Spectral. Analysis, 2018, 38 (1): 212-217.
[19]蔣金豹,STEVEN D M,何汝艷,等.水浸脅迫下植被高光譜遙感識別模型對比分析[J].光譜學(xué)與光譜分析,2013,33(11):3106-3110.
JIANG J, STEVEN D M, HE R, et al. Comparison and analysis of hyperspectral. remote sensing identifiable models for different vegetation under waterlogging stress[J]. Spectroscopy and Spectral. Analysis, 2013, 33 (11):3106-3110.
[20] SCHELL J A. Monitoring vegetation systems in the great plains with ERTS[J]. Nasa Special. Publication,1973, 351: 309.
[21]黃文江,王紀(jì)華,劉良云,等.冬小麥品質(zhì)的影響因素及高光譜遙感監(jiān)測方法[J].遙感技術(shù)與應(yīng)用,2004 (3): 143-148.
HUANG W, WANG J, LIU L, et al. Study on grain quality effecting factors and monitoring methods by using hyperspectral. data in winter wheat[J]. Remote Sensing Technology and Application, 2004(3): 143-148.
[22] MCFEETERS S. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features[J]. International. Journal. of Remote Sensing, 1996, 17(7): 1425-1432.
[23] BARET F, GUYOT G. Potentials and limits of vegetation indices for LAI and APAR assessment[J]. Remote Sensing of Environment, 1991, 35(2-3): 161-173.
[24] GAMON J, PENUELAS J, FIELD C. A narrow-wave- band spectral. index that tracks diurnal. changes in photosynthetic efficiency[J]. Remote Sensing of Environment, 1992,41(1):35-44.
[25]王仁紅,宋曉宇,李振海,等.基于高光譜的冬小麥氮素營養(yǎng)指數(shù)估測[J].農(nóng)業(yè)工程學(xué)報(bào),2014, 30(19): 191-198.
WANG R, SONG X, LI Z, et al. Estimation of winter wheat nitrogen nutrition index using hyperspectral. remote sensing[J]. Transactions of the CSAE, 2014, 30 (19): 191-198.
[26] LU J, LIU F, LUO X. Selection of image features for steganalysis based on the Fisher criterion[J]. Digital. Investigation, 2014, 11(1): 57-66.
[27]王文全.距離度量學(xué)習(xí):算法與應(yīng)用[D].上海:上海交通大學(xué),2018.
WANG W. Distance metric learning: Algorithm and ap- plication[D]. Shanghai: Shanghai Jiao Tong University, 2018.
[28]童慶禧,張兵,鄭蘭芬.高光譜遙感-原理、技術(shù)與應(yīng)用[M].北京:高等教育出版社,2006.
TONG Q, ZHANG B, ZHENG L. Hyperspectral. remote sensing: Principles, techniques, and applications[M]. Beijing: Higher Education Press, 2006.
[29] SHANNON C. The bell system technical. journal[J]. Journal. of the Franklin Institute, 1938, 196(4): 519-520.
[30]郭輝.銅脅迫下玉米葉片污染弱信息提取與反演模型研究[D].北京:中國礦業(yè)大學(xué)(北京),2019.
GUO H. Study on extraction and inversion models of weak information in maize leaf polluted under copper stress[D]. Beijing: China University of Mining & Technology (Beijing), 2019.
[31] RAMOELO A, SKIDMORE A, CHO M, et al. Regional. estimation of savanna grass nitrogen using the red- edge band of the spaceborne RapidEye sensor[J]. International. Journal. of Applied Earth Observations & Geoinformation, 2012,19: 151-162.
[32] RAMOELO A, DZIKITI S, VAN D, et al. Potential. to monitor plant stress using remote sensing tools[J]. Journal. of Arid Environments, 2015, 113: 134-144.
[33] LIU L, HUANG W, PU R, et al. Detection of internal. leaf structure deterioration using a new spectral. ratio index in the near-infrared shoulder region[J]. Journal. of Integrative Agriculture, 2014, 13(4): 760-769.
[34] SUáREZ L, ZARCO-TEJADA P, GONZáLEZ-DU- GO V, et al. Detecting water stress effects on fruit quality in orchards with time-series PRI airborne imagery[J]. Remote Sensing of Environment, 2010, 114 (2): 286-298.
[35] CALDERóN R, NAVAS-CORTéS J, LUCENA C, et al. High-resolution airborne hyperspectral. and thermal. imagery for early detection of verticillium wilt of olive using fluorescence, temperature and narrow-band spectral. indices[J]. Remote Sensing of Environment, 2013,139:231-245.
[36]張瑋,王鑫梅,潘慶梅,等.干旱脅迫下雷竹葉片葉綠素的高光譜響應(yīng)特征及含量估算[J].生態(tài)學(xué)報(bào),2018,38(18):322-329.
ZHANG W, WANG X, PAN Q, et al. Hyperspectral. response characteristics and chlorophyll content estimation of phyllostachysviolascens leaves under drought stress[J]. Acta EcologicaSinica, 2018, 38(18): 322-329.
[37]付彥博,范燕敏,盛建東,等.紫花苜蓿冠層反射光譜與葉片含水率關(guān)系研究[J].光譜學(xué)與光譜分析,2013,33(3): 766-769.
FU Y, FAN Y, SHENG J, et al. Study on relationship between alfalfa canopy spectral. reflectance and leaf water content[J]. Spectroscopy and Spectral. Analysis,2013,33(3): 766-769.
Identification and Level Discrimination of Waterlogging Stress in Winter Wheat Using Hyperspectral. Remote Sensing
YANG Feifei, LIU Shengping, ZHU Yeping, LI Shijuan*
(Agricultural. Information Institute. Chinese Academy of Agricultural. Sciences/Key Laboratory of Agri-information Service Technology. Ministry of Agriculture and Rural. Affairs. Beijing 100081, China)
Abstract: The frequent occurrence of waterlogging stress in winter wheat not only seriously affects regional. food security and ecological. security, but also threatens social. and economic stability and sustainable development. In order to identify the waterlogging stress level of winter wheat, a waterlogging stress gradient pot experiment was set up in this research. Three factors were controlled: waterlogging stress level (control, slight waterlogging, severe waterlogging), stress duration (5 days, 10 days, 15 days) and wheat variety (YF4, JM31, JM38). Leaf and canopy hyperspectral. data were measured by using ASD Field Spec3 and Gaiasky-mini2 imaging spectrometer, respectively. The data were collected from the first waterlogging day of winter wheat. The sunny and windless weather was selected and measured every 7 days until the wheat was mature. Combined with vegetation index, normalized mean distance and spectral. derivative difference entropy, if winter wheat was under waterlogging stress was monitored and stress level was identified. The results showed that: 1) the spectral. response characteristics of winter wheat under waterlogging stress changed significantly in RW, RE, NIR and 1650—1800 nm region, which may be due to the sensitivity of these regions to physiological. parameters affecting the spectral. response characteristics, such as pigment, nutrient, leaf internal. structure, etc; 2) the simple ratio pigment index SRPI was the optimal. vegetation index for identifying the waterlogging stress of winter wheat. The excellent performance of this vegetation index may come from its extreme sensitivity to the epoxidation state and photosynthetic efficiency of the xanthophyll cycle pigment; 3) the red light absorption valley (RW: 640—680 nm) region was the optimal. region for identifying waterlogging stress level. In RW region, waterlogging stress level of winter wheat could be determined by the spectral. derivative difference entropy at heading, flowering and filling stages. The greater the level of waterlogging stress, the greater the spectral. derivative difference entropy. This may be due to the fact that the RW region was more sensitive to pigment content, and the spectral. derivative difference entropy could reduce the effects of spectral. noise and background. This study could provide a new method for monitoring waterlogging stress, and would have a good application prospect in the precise prevention and control of waterlogging stress. There are still shortcomings in this study, such as the difference between the pot experiment and the actual. field environment, the lack of independent experimental. verification, etc. Next research could add pot and field experiments, combine with cross-validation, to further verify the feasibility of this research method.
Key words: hyperspectral. remote sensing; waterlogging stress; vegetation index; spectral. derivative difference entropy; winter wheat
(登陸www.smartag.net.cn免費(fèi)獲取電子版全文)
作者簡介:楊菲菲(1995—),女,博士研究生,研究方向?yàn)檗r(nóng)業(yè)信息技術(shù)。E-mail:yangfeifei61@163.com。
*通訊作者:李世娟(1975—),女,博士,研究員,研究方向?yàn)檗r(nóng)業(yè)信息技術(shù)。電話:010-82109916。E-mail:lishijuan@caas.cn。