胡雅伶,曾玉華
一種求解非線性互補(bǔ)問題的三項(xiàng)共軛梯度算法
胡雅伶1,曾玉華2
(1. 福州大學(xué) 數(shù)學(xué)與計(jì)算機(jī)科學(xué)學(xué)院,福建 福州 350108;2. 湖南第一師范學(xué)院 數(shù)學(xué)與計(jì)算科學(xué)學(xué)院,湖南 長沙 410205)
采用Modulus-based變換將非線性互補(bǔ)問題轉(zhuǎn)化為一個非光滑方程組,提出一種三項(xiàng)非線性共軛梯度法,結(jié)合某種不用函數(shù)值的線搜索技術(shù)求解所得的非光滑方程組,從而得到原問題的解.在適當(dāng)條件下,證明了算法的全局收斂性,數(shù)值實(shí)驗(yàn)結(jié)果表明所提出的算法是有效的.
非線性互補(bǔ)問題;Modulus-based變換;非線性共軛梯度算法
常見的用于求解非線性互補(bǔ)問題(1)的方法是將其轉(zhuǎn)化為一個非線性方程組,通過求解所得的非線性方程組來得到原問題的解.本文考慮采用Modulus-based變換,將非線性互補(bǔ)問題轉(zhuǎn)化為一個非光滑方程組,然后提出一種三項(xiàng)非線性共軛梯度算法求解所得的非光滑方程組,從而得到原問題的解.
令
得到非光滑方程組
為了求解非光滑方程組(3),本文提出了一種三項(xiàng)非線性共軛梯度法,并在一定條件下證明了算法的全局收斂性,數(shù)值實(shí)驗(yàn)說明了本文所提出算法是有效可行的.
式(5)中相關(guān)符號含義見文獻(xiàn)[2-3].
將線搜索(5)與文獻(xiàn)[1]提出的三項(xiàng)共軛梯度算法相結(jié)合,本文提出了一種求解非光滑非線性方程組(3)的三項(xiàng)非線性共軛梯度算法.
其中:
本文所給出的三項(xiàng)非線性共軛梯度算法(Nonlinear three-term conjugate gradient method,NTTCGM)的基本步驟為:
(3)函數(shù)值具有充分下降性,即
(3)證明函數(shù)值具有充分下降性.由引理1可知
或
證明由引理2可知
利用柯西不等式,可得
將式(22)與式(12)相結(jié)合,得到
表1 數(shù)值實(shí)驗(yàn)結(jié)果
由表1可以看出,對于非線性互補(bǔ)問題1~5,本文所給出的三項(xiàng)非線性共軛梯度算法是有效可行的.
本文對一類非線性互補(bǔ)問題提出了一種Modulus-based變換法,這種方法將互補(bǔ)問題轉(zhuǎn)化為一個非光滑非線性方程組,并提出了一種三項(xiàng)非線性共軛梯度算法,結(jié)合不用函數(shù)值的線搜索技術(shù)求解所得的方程組,從而得到原問題的解.證明了所提出算法的全局收斂性,對比實(shí)驗(yàn)結(jié)果表明了本文所給算法的有效性.
[1] Rahpeymaii F,Amini K,Allahviranloo T,et al.A new class of conjugate gradient methods for unconstrained smooth optimization and absolute value equations[J].Calcolo,2019,56(1):1-28
[2] Dong Y D.New step lengths in conjugate gradient methods[J].Computers and Mathematics with Applications,2010,60(3):563-571
[3] Dong Y D.A practical PR+ conjugate gradient method only using gradient[J].Applied Mathematics and Computation, 2012, 219(4):2041-2052
[4] Xu Y,He B S,Yuan X M.A hybrid inexact logarithmic-quadratic proximal method for nonlinear complementarity problems[J].Journal of Mathematical Analysis and Applications,2006,322(1):276-287
[5] Zhou W J,Li D H.A globally convergent BFGS method for nonlinear monotone equations without any merit functions[J].Mathe-matics of Computation,2008,77(264):2231-2240
[6] Cruz W L.A spectral algorithm for large-scale systems of nonlinear monotone equations[J].Numerical Algorithms,2017,76(4):1109-1130
[7] Ou Y G,Li J Y.A new derivative-free SCG-type projection method for nonlinear monotone equations with convex constraints[J].Journal of Applied Mathematics and Computing,2016,56(1):1-22
[8] Zhang L,Zhou W J.Spectral gradient projection method for solving nonlinear monotone equations[J].Journal of Computational and Applied Mathematics,2006,196(2):478-484
[9] Cruz W L,Raydan M.Nonmonotone Spectral Methods for Large-Scale Nonlinear Systems[J].Optimization Methods and Software, 2003,18(5):583-599
A three-term nonlinear conjugate gradient method for nonlinear complementarity problem
HU Yaling1,ZENG Yuhua2
(1. School of Mathematics and Computer Science,F(xiàn)uzhou University,F(xiàn)uzhou 350108,China;2. School of Mathematics and Computational Science,Hunan First Normal University,Changsha 410205,China)
The Modulus-based manipulation is used to transform the nonlinear complementarity problem into non-smooth equations,a three-term nonlinear conjugate gradient method is proposed. Through the three-term nonlinear conjugate gradient method,the solution of the original problem is obtained by solving the non-smooth equations by using a line search technique without function values. Under suitable conditions,the global convergence of the algorithm is proved.The numerical results show that the proposed algorithm is effective.
nonlinear complementarity problem;Modulus-based manipulation;nonlinear conjugate method
O224
A
10.3969/j.issn.1007-9831.2020.11.001
1007-9831(2020)11-0001-06
2020-01-10
國家自然科學(xué)基金面上項(xiàng)目(11571074,11671125);湖南省教育廳科研重點(diǎn)項(xiàng)目(20A097)
胡雅伶(1994-),女,重慶人,在讀碩士研究生,從事非線性規(guī)劃研究.E-mail:863825011@qq.com
曾玉華(1973-),男,湖南永州人,副教授,博士,從事優(yōu)化理論與方法研究.E-mail:dysfzyh@126.com