国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

油菜集排器供種裝置側(cè)向傾斜排種性能試驗(yàn)與分析

2020-12-25 01:22廖宜濤張青松王寶山廖慶喜
關(guān)鍵詞:種量播種機(jī)側(cè)向

王 磊,廖宜濤,張青松,劉 海,王寶山,廖慶喜

·農(nóng)業(yè)裝備工程與機(jī)械化·

油菜集排器供種裝置側(cè)向傾斜排種性能試驗(yàn)與分析

王磊,廖宜濤,張青松,劉海,王寶山,廖慶喜※

(1. 華中農(nóng)業(yè)大學(xué)工學(xué)院,武漢 430070;2. 農(nóng)業(yè)農(nóng)村部長(zhǎng)江中下游農(nóng)業(yè)裝備重點(diǎn)實(shí)驗(yàn)室,武漢 430070)

針對(duì)油菜機(jī)械化播種中地表不平引起集排器供種裝置傾斜,導(dǎo)致排種穩(wěn)定性不足的問題,該研究以油菜集排器供種裝置為對(duì)象,構(gòu)建排種過程中側(cè)向傾斜時(shí)種子與供種裝置型孔間的力學(xué)模型,應(yīng)用EDEM仿真開展供種裝置側(cè)向傾斜角度和供種裝置轉(zhuǎn)速對(duì)排種過程中型孔中的種子種量及種子運(yùn)移軌跡影響的雙因素試驗(yàn)。仿真結(jié)果表明:在0°~5°范圍內(nèi),沿播種機(jī)作業(yè)方向側(cè)向傾斜角度逐漸增大時(shí),充種、攜種過程中傾斜一側(cè)型孔中的種子數(shù)量相對(duì)無傾斜狀態(tài)時(shí)的平均增加量在0~36.55%內(nèi)逐漸增加,另一側(cè)型孔中的種子數(shù)量相對(duì)無傾斜狀態(tài)時(shí)的平均減少量在0~26.68%內(nèi)逐漸增加。利用智能種植機(jī)械測(cè)試平臺(tái)開展供種裝置轉(zhuǎn)速為20~40 r/min時(shí)不同側(cè)向傾斜和擺動(dòng)對(duì)供種裝置排種性能影響的試驗(yàn)。結(jié)果表明:投種口Ⅰ、投種口Ⅱ排種量與仿真試驗(yàn)中投種口Ⅰ、投種口Ⅱ排種量比值的平均誤差為3.86%;隨側(cè)向傾斜、側(cè)向擺動(dòng)、側(cè)向往復(fù)擺動(dòng)角度的增加,總排種速率相對(duì)無傾斜狀態(tài)時(shí)的增加量在0~9.02%內(nèi)逐漸增大;通過提高供種裝置轉(zhuǎn)速,可減少側(cè)向傾斜和擺動(dòng)對(duì)排種性能的影響。研究結(jié)果可為供種裝置的結(jié)構(gòu)改進(jìn)和性能提升提供參考。

農(nóng)業(yè)機(jī)械;作物;試驗(yàn);油菜;集排器;供種裝置;側(cè)向傾斜排種

0 引 言

油菜是重要的油料作物,其種植區(qū)域廣泛[1-4],既適應(yīng)于平原地區(qū)大規(guī)模機(jī)械化種植[5-7],也可實(shí)現(xiàn)丘陵山區(qū)等小而分散田塊的機(jī)械化播種[8-10]。油菜集排器供種裝置作為油菜播種機(jī)的核心部件之一,可與集中分配器裝配為氣送式集排器,實(shí)現(xiàn)油菜高速、寬幅、高效的機(jī)械化種植[11],同時(shí)可安裝投種口作為上排機(jī)械式集排器適于丘陵山區(qū)的油菜播種[12],但播種作業(yè)中地表不平導(dǎo)致播種機(jī)側(cè)向傾斜對(duì)集排器供種裝置中種子運(yùn)移軌跡及排種性能均具有顯著影響[13-16]。

為提高平整地表供種裝置排種穩(wěn)定性,雷小龍等[17-18]應(yīng)用高速攝影、EDEM仿真等技術(shù),設(shè)計(jì)了油菜精量穴播集中排種裝置,開展了供種裝置充種性能優(yōu)化試驗(yàn);邢鶴琛等[19]為解決機(jī)械式油菜排種器種子易破損、堵塞的問題,設(shè)計(jì)了一種應(yīng)用供種裝置且無需清種和護(hù)種裝置的油麥兼用斜錐型孔輪式集排器;李兆東等[20]為提高小麥的充種性能且適應(yīng)高速播種,設(shè)計(jì)了一種具有傾斜拋物線型孔輪式小麥精量供種裝置;周海波等[21-22]針對(duì)槽輪式排種裝置存在充種不均勻的問題,設(shè)計(jì)了一種電磁振動(dòng)勺型槽輪式供種裝置;Yatskul等[23-24]針對(duì)氣送式集排器的排種特性,開展了供種裝置、氣流輸送系統(tǒng)、集中分配器參數(shù)匹配的研究;Mudarisov等[25]為研究供種裝置對(duì)氣送式集排器種子與氣流兩相流的影響機(jī)制,開展了CFD-DEM耦合仿真,分析了供種裝置供種量對(duì)排種穩(wěn)定性的影響。綜上,現(xiàn)有供種裝置的研究主要針對(duì)提高平整地表作業(yè)的充種穩(wěn)定性、作業(yè)效率及降低破損率,而播種機(jī)作業(yè)方向側(cè)向傾斜和擺動(dòng)對(duì)供種裝置排種性能及種子運(yùn)移軌跡影響的研究較少,制約了供種裝置在播種機(jī)作業(yè)方向側(cè)向傾斜和擺動(dòng)工況作業(yè)時(shí)的適應(yīng)性。

本文針對(duì)油菜播種地表不平導(dǎo)致油菜供種裝置側(cè)向傾斜和擺動(dòng),影響排種穩(wěn)定性的問題,應(yīng)用EDEM仿真開展供種裝置側(cè)向傾斜角度和供種裝置轉(zhuǎn)速對(duì)供種裝置充種、攜種、投種過程中型孔中種子數(shù)量及種子運(yùn)移軌跡影響的雙因素試驗(yàn)。利用智能種植機(jī)械測(cè)試平臺(tái)開展播種機(jī)沿作業(yè)方向側(cè)向傾斜、側(cè)向擺動(dòng)、側(cè)向往復(fù)擺動(dòng)對(duì)供種裝置排種性能影響的試驗(yàn),以期為供種裝置的結(jié)構(gòu)改進(jìn)和性能提升提供參考。

1 供種裝置總體結(jié)構(gòu)及排種過程分析

1.1 總體結(jié)構(gòu)

供種裝置與高壓風(fēng)機(jī)、氣流分配管、種箱、送料裝置、集中分配器組成氣送式排種系統(tǒng),與種箱、投種口裝配為上排機(jī)械式集排器,實(shí)現(xiàn)油菜集中排種功能[26-27]。油菜供種裝置主要由播量調(diào)控輪、隔板、型孔1、型孔2、型孔3、型孔4、外切圓弧型孔輪、傳動(dòng)軸、供種口、硅膠刮種板、卸種板、充種室、種量調(diào)節(jié)板、供種殼體、種箱等組成,其主要技術(shù)參數(shù)如表1,主要結(jié)構(gòu)如圖1。供種裝置型孔排布的順序參考方向?yàn)檠夭シN機(jī)作業(yè)方向,側(cè)向傾斜以圖1a的對(duì)稱軸為分界線。

表1 供種裝置主要技術(shù)參數(shù)

1.播量調(diào)控輪 2.隔板 3.左1型孔 4.左2型孔 5.右1型孔 6.右2型孔 7.外切圓弧型孔輪 8.傳動(dòng)軸 9.種箱 10.殼體 11.種量調(diào)節(jié)板 12.充種室 13.卸種板 14.硅膠刮種板 15.投種口 Ⅰ.供種裝置左側(cè) Ⅱ.供種裝置右側(cè) Ⅲ充種區(qū) Ⅳ.攜種區(qū) Ⅴ.投種區(qū)

注:為傾斜側(cè)與另一側(cè)的劃分線。

1.Seed adjusting wheel 2.Baffle plate 3.1 type hole on left side 4.2 type hole on left side 5.1 type hole on right side 6. 2 type hole on right side 7.Circumscribed arc type hole wheel 8.Transmission shaft 9.Seed box 10.Shell 11.Seed regulating board 12.Seed filling room 13.Seed unloading plate 14.Silica gel seed scraping plate 15.Seed dropping port Ⅰ.Left side of seed feeding device Ⅱ.Right side of seed feeding device Ⅲ.Seed filling area Ⅳ.Seed carrying area Ⅴ.Seed dropping area

Note:is the dividing line between the tilt side and the other side.

圖1 供種裝置結(jié)構(gòu)示意圖

Fig.1 Structural diagrams of seed feeding device

1.2 地表不平側(cè)向傾斜時(shí)的工作過程及原理

播種機(jī)沿不平地表作業(yè)時(shí)將發(fā)生側(cè)向傾斜。若播種機(jī)側(cè)向傾斜,氣送式集排器將隨播種機(jī)一并傾斜,種箱中的種子落入供種裝置,充種過程中,油菜種子進(jìn)入充種區(qū),種量調(diào)節(jié)板與型孔輪間形成的充種區(qū)中傾斜側(cè)充種區(qū)種層厚度增加,另一側(cè)充種區(qū)種層厚度降低,導(dǎo)致傾斜側(cè)型孔充中種量增加,另一側(cè)型孔中種量減少;攜種過程中型孔中種量分布規(guī)律與充種過程相同;投種過程中,種子受重力及脫離型孔瞬時(shí)初速度的影響,具有向傾斜側(cè)運(yùn)動(dòng)的速度分量,導(dǎo)致投種區(qū)傾斜側(cè)種量進(jìn)一步增加,另一側(cè)種量進(jìn)一步減少,則進(jìn)入送料裝置傾斜側(cè)腔室的種量相對(duì)平整地表時(shí)增加,進(jìn)入送料裝置另一側(cè)腔室的種量相對(duì)平整地表時(shí)減少,由傾斜側(cè)腔室進(jìn)入傾斜側(cè)集中分配器、另一側(cè)腔室進(jìn)入另一側(cè)集中分配器的種量因供種裝置側(cè)向傾斜具有較大差異,且供種裝置傾斜導(dǎo)致進(jìn)入送料裝置及集中分配器中的種子遷移軌跡改變,傾斜側(cè)的集中分配器管壁通道種量增加,破壞了進(jìn)入集中分配種子流的均勻穩(wěn)定輸送狀態(tài),影響排種穩(wěn)定性及各行排量一致性。若播種機(jī)安裝上排機(jī)械式集排器作業(yè)時(shí),供種裝置投種過程中側(cè)向傾斜分布不均的種量由上排機(jī)械式集排器各投種口排出,影響各行排量一致性。

1.3 充種及攜種過程分析

設(shè)定播種機(jī)作業(yè)方向?yàn)閭?cè)向傾斜的參考方向,根據(jù)供種裝置與播種機(jī)的裝配關(guān)系,當(dāng)供種裝置向左側(cè)向傾斜時(shí),充種及攜種過程中種子群與供種裝置位置關(guān)系如圖2所示。根據(jù)散粒體力學(xué)及堆放特性[28-29],種量調(diào)節(jié)板與外切圓弧型孔輪間的充種區(qū)油菜種子表層應(yīng)與水平面平行,傾斜側(cè)充種區(qū)種層高度大于另一側(cè)充種區(qū)種層高度。

1.供種裝置左側(cè) 2. 供種裝置右側(cè) 3.型孔4 4.型孔3 5.型孔2 6.型孔1 Ⅰ.充種區(qū) Ⅱ.攜種區(qū)

注:為供種裝置側(cè)向傾斜角度,(°)

1.Left side of seed feeding device 2.Right side of seed feeding device 3.Type hole 4 4.Type hole 3 5.Type hole 2 6.Type hole 1 Ⅰ.Seed filling area Ⅱ.Seed carrying area

Note:is the lateral tilt angle of seed feeding device, (°)

圖2 充種及攜種過程示意圖

Fig.2 Schematic diagram of seed filling and seed carrying process

為了探究側(cè)向傾斜狀態(tài)時(shí)充種及攜種過程中型孔內(nèi)種子的運(yùn)動(dòng)特性,對(duì)油菜種子由充種區(qū)至攜種區(qū)的瞬時(shí)受力進(jìn)行分析,如圖3所示。該時(shí)刻外切圓弧型孔內(nèi)種子受力僅為型孔內(nèi)種子群的相互作用力及種子與型孔壁面作用力。以攜種區(qū)型孔內(nèi)最接近充種室種子為受力質(zhì)點(diǎn),建立質(zhì)點(diǎn)經(jīng)充種區(qū)至攜種區(qū)瞬時(shí)受力平衡方程:

由式(1)可得:

(2)

式(1)~(2)中,為質(zhì)點(diǎn)質(zhì)量,kg;1為質(zhì)點(diǎn)與型孔壁面的摩擦因數(shù);2為種子間摩擦因數(shù);為重力加速度,m/s2。

1.種量調(diào)節(jié)板 2.外切圓弧型孔輪

1. Seed regulating board 2. Circumscribed arc type hole wheel

注:為外切型孔輪轉(zhuǎn)動(dòng)中心;O為質(zhì)點(diǎn)中心;、為坐標(biāo)軸;F為慣性離心力,N;F為型孔壁對(duì)質(zhì)點(diǎn)的支撐力,N;F為型孔壁對(duì)質(zhì)點(diǎn)的摩擦力,N;F為型孔內(nèi)剩余種子對(duì)質(zhì)點(diǎn)的壓力,N;F為型孔內(nèi)剩余種子對(duì)質(zhì)點(diǎn)的摩擦力,N;為質(zhì)點(diǎn)重力,N;為型孔輪角速度,rad·s-1;為軸與水平面的夾角,(°);為F與軸的夾角,(°);為F與軸的夾角,(°)。

Note:is rotation center of circumscribed arc type hole wheel;andare the coordinates axis;Fis the inertial centrifugal force, N;Fis the support force of the type hole wall to the particle, N;Fis the friction of the type hole wall to the particle, N;Fis the pressure of the remaining seeds in the type hole to the particle, N;Fis the friction of the remaining seeds in the type hole to the particle, N;is the gravity of particle, N;is the angular velocity of type hole wheel, rad·s-1;is the angle betweenaxis and horizontal plane, (°);is the angle betweenFandaxis, (°);is the angle betweenFandaxis, (°).

圖3 型孔中質(zhì)點(diǎn)受力示意圖

Fig.3 Sketch of forcing on particle in type hole

根據(jù)式(1)~(2)可知,為保證質(zhì)點(diǎn)由充種區(qū)運(yùn)動(dòng)至攜種區(qū)時(shí)不從型孔中拋出,軸方向質(zhì)點(diǎn)重力、型孔內(nèi)剩余種子對(duì)質(zhì)點(diǎn)的作用力及型孔壁對(duì)質(zhì)點(diǎn)作用力的合力應(yīng)大于質(zhì)點(diǎn)的慣性離心力。播種機(jī)側(cè)向傾斜時(shí),傾斜一側(cè)型孔1和型孔2的充種區(qū)種層高度大于無傾斜狀態(tài),軸與水平面的夾角增大,型孔內(nèi)剩余種子對(duì)質(zhì)點(diǎn)摩擦力的夾角、軸與型孔壁對(duì)質(zhì)點(diǎn)的摩擦力的夾角均減小,重力在軸上的分力sin、型孔內(nèi)剩余種子對(duì)質(zhì)點(diǎn)的摩擦力在軸上的分力Fcos、型孔壁對(duì)質(zhì)點(diǎn)的摩擦力在軸上的分力Fcos均增大,型孔壁對(duì)質(zhì)點(diǎn)的支持力在軸上的分力Fsin減小,降低了種子從型孔中拋出的概率;型孔3和型孔4的充種區(qū)種層高度小于無傾斜狀態(tài),軸與水平面的夾角減小,型孔內(nèi)剩余種子對(duì)質(zhì)點(diǎn)摩擦力的夾角、軸與型孔壁對(duì)質(zhì)點(diǎn)的摩擦力的夾角均增大,增加了種子從型孔中拋出的概率。

為保證種子由充種區(qū)運(yùn)動(dòng)至攜種區(qū)質(zhì)點(diǎn)不從型孔中滑落到充種室內(nèi),軸方向力系應(yīng)保持平衡。播種機(jī)側(cè)向傾斜時(shí),型孔1和型孔2的孔壁對(duì)質(zhì)點(diǎn)的摩擦力F、型孔內(nèi)剩余種子對(duì)質(zhì)點(diǎn)的摩擦力F在軸上的分力均增加,降低了種子從型孔中滑落到充種室內(nèi)的概率;型孔3和型孔4的孔壁對(duì)質(zhì)點(diǎn)的摩擦力F、型孔內(nèi)剩余種子對(duì)質(zhì)點(diǎn)的摩擦力F在軸上的分力均減小,增加了種子從型孔中滑落到充種室內(nèi)的概率。

基于對(duì)種子由充種區(qū)至攜種區(qū)運(yùn)動(dòng)過程的受力分析可知,供種裝置向左傾斜時(shí),型孔1、型孔2、型孔3和型孔4在攜種區(qū)單個(gè)型孔中的種量依次減少;供種裝置向右傾斜時(shí),型孔1、型孔2、型孔3和型孔4在攜種區(qū)單個(gè)型孔中的種量依次增加。

小金魚在魚缸里悠游,眾人圍觀贊賞,螃蟹羨慕極了,上躥下跳,企圖跳進(jìn)魚缸,卻不能如愿。紅箭魚在池塘里游弋,引起紅鯉魚、鯽魚、石斑魚和燈科魚們的追捧,螃蟹對(duì)紅箭魚羨慕嫉妒恨,對(duì)紅箭魚的追捧者傲慢鄙視怒。螃蟹氣勢(shì)磅礴地咆哮,我,偉大的螃蟹,不但能夠比你們紅,而且一定會(huì)大紅大紫,無與倫比!看熱鬧的青蛙點(diǎn)點(diǎn)頭,翹起大拇指,給螃蟹點(diǎn)了一個(gè)大大的贊!然后,遙指正在烹魚的紫銅火鍋,恭恭敬敬地對(duì)螃蟹說,您老人家紫銅鍋里走一趟,一定會(huì)大紅大紫!螃蟹躥紅心切,忘乎所以,直奔紫銅火鍋。

1.4 投種過程分析

為了探究沿播種機(jī)作業(yè)方向側(cè)向傾斜對(duì)種子運(yùn)移軌跡的影響,對(duì)油菜種子投種過程中的受力進(jìn)行分析。地表不平、播種機(jī)向左傾斜時(shí),供種裝置投種過程中種子僅受自身重力作用,種子由型孔中投落至接觸供種裝置殼體前的受力如圖4所示,根據(jù)投種過程中種子的運(yùn)動(dòng)學(xué)關(guān)系,建立種子速度方程:

由式(3)可知,投種過程中,隨側(cè)向傾斜角度的增加,種子沿型孔輪切向速度減小,種子沿型孔輪法向速度增大,種子向傾斜側(cè)運(yùn)動(dòng)的趨勢(shì)增加,傾斜角度越大,傾側(cè)投種區(qū)投種過程的種量越多,與由傾斜導(dǎo)致的充種及攜種過程種量的變化規(guī)律一致;隨供種裝置轉(zhuǎn)速的增加,種子沿型孔輪切向速度增加,投種時(shí)間縮短,降低了型孔輪法向速度,則傾斜對(duì)投種區(qū)種子向傾斜側(cè)運(yùn)移作用減弱。

注:O為種子中心;v為種子沿型孔輪的法向速度,m·s-1;v為種子沿型孔輪的切向速度,m·s-1;v為型孔輪線速度,m·s-1;v為種子豎直方向速度,m·s-1。

Note:Ois the seed center;vis the normal velocity of the seed along type hole wheel, m·s-1;vis the tangential velocity of the seed along type hole wheel, m·s-1;vis the linear velocity of the type hole wheel, m·s-1;vis the vertical velocity of the seed, m·s-1.

圖4 投種過程中種子受力圖

Fig.4 Sketch of forcing on seed in seed dropping process

2 側(cè)向傾斜對(duì)供種裝置排種性能的影響

為探究地表不平時(shí)供種裝置沿播種機(jī)作業(yè)方向左右傾斜對(duì)供種裝置排種性能的影響,應(yīng)用EDEM仿真分析沿播種機(jī)作業(yè)方向供種裝置的側(cè)向傾斜角度和供種裝置轉(zhuǎn)速對(duì)充種、攜種、投種過程種子運(yùn)移軌跡的影響,揭示播種機(jī)側(cè)向傾斜對(duì)供種裝置排種性能的影響規(guī)律。

2.1 模型建立

將仿真模型分為外殼與型孔輪2個(gè)模塊,外殼材料為鋁合金,型孔輪材料為ABS工程樹脂,為保證供種裝置不同轉(zhuǎn)速時(shí)充種室內(nèi)油菜種量滿足在無傾斜及最大傾斜狀態(tài)的仿真時(shí)間段內(nèi),種量調(diào)節(jié)板與外切圓弧型孔輪間充種區(qū)種層高度保持穩(wěn)定的要求,設(shè)置油菜種子為60 000粒;為有效統(tǒng)計(jì)在排種過程中各排型孔內(nèi)的種量,設(shè)置型孔輪轉(zhuǎn)動(dòng)時(shí)間為8 s,總仿真時(shí)間為9 s[30]。仿真模型如圖5所示,為便于分析,定義左側(cè)投種口為投種口Ⅰ,右側(cè)投種口為投種口Ⅱ。

1.投種口Ⅰ 2.投種口Ⅱ 3.型孔1 4.型孔2 5.型孔3 6.型孔4

2.2 仿真試驗(yàn)

綜合考慮播種機(jī)作業(yè)效率和排種量需求,設(shè)置供種裝置轉(zhuǎn)速為20~40 r/min;以播種機(jī)作業(yè)方向軸為傾斜軸,軸正向?yàn)橄蜃髠?cè)傾斜方向,基于新疆及長(zhǎng)江中下游地區(qū)地表特征,油菜種植區(qū)耕地坡度為0°~5°,確定側(cè)向傾斜角度為?5°~5°,由于供種裝置結(jié)構(gòu)左右對(duì)稱,左右傾斜對(duì)排種過程種子運(yùn)移軌跡影響規(guī)律相同,因此選取傾斜角度為0°~5°開展供種裝置的側(cè)向傾斜角度和供種裝置轉(zhuǎn)速的雙因素試驗(yàn)。供種裝置轉(zhuǎn)速每間隔5 r/min為一個(gè)水平;傾斜角度每間隔1°為一個(gè)水平,每個(gè)試驗(yàn)水平重復(fù)5次。供種裝置轉(zhuǎn)速為30 r/min時(shí)的排種過程種子運(yùn)移軌跡如圖6所示。分別統(tǒng)計(jì)型孔1、型孔2、型孔3、型孔4充種及攜種過程中的種量,投種口Ⅰ和投種口Ⅱ投種過程中的種量,分別計(jì)算投種口Ⅰ和投種口Ⅱ種量的比值、型孔1與型孔4、型孔1與型孔2種量、型孔3和型孔4的種量比值,結(jié)果如表2所示。

以側(cè)向傾斜角度相對(duì)無傾斜狀態(tài)下的型孔中的種子粒數(shù)變化量(相對(duì)變化量1),側(cè)向傾斜角度相對(duì)無傾斜狀態(tài)下的投種口種量變化量(相對(duì)變化量2)作為排種性能評(píng)價(jià)指標(biāo)。相對(duì)變化量1計(jì)算式為

式中q為側(cè)向傾斜角度時(shí)型孔中的種子粒數(shù);q為無傾斜狀態(tài)下型孔中的種子粒數(shù)。

式中m為側(cè)向傾斜角度時(shí)投種口種量;m為無傾斜狀態(tài)下投種口種量。

2.3 仿真試驗(yàn)結(jié)果分析

由圖6可知,充種過程中,種量調(diào)節(jié)板與型孔輪間形成的充種區(qū)種子具有向傾斜方向運(yùn)移的趨勢(shì),傾斜角度越大,充種區(qū)種子向傾斜側(cè)運(yùn)移的種子數(shù)量越多,傾斜一側(cè)的充種區(qū)種層厚度越大。由于充種區(qū)種層厚度越大,攜種過程中充入型孔的種子越多,則側(cè)向傾斜角度越大,攜種過程中傾斜側(cè)型孔中種量越多,且種子在型孔中具有向傾斜側(cè)運(yùn)移的趨勢(shì),各排型孔中種量分布差異更明顯。投種過程中,種子由型孔排出后受自身重力作用,具有向傾斜側(cè)運(yùn)移的趨勢(shì),傾斜角度越大,種子運(yùn)移距離越遠(yuǎn),傾斜側(cè)排種過程中種量的增加量為充種、攜種、投種過程對(duì)種子運(yùn)移軌跡分布種量影響的共同作用而形成。投種過程中部分種子的運(yùn)移軌跡具有無序性,是由于投種過程中種子接觸到供種裝置外殼,改變了既定的運(yùn)移軌跡。

圖6 不同傾斜角度下排種過程中的種子運(yùn)移軌跡

由表2可知,充種及攜種過程中,供種裝置轉(zhuǎn)速固定時(shí),隨側(cè)向傾斜角度的增加,型孔1、型孔2內(nèi)的種量逐漸增加且均高于無傾斜狀態(tài)時(shí)的型孔充種量,型孔3、型孔4內(nèi)種量逐漸減小且均低于無傾斜狀態(tài)時(shí)的型孔充種量;當(dāng)傾斜角度在0°~5°內(nèi)逐漸增大時(shí),傾斜側(cè)型孔中的種子粒數(shù)相對(duì)無傾斜狀態(tài)時(shí)的平均增加量在0~36.55%內(nèi)逐漸增加,另一側(cè)型孔中的種子粒數(shù)相對(duì)無傾斜狀態(tài)時(shí)的平均減少量在0~26.68%內(nèi)逐漸增加;充種量最高的型孔1與充種量最低的型孔4種量的比值為1.02~2.70。側(cè)向傾斜時(shí),充種過程導(dǎo)致了充種區(qū)種層厚度的變化,攜種過程中傾斜側(cè)與另一側(cè)型孔中的種量差異是由于充種過程中充種量差異而產(chǎn)生,無重復(fù)雙因素分析表明,側(cè)向傾斜對(duì)由供種裝置組成的氣送式集排器及上排集排式集排器的充種及攜種過程中傾斜側(cè)與另一側(cè)型孔內(nèi)的種量具有顯著影響(<0.05)。充種及攜種過程中,側(cè)向傾斜角度一定時(shí),隨供種裝置轉(zhuǎn)速的增加,傾斜側(cè)型孔與另一側(cè)型孔內(nèi)的種量比值、型孔1與型孔4內(nèi)的種量比值總體先減小后趨于穩(wěn)定,表明轉(zhuǎn)速為20~40 r/min時(shí),提高供種裝置轉(zhuǎn)速可降低側(cè)向傾斜對(duì)供種裝置充種及攜種過程種子運(yùn)移的影響。

投種過程中,供種裝置轉(zhuǎn)速一定時(shí),隨側(cè)向傾斜角度的增加,投種口Ⅰ種量相對(duì)無傾斜狀態(tài)時(shí)的平均增加量在0~86.82%內(nèi)逐漸增加,投種口Ⅱ種量相對(duì)無傾斜狀態(tài)時(shí)的平均減少量在0~75.65%內(nèi)逐漸增加,無重復(fù)雙因素分析表明,側(cè)向傾斜對(duì)供種裝置的投種過程中投種口Ⅰ與投種口Ⅱ的種量具有顯著影響(<0.05);側(cè)向傾斜時(shí)投種口種量相對(duì)無傾斜時(shí)的增加量可達(dá)到7.4%。投種過程中,側(cè)向傾斜角度一定,隨轉(zhuǎn)速的增加,投種口Ⅰ與投種口Ⅱ的種量比值明顯減??;傾斜5°、轉(zhuǎn)速為20及40 r/min時(shí),投種口Ⅰ與投種口Ⅱ的種量比值分別為14.4及5.29,表明轉(zhuǎn)速為20~40 r/min時(shí),提高轉(zhuǎn)速可有效降低側(cè)向傾斜對(duì)供種裝置投種過程中種子運(yùn)移的影響。

結(jié)合圖6與表2可知,型孔1、型孔2、型孔3和型孔4的排種量差值隨側(cè)向傾斜角度的增加而逐漸增大;投種口Ⅰ、投種口Ⅱ的種量比值大于型孔內(nèi)種量比值,表明由種子運(yùn)移軌跡引起的投種過程種量變化量高于充種及攜種過程;供種裝置轉(zhuǎn)速為20~40 r/min時(shí),轉(zhuǎn)速越高,側(cè)向傾斜角度對(duì)供種裝置排種過程中種子運(yùn)移規(guī)律的影響越小,可通過增大供種裝置轉(zhuǎn)速提高供種裝置的排種穩(wěn)定性。

表2 供種裝置轉(zhuǎn)速與側(cè)向傾斜對(duì)排種性能的影響

Note: FDRD: Rotating Speed of Seed Feeding Device, DP: Seed Dropping Port, SD: Seed quantity, TD: Type hole. The same as below.

3 側(cè)向傾斜對(duì)供種裝置排種性能影響試驗(yàn)

3.1 試驗(yàn)設(shè)備

為明確供種裝置在地表不平導(dǎo)致側(cè)向傾斜和擺動(dòng)時(shí)的排種效果,并驗(yàn)證仿真試驗(yàn)的合理性,將供種裝置安裝于油菜寬幅精量免耕播種機(jī),應(yīng)用智能種植機(jī)械測(cè)試平臺(tái)開展供種裝置轉(zhuǎn)速為20~40 r/min時(shí)側(cè)向傾斜和擺動(dòng)對(duì)供種裝置排種性能影響的模擬試驗(yàn),擺動(dòng)周期為10 s,試驗(yàn)裝置如圖7所示。該平臺(tái)可實(shí)現(xiàn)播種機(jī)沿作業(yè)方向前后、左右?5°~5°任意組合傾斜、擺動(dòng),并可提供播種機(jī)作業(yè)所需驅(qū)動(dòng)力及風(fēng)機(jī)壓力。

1.油菜寬幅精量免耕播種機(jī) 2.測(cè)試平臺(tái) 3.供種裝置

3.2 試驗(yàn)方案

根據(jù)油菜寬幅精量免耕播種機(jī)實(shí)際田間作業(yè)工況,供種裝置隨地表傾斜狀態(tài)如下:1)地表傾斜角度一定,供種裝置的傾斜方向不變,為連續(xù)側(cè)向傾斜;2)供種裝置僅單側(cè)隨機(jī)變換傾斜角度;3)供種裝置沿地表向左、向右交替變換,傾斜角度隨機(jī)變化。為更好地分析側(cè)向傾斜對(duì)供種裝置排種性能的影響規(guī)律,狀態(tài)1)為側(cè)向傾斜,狀態(tài)2)為側(cè)向擺動(dòng),狀態(tài)3)為側(cè)向往復(fù)擺動(dòng)。

為減少種量變化對(duì)排種性能的影響,種箱中裝入10 kg油菜種子。用尼龍網(wǎng)袋收集60 s內(nèi)送料裝置左右腔室中的種子,以供種裝置60 s內(nèi)的排種量為排種速率,計(jì)算各傾斜狀態(tài)下供種裝置投種口Ⅰ、投種口Ⅱ的排種速率、投種口總排種速率、總排種速率穩(wěn)定性變異系數(shù),試驗(yàn)油菜品種為華油雜62,千粒質(zhì)量為4.67 g。

側(cè)向傾斜試驗(yàn):設(shè)定供種裝置轉(zhuǎn)速為20~40 r/min,每間隔10 r/min為一個(gè)水平,側(cè)向傾斜角度為?5°~5°,每間隔1°為一個(gè)水平,試驗(yàn)重復(fù)5次。

側(cè)向擺動(dòng)試驗(yàn):設(shè)定供種裝置轉(zhuǎn)速為20~40 r/min,每間隔10 r/min為一個(gè)水平,側(cè)向擺動(dòng)角度為?5°~0°、?4°~0°、?3°~0°、?2°~0°、?1°~0°、0°~1°、0°~2°、0°~3°、0°~4°、0°~5°,試驗(yàn)重復(fù)5次。

側(cè)向往復(fù)擺動(dòng)試驗(yàn):設(shè)定供種裝置轉(zhuǎn)速為20~40 r/min,每間隔10 r/min為一個(gè)水平,側(cè)向往復(fù)擺動(dòng)角度為?5°~5°、?4°~4°、?3°~3°、?2°~2°、?1°~1°,試驗(yàn)重復(fù)5次。

3.3 試驗(yàn)結(jié)果分析

通過對(duì)試驗(yàn)與數(shù)據(jù)的分析,可得投種口Ⅰ、投種口Ⅱ的排種速率、總排種速率、總排種速率穩(wěn)定性變異系數(shù)如圖8~10所示。

3.3.1 側(cè)向傾斜時(shí)的排種性能分析

圖8為側(cè)向傾斜時(shí)的排種速率及其變異系數(shù)。由圖8可知,隨側(cè)向傾斜角度的增大,投種口Ⅰ的排種速率逐漸增加,投種口Ⅱ的排種速率逐漸減??;投種口Ⅰ、投種口Ⅱ排種速率差值逐漸增大且差值相對(duì)無傾斜狀態(tài)對(duì)稱分布,表明側(cè)向傾斜對(duì)各投種口的種子運(yùn)移軌跡的影響規(guī)律一致;隨側(cè)向單側(cè)傾斜角度絕對(duì)值的增加,總排種速率相對(duì)無傾斜狀態(tài)時(shí)的增加量在0.76%~8.72%內(nèi)逐漸增加;總排種速率穩(wěn)定性變異系數(shù)與無傾斜時(shí)基本相同,表明側(cè)向傾斜對(duì)排種速率穩(wěn)定性影響較小。側(cè)向傾斜時(shí),投種口Ⅰ、投種口Ⅱ排種量比值與仿真試驗(yàn)中投種口Ⅰ、投種口Ⅱ排種量比值的平均誤差為3.86%,表明仿真試驗(yàn)結(jié)果合理可信。側(cè)向傾斜角度不變時(shí),隨供種裝置轉(zhuǎn)速在20~40 r/min內(nèi)增加,投種口Ⅰ、投種口Ⅱ的排種速率比值的最大值在14.31~5.52內(nèi)逐漸降低,側(cè)向傾斜相對(duì)無傾斜狀態(tài)時(shí)的總排種速率增加量的最大值在8.72%~5.22%逐漸減小,表明提高供種裝置轉(zhuǎn)速,可降低側(cè)向傾斜對(duì)排種性能的影響,投種口Ⅰ、投種口Ⅱ排種量比值與仿真試驗(yàn)投種口Ⅰ、投種口Ⅱ排種量比值變化規(guī)律一致。

注:SR為排種速率,CV為變異系數(shù)。下同。

3.3.2 側(cè)向擺動(dòng)時(shí)的排種性能分析

圖9為側(cè)向擺動(dòng)時(shí)的排種速率及其變異系數(shù)。由圖9可知,隨側(cè)向擺動(dòng)角度的增大,投種口Ⅰ的排種速率逐漸增加,投種口Ⅱ的排種速率逐漸減小。投種口Ⅰ、投種口Ⅱ的排種速率與側(cè)向傾斜時(shí)的排種速率的變化規(guī)律相同,但排種速率的變化量低于側(cè)向傾斜。隨側(cè)向擺動(dòng)角度的增加,總排種速率相對(duì)無傾斜狀態(tài)時(shí)的增加量在0.65%~4.23%內(nèi)逐漸增加;投種口Ⅰ、投種口Ⅱ在側(cè)向擺動(dòng)時(shí)的排種速率變化量相對(duì)無傾斜狀態(tài)時(shí)的增加量可達(dá)55.61%、減少量可達(dá)48.5%,表明側(cè)向擺動(dòng)對(duì)投種口Ⅰ、投種口Ⅱ排種速率具有明顯影響。側(cè)向擺動(dòng)角度不變時(shí),隨供種裝置轉(zhuǎn)速在20~40 r/min內(nèi)增加,投種口Ⅰ、投種口Ⅱ排種速率比值的最大值在3.03~2.24內(nèi)逐漸減低,相對(duì)無傾斜狀態(tài)時(shí)的總排種速率增加量的最大值在4.23%~2.56%內(nèi)逐漸減小,表明提高供種裝置轉(zhuǎn)速,可降低側(cè)向擺動(dòng)對(duì)排種性能的影響。

圖9 不同播種機(jī)轉(zhuǎn)速下側(cè)向擺動(dòng)對(duì)排種速率及其變異系數(shù)的影響

3.3.3 側(cè)向往復(fù)擺動(dòng)時(shí)的排種性能分析

圖10為側(cè)向往復(fù)擺動(dòng)時(shí)的排種速率及其變異系數(shù)。由圖10可知,隨側(cè)向往復(fù)擺動(dòng)角度的增加,轉(zhuǎn)速為20 r/min時(shí),投種口Ⅰ、投種口Ⅱ的排種速率均在37.36~41.12 g/min內(nèi)逐漸增大,轉(zhuǎn)速為30 r/min時(shí),投種口Ⅰ、投種口Ⅱ的排種速率均在68.6~73.8 g/min內(nèi)逐漸增大,轉(zhuǎn)速為40 r/min時(shí),投種口Ⅰ、投種口Ⅱ的排種速率均在98.01~106.86 g/min內(nèi)逐漸增大,總排種速率相對(duì)無傾斜狀態(tài)時(shí)的增加量在1.12%~9.02%內(nèi)逐漸增大,且供種裝置轉(zhuǎn)速的增加對(duì)總排種速率變異系數(shù)相對(duì)無傾斜狀態(tài)時(shí)的增加量影響較小,總排種速率變異系數(shù)小于0.66%,表明側(cè)向往復(fù)擺動(dòng)對(duì)排種速率穩(wěn)定性影響較小,這是由于側(cè)向往復(fù)擺動(dòng)周期中傾斜一側(cè)由種子遷移引起的種量增加量與另一側(cè)種子遷移引起的種量減少量基本相同。側(cè)向往復(fù)擺動(dòng)角度不變時(shí),相對(duì)無傾斜狀態(tài)時(shí)的總排種速率增加量的最大值隨供種裝置轉(zhuǎn)速增加而在9.02%~6.53%內(nèi)逐漸減小,表明提高供種裝置轉(zhuǎn)速,可降低側(cè)向往復(fù)擺動(dòng)對(duì)排種性能的影響。

圖10 不同播種機(jī)轉(zhuǎn)速下側(cè)向往復(fù)擺動(dòng)對(duì)排種速率及其變異系數(shù)的影響

根據(jù)圖8~圖10并結(jié)合供種裝置在側(cè)向傾斜、側(cè)向擺動(dòng)、側(cè)向往復(fù)擺動(dòng)時(shí)的運(yùn)動(dòng)關(guān)系可知,側(cè)向擺動(dòng)、側(cè)向往復(fù)擺動(dòng)運(yùn)動(dòng)均為不同側(cè)向傾斜角度連續(xù)運(yùn)動(dòng)疊加而成,側(cè)向傾斜為供種裝置各側(cè)向運(yùn)動(dòng)的基礎(chǔ),實(shí)際田間作業(yè)中沿播種機(jī)作業(yè)方向側(cè)向傾斜和擺動(dòng)的任意組合對(duì)供種裝置排種性能的影響,均可應(yīng)用不同傾斜角度的連續(xù)側(cè)向傾斜運(yùn)動(dòng)狀態(tài)疊加開展分析。通過提高供種裝置轉(zhuǎn)速,可降低種口Ⅰ、投種口Ⅱ排種速率比值的最大值,減少沿播種機(jī)作業(yè)方向側(cè)向傾斜和擺動(dòng)對(duì)供種裝置排種性能的影響。

4 結(jié) 論

1)應(yīng)用EDEM仿真分析供種裝置的側(cè)向傾斜角度和供種裝置轉(zhuǎn)速對(duì)充種、攜種、投種過程型孔內(nèi)種量及種子運(yùn)移軌跡的影響,仿真試驗(yàn)表明:沿播種機(jī)作業(yè)方向側(cè)向傾斜角度越大,排種過程中種子向傾斜側(cè)運(yùn)移趨勢(shì)越明顯;當(dāng)沿播種機(jī)作業(yè)方向側(cè)向傾斜角度在0°~5°內(nèi)逐漸增大時(shí),充種、攜種過程中傾斜側(cè)型孔種子粒數(shù)相對(duì)無傾斜狀態(tài)時(shí)的平均增加量在0~36.55%內(nèi)逐漸增加,另一側(cè)型孔內(nèi)種子粒數(shù)相對(duì)無傾斜狀態(tài)時(shí)的平均減少量在0~26.68%內(nèi)逐漸增加。

2)利用智能種植機(jī)械測(cè)試平臺(tái)模擬沿播種機(jī)作業(yè)方向側(cè)向傾斜、側(cè)向擺動(dòng)、側(cè)向往復(fù)擺動(dòng)下供種裝置的排種過程,試驗(yàn)結(jié)果表明:隨側(cè)向傾斜角度絕對(duì)值的增加,總排種速率相對(duì)無傾斜狀態(tài)時(shí)的增加量在0.76%~8.72%內(nèi)逐漸增加;隨側(cè)向擺動(dòng)角度絕對(duì)值的增加,投種口Ⅰ、投種口Ⅱ排種速率相對(duì)無傾斜狀態(tài)時(shí)的變化量為0~55.61%,總排種速率相對(duì)無傾斜狀態(tài)時(shí)的增加量在0.65%~4.23%內(nèi)逐漸增加;隨側(cè)向往復(fù)擺動(dòng)角度的增大,總排種速率相對(duì)無傾斜狀態(tài)時(shí)的增加量在1.12%~9.02%內(nèi)逐漸增大;通過提高供種裝置轉(zhuǎn)速,可降低側(cè)向傾斜和擺動(dòng)相對(duì)無傾斜狀態(tài)時(shí)總排種速率的增加量,并降低側(cè)向傾斜和擺動(dòng)時(shí)投種口Ⅰ、投種口Ⅱ排種速率比值的最大值,減少沿播種機(jī)作業(yè)方向側(cè)向傾斜和擺動(dòng)對(duì)供種裝置排種性能的影響。

本研究開展了供種裝置側(cè)向傾斜和擺動(dòng)對(duì)集排器供種裝置排種性能影響的分析,可為供種裝置結(jié)構(gòu)優(yōu)化改進(jìn)、提高集排器供種裝置對(duì)田間復(fù)地表雜作業(yè)工況的適宜性提供參考。后續(xù)將針對(duì)地表不平作業(yè)工況時(shí)的振動(dòng)、振動(dòng)與隨機(jī)傾斜、擺動(dòng)等多種工況條件對(duì)供種裝置排種性能的影響做進(jìn)一步深入研究。

[1] 畢影東,劉明,周廣生,等. 黑龍江省飼料油菜品種篩選與種植技術(shù)研究[J]. 中國(guó)油料作物學(xué)報(bào),2019,41(6):835-841. Bi Yingdong,Liu Ming,Zhou Guangsheng, et a1. Selection and cultivation of forage rapeseed in Heilongjiang Province[J]. Chinese Journal of Oil Crop Sciences, 2019, 41(6): 835-841. (in Chinese with English abstract)

[2] 李兆東,楊文超,張?zhí)?,? 油菜高速精量排種器槽齒組合式吸種盤設(shè)計(jì)與吸附性能試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(1):12-22. Li Zhaodong, Yang Wenchao, Zhang Tian, et a1. Design and suction performance test of sucking-seed plate combined with groove-tooth structure on high speed precision metering device of rapeseed[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(1): 12-22. (in Chinese with English abstract)

[3] 趙必權(quán),丁幼春,蔡曉斌,等. 基于低空無人機(jī)遙感技術(shù)的油菜機(jī)械直播苗期株數(shù)識(shí)別[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(19):115-123. Zhao Biquan, Ding Youchun, Cai Xiaobin, et a1. Seedlings number identification of rape planter based on low altitude unmanned aerial vehicles remote sensing technology[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(19): 115-123. (in Chinese with English abstract)

[4] 段震宇,祁亞琴,邵玉林,等. 北疆麥后復(fù)播飼料油菜的播種量對(duì)其生長(zhǎng)性狀的影響[J]. 西南農(nóng)業(yè)學(xué)報(bào),2016,29(3):516-519. Duan Zhenyu, Qi Yaqin, Shao Yulin, et a1. Effect of planting density on growth properties of rapeseed in wheat /silage rape multiple cropping in northern Xinjiang[J]. Southwest China Journal of Agricultural Sciences, 2016, 29(3): 516-519. (in Chinese with English abstract)

[5] 王磊,廖宜濤,張青松,等. 油麥兼用型精量寬幅免耕播種機(jī)仿形鑿式開溝器研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2019,50(11):63-73. Wang Lei, Liao Yitao, Zhang Qingsong, et al. Design on profiling chisel opener of precision broad width no-tillage planter for rapeseed and wheat[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(11): 63-73. (in Chinese with English abstract)

[6] 包攀峰,吳明亮,官春云,等. 犁旋組合式油菜播種開溝起壟裝置設(shè)計(jì)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(20):23-31. Bao Panfeng, Wu Mingliang, Guan Chunyun, et a1. Design of plow-rotary style ditching and ridging device for rapeseed seeding[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(20): 23-31. (in Chinese with English abstract)

[7] 叢日環(huán),張智,魯劍巍. 長(zhǎng)江流域不同種植區(qū)氣候因子對(duì)冬油菜產(chǎn)量的影響[J]. 中國(guó)油料作物學(xué)報(bào),2019,41(6):894-903.

Cong Rihuan, Zhang Zhi, Lu Jianwei. Climate impacts on yield of winter oilseed rape in different growth regions of the Yangtze River Basin[J]. Chinese Journal of Oil Crop Sciences, 2019, 41(6): 894-903. (in Chinese with English abstract)

[8] 馮軍,石超,Linna Cholidah,等. 不同覆蓋類型下減量施肥對(duì)油菜產(chǎn)量及水肥利用效率影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(15):85-93. Feng Jun, Shi Chao, Linna Cholidah, et a1. Effects of reducing fertilizer application rate under different mulching types on yield and water-fertilizer utilization efficiency of rapeseed[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(15): 85-93. (in Chinese with English abstract)

[9] Li Xiaoyong, Zuo Qingsong, Chang Haibin, et a1. Higher density planting benefits mechanical harvesting of rapeseed in the Yangtze River Basin of China[J]. Field Crops Research, 2018, 218(4): 97-105.

[10] 曹秀英,廖宜濤,廖慶喜,等. 油菜離心式精量集排器枝狀閥式分流裝置設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2015,46(9):77-84. Cao Xiuying, Liao Yitao, Liao Qingxi, et a1. Design and experiment on valve-branch distributor of centrifugal precision metering device for rapeseed[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(9): 77-84. (in Chinese with English abstract)

[11] 雷小龍,廖宜濤,李兆東,等. 油麥兼用型氣送式集排器供種裝置設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(20):10-18. Lei Xiaolong, Liao Yitao, Li Zhaodong, et a1. Design and experiment of seed feeding device in air-assisted centralized metering device for rapeseed and wheat[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(20): 10-18. (in Chinese with English abstract)

[12] 雷小龍,楊文浩,楊龍君,等. 油菜精量穴播集中排種裝置設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2020,51(2): 54-64. Lei Xiaolong, Yang Wenhao, Yang Longjun, et a1. Design and experiment of seed hill-seeding centralized metering device for rapeseed[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(2): 54-64. (in Chinese with English abstract)

[13] 王磊,席日晶,廖宜濤,等. 地表坡度對(duì)油菜寬幅精量免耕播種機(jī)排種性能的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(7): 11-21. Wang Lei, Xi Rijing, Liao Yitao, et al. Effects of land slope on seeding performance of a broad width precision no-tillage planter for rapeseed[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(7): 11-21. (in Chinese with English abstract)

[14] 雷小龍,李蒙良,張黎驊,等. 顆?;仕綒馑褪铰菪M合可調(diào)定量供肥裝置設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(19):9-18. Lei Xiaolong, Li Mengliang, Zhang Lihua, et a1. Design and experiment of horizontal pneumatic screw combination adjustable quantitative fertilizer feeding device for granular fertilizer[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(19): 9-18. (in Chinese with English abstract)

[15] 常金麗,張曉輝. 2BQ-10 型氣流一階集排式排種系統(tǒng)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2011,27(1):136-141. Chang Jinli, Zhang Xiaohui. Design and test of one-step centralized type pneumatic seeding system[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(1): 136-141. (in Chinese with English abstract)

[16] 邢赫,臧英,曹曉曼,等. 水稻氣力式排種器投種軌跡試驗(yàn)與分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(12):23-30. Xing He, Zang Ying, Cao Xiaoman, et al. Experiment and analysis of dropping trajectory on rice pneumatic metering device[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(12): 23-30. (in Chinese with English abstract)

[17] Lei Xiaolong, Liao Yitao, Liao Qingxi, et a1. Simulation of seed motion in seed feeding device with DEM-CFD coupling approach for rapeseed and wheat[J]. Computers & Electronics in Agriculture, 2016, 131(12): 98-109.

[18] 雷小龍,廖宜濤,叢錦玲,等. 油菜小麥兼用氣送式直播機(jī)集排器參數(shù)優(yōu)化與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(12):16-26. Lei Xiaolong, Liao Yitao, Cong Jinling, et al. Parameter optimization and experiment of air-assisted centralized seed-metering device of direct seeding machine for rape and wheat[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(12): 16-26. (in Chinese with English abstract)

[19] 邢鶴琛,廖慶喜,王磊,等. 油麥兼用斜錐型孔輪式集排器設(shè)計(jì)與試驗(yàn)[J]. 華中農(nóng)業(yè)大學(xué)學(xué)報(bào),2019,38(5):143-151.

Xing Hechen, Liao Qingxi, Wang Lei, et al. Design and test of oblique taper hole-type wheel centralized metering device for rapeseed and wheat[J]. Journal of Huazhong Agricultural University, 2019, 38(5): 143-151. (in Chinese with English abstract)

[20] 李兆東,王晴晴,張亞蘭,等. 傾斜拋物線型孔輪式小麥供種裝置設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2018,49(5):116-124. Li Zhaodong, Wang Qingqing, Zhang Yalan, et a1. Design and experiment of Inclined parabolic cell wheel in seed feeding device for wheat[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(5): 116-124. (in Chinese with English abstract)

[21] 周海波,梁秋艷,魏天路,等. 雙級(jí)振動(dòng)精密排種器外槽輪式供種裝置設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2016,47(增刊):57-61,83. Zhou Haibo, Liang Qiuyan, Wei Tianlu, et a1. Design and experiment of quantitative seed supply sevice with fluted roller used for double-vibrating precision seed Meter[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(Supp.): 57-61, 83. (in Chinese with English abstract)

[22] 周海波,馬旭,姚亞利. 水稻秧盤育秧播種技術(shù)與裝備的研究現(xiàn)狀及發(fā)展趨勢(shì)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2008,24(4):301-306. Zhou Haibo, Ma Xu, Yao Yali. Research advances and prospects in the seeding technology and equipment for tray nursing seedlings of rice [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2008, 24(4):301-306. (in Chinese with English abstract)

[23] Yatskul A, Lemiere J P, Cointault F. Influence of the divider head functioning conditions and geometry on the seed's distribution accuracy of the air-seeder[J]. Biosystems Engineering, 2017, 161(9): 120-134.

[24] Yatskul A, Lemiere J P. Establishing the conveying parameters required for the air-seeders[J]. Biosystems Engineering, 2018, 166(2): 1-12.

[25] Mudarisov S, Badretdinov I, Rakhimov Z. Numerical simulation of two-phase “Air-Seed” flow in the distribution system of the grain seeder[J]. Computers & Electronics in Agriculture, 2020, 168(1): 1-7.

[26] Kumar V J F, Durairaj C D. Influence of head geometry on the distributive performance of air-assisted seed drills[J]. Journal of Agricultural Engineering Research, 2000, 75(1): 81-95.

[27] 廖慶喜. 油麥兼用輪式精量集排器:108337960A[P]. 2018-07-31.

[28] 張波屏. 播種機(jī)械設(shè)計(jì)原理[M]. 北京:機(jī)械工業(yè)出版社,1982.

[29] 朱小旭,孫軍杰,劉琨,等.重力條件下散體顆粒堆積特性研究[J]. 水利水電技術(shù),2019,50(9):154-161. Zhu Xiaoxu, Sun Junjie, Liu Kun, et al. Study on packing characteristics of granular particles under gravity[J]. Water Resources and Hydropower Engineering, 2019, 50(9): 154-161. (in Chinese with English abstract)

[30] Shi Yinyan, Sun Xin, Wang Xiaochan. Numerical simulation and field tests of minimum-tillage planter with straw smashing and strip laying based on EDEM software[J]. Computers & Electronics in Agriculture, 2019, 166(10): 1-9.

Experiments and analysis on seeding performance of seed feeding device of rapeseed centralized metering device under lateral tilt

Wang Lei, Liao Yitao, Zhang Qingsong, Liu Hai, Wang Baoshan, Liao Qingxi※

(1. College of Engineering, Huazhong Agricultural University, Wuhan 430070, China; 2. Key Laboratory of Agricultural Equipment in Mid-lower Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China)

In order to solve the problems that the surface unevenness leads to the tilt of the seed feeding device of centralized metering device in rapeseed mechanized seeding, which causes insufficient seeding stability, the seed feeding device of centralized metering device was taken as the research object, the working process of the seed feeding device was analysied and the mechanical models between rapeseed and the type hole of the seed feeding device were built at different lateral tilt angle during the seed filling, seed carrying and seed dropping process. The effects of lateral tilt angle perpendicular to work direction and rotating speed of seed feeding device on seeds quantity in type hole and seeds migration trajectory during seeding process were analyzed by EDEM simulation. The simulation results showed that with the increase of the tilt angle within 0°-5°, the average increase of seed quantity in type hole of the tilt side relative to the no tilt increased within 0-36.55%, and the average decrease of seed quantity in type hole on the other side relative to the no tilt decreased within 0-26.68% during seed filling and seed carrying process. The ratio ranged from 1.02 to 2.70 between the highest seed quantity of type hole 1 and the lowest seed quantity of type hole 4. During the process of seed dropping, when the rotating speed of seed feeding device was fixed, with the increase of lateral tilt angle ranged from 0° to 5°, relative to the no tilt state, the average seed quantity increase of seed dropping port I was 0-86.82% and the average seed quantity decrease of seed dropping port II was 0-75.65%, respectively As the rotating speed of the seed feeding device was 20 r/min and 40 r/min, the ratio of seed quantity of seed dropping port I to that of seed dropping port II was 14.4 and 5.29, respectively. The intelligent test platform of planting machines was used to test the effects of different lateral tilt and swing on seeding performance of the seed feeding device. The experimental results indicated that the average error of seed quantity between the bench test and simulation test was 3.86%, which showed that the simulation results were reasonable and credible. With the increase of the absolute value of the lateral tilt angle, the increase of the total seeding rate was 0.76%-8.72% compared with the total seeding rate without tilt. With the increase of the absolute value of the lateral swing angle, the change of the seeding rate of the seed dropping port I and II was 0-55.61% compared with the no tilt state, and the increase of the total seeding rate was 0.65%-4.23%. With the increase of lateral reciprocating swing, the increase of total seeding rate was 1.12%-9.02% compared with that of no tilt state. The test results showed that lateral tilt, lateral swing and lateral reciprocating swing had significant influence on seeding stability. The effects of lateral tilt and swing on seeding performance could be reduced by increasing the rotating speed of the seed feeding device. The results can provide reference for promoting the structure improvement and performance improvement of the seed feeding device.

agricultural machinery; crops; test; rapeseed; centralized metering device; seed feeding device; lateral tilt seeding

王磊,廖宜濤,張青松,等. 油菜集排器供種裝置側(cè)向傾斜排種性能試驗(yàn)與分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(19):1-10.doi:10.11975/j.issn.1002-6819.2020.19.001 http://www.tcsae.org

Wang Lei, Liao Yitao, Zhang Qingsong, et al. Experiments and analysis on seeding performance of seed feeding device of rapeseed centralized metering device under lateral tilt[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(19): 1-10. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.19.001 http://www.tcsae.org

2020-06-17

2020-07-20

國(guó)家自然科學(xué)基金資助項(xiàng)目(51875229);國(guó)家油菜產(chǎn)業(yè)體系專項(xiàng)資助項(xiàng)目(CARS-12);湖北省丘陵山區(qū)主要農(nóng)作物機(jī)械化生產(chǎn)關(guān)鍵技術(shù)裝備研發(fā)與集成示范項(xiàng)目

王磊,博士生,主要從事油菜播種技術(shù)與裝備研究。Email:wangchong12356@126.com

廖慶喜,教授,博士生導(dǎo)師,主要從事油菜機(jī)械化生產(chǎn)技術(shù)與裝備研究。Email:liaoqx@mail.hzau.edu.cn

10.11975/j.issn.1002-6819.2020.19.001

S223.2+3

A

1002-6819(2020)-19-0001-10

猜你喜歡
種量播種機(jī)側(cè)向
油菜機(jī)械離心式集排器排種量控制系統(tǒng)設(shè)計(jì)與試驗(yàn)
一起飛機(jī)自動(dòng)改平側(cè)向飄擺故障分析
基于PLC技術(shù)的播種機(jī)電氣自動(dòng)化技術(shù)探究
軍航無人機(jī)與民航航班側(cè)向碰撞風(fēng)險(xiǎn)評(píng)估
大蒜播種機(jī)讓蒜農(nóng)挺直了腰
箭舌豌豆不同品種及用種量對(duì)土壤培肥效果初探
介紹四個(gè)優(yōu)良小麥品種
免耕播種機(jī)使用性能的研究
播種機(jī)使用維修及用后保養(yǎng)的注意事項(xiàng)
乘用車側(cè)向安全氣囊性能穩(wěn)定的研究