国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

基于Light Fidelity在智慧環(huán)境的運用

2020-12-14 04:35:10陳虹旭于川岳李曉坤
軟件導(dǎo)刊 2020年9期
關(guān)鍵詞:衰減系數(shù)信道解決方案

陳虹旭 于川岳 李曉坤

摘 ?要: 智慧環(huán)境,作為互聯(lián)網(wǎng)技術(shù)與環(huán)境信息化技術(shù)的結(jié)合體,顯然需要多種多樣的信息與數(shù)據(jù)傳輸手段,將智慧環(huán)境與Light Fidelity技術(shù)相結(jié)合,更利于環(huán)境信息化管理。針對Light Fidelity在智慧環(huán)境運用過程中存在的“陰影效應(yīng)”問題進行探討與研究,提出基于Haar小波的DWT-OFDM的調(diào)制解決方案。同時,分析Polar Code在基于OOK技術(shù)的Light Fight通信運用中存在的優(yōu)勢,建立Light Fidelity在智慧環(huán)境中的通信系統(tǒng)模型,分析在總衰減系數(shù)不同的情況下,Light Fidelity的接收光功率與通信距離的變化關(guān)系,并采用加權(quán)系數(shù)法,優(yōu)化Light Fidelity路徑損耗的計算以及Light Fidelity在智慧環(huán)境中的通信性能。

關(guān)鍵詞: Light Fidelity;智慧環(huán)境;Haar DWT-OFDM;Polar Code

中圖分類號: TN929.12 ???文獻標識碼: A ???DOI:10.3969/j.issn.1003-6970.2020.09.037

【Abstract】: Smart environment, as a combination of Internet technology and environmental information technology, obviously needs various means of information and data transmission. The combination of smart environment and Light Fidelity technology is more conducive to environmental information management. Having discussed and studied the “Shadow Effect” of Light Fidelity in the smart environments applications, and the modulation solution of DWT-OFDM based on Haar wavelet is proposed. Meanwhile, the advantages of Polar Code in Light Fidelity communication application based on OOK technology are analyzed, and having built the model of Light Fidelity in the smart environment of the communication system and analysis in total attenuation coefficient of different cases, the Light Fidelity receiving optical power and the change of the communication distance, and weighted coefficient method is adopted to optimize Light Fidelity path loss calculation and the performance in which Light Fidelity in the smart environment of communication.

【Key words】: Light Fidelity; Smart environment; Haar DWT-OFDM; Polar Code

0 ?引言

隨著IEEE協(xié)會在2014年發(fā)布802.11ax標準將Wireless Fidelity(無線保真技術(shù),Wi-Fi)推向新的發(fā)展浪潮[1-2],但因Wi-Fi以電磁波為信息載體,從而存在一些痛點——易發(fā)生電磁波干擾、頻帶資源有限等等[3]。光保真技術(shù)(Light Fidelity,Li-Fi)利用LED燈作為通信發(fā)射源,在LED燈中安裝微型芯片,采用開關(guān)鍵控(On Off Keying,OOK)技術(shù)控制LED燈明滅閃爍,實現(xiàn)信息傳輸目的[4-6],這意味著Li-Fi不僅建設(shè)成本低,而且在無線 通信領(lǐng)域?qū)浹aWi-Fi等技術(shù)的不足。將Li-Fi與智慧環(huán)境相結(jié)合打造環(huán)境信息化,更利于踐行“綠水青山就是金山銀山”的發(fā)展理念[7]。本文針對Li-Fi在智慧環(huán)境的運用過程中遇到的難點進行研究與探討,并給出相關(guān)可行性方案。

1 ?Haar DWT-OFDM

Li-Fi通信的可見光波長范圍一般為380 nm~ ?780 nm[8]。通常情況下,物體的尺寸遠大于此范圍,衍射效果不明顯,光只能沿直線傳播[9]。當(dāng)物體進入可見光的通信信道時,光線被阻擋,形成所謂的“陰影效應(yīng)”[10-12],即光線被阻擋導(dǎo)致接收器無法接收到光信號。針對上述問題,可以采用多發(fā)射源的方式來解決,如圖1所示。

采用多發(fā)射源就會存在一個問題:將單一信道變成多個子信道(多載波信號),會導(dǎo)致多信號傳輸時各個子信號之間相互重疊,發(fā)生串?dāng)_[13-15]。

正交頻分復(fù)用(OFDM)可提高LED的窄帶調(diào)制帶寬、Li-Fi頻譜效率以及通信速率[16]。然而,由于時域信號的疊加效應(yīng),系統(tǒng)的峰均比過高,雙極性復(fù)數(shù)

5 ?結(jié)語

本文介紹了在基于Li-Fi技術(shù)于智慧環(huán)境的運用過程中,主要存在的痛點及解決方案。為克服“陰影效應(yīng)”問題,提出了一種基于Haar小波的DWT-OFDM調(diào)制技術(shù)的可行性方案,并探討了Polar Code在Li-Fi通信的OOK技術(shù)中的應(yīng)用。同時,建立了Li-Fi在智慧環(huán)境中的通信系統(tǒng)模型,分析了在基于該模型的Li-Fi通信運用中產(chǎn)生的問題,并提出相關(guān)解決方案。通過實驗可以看出,路徑損耗主要受通信距離的影響,用指數(shù)加權(quán)函數(shù)優(yōu)化路徑損耗計算方法從而得到的數(shù)據(jù)比傳統(tǒng)模式下的計算方法要小,并且隨著通信距離的增加,這樣的優(yōu)勢越發(fā)明顯,而接收光功率不僅受通信距離的影響,還受總衰減系數(shù)的影響,這表明Li-Fi受環(huán)境因素制約的同時也受通信距離的限制,因此,Li-Fi更適用于短距離通信,這樣的性質(zhì)使得Li-Fi在智慧環(huán)境中一些要求高速通信、安全性高、通信距離短的領(lǐng)域中得到更好地運用,并在智慧環(huán)境中,可以有效彌補其他無線通信的不足。

參考文獻

[1]Der-Jiunn Deng, Kwang-Cheng Chen, et al. IEEE 802. 11ax: Next generation wireless local area networks[J]. QSHINE, 2014 10th International Conference on, 2014: 77-79.

[2]Li Qishan, Hu Zhiqun, et al. On-line learning algorithm for dynamic sensitivity control in IEEE 802. 11ax network[J]. The Journal of China Universities of Posts and Telecommunications, 2018: 67-68.

[3]Ali Tufail, Mike Fraser, et al. An empirical study to analyze the feasibility of WIFI for VANETs[J]. IEEE Conference on Computer Communications, 2008: 553-554.

[4]Vasu Dev Mukkua, Sebastian Langa, et al. Integration of LiFi Technology in an Industry 4. 0 Learning Factory[J]. Procedia Manufacturing, 2019: 224.

[5]Rashed Islam, M. Rubaiyat Hossain Mondal, et al. Hybrid DCO-OFDM, ACO-OFDM and PAM-DMT for dimmable LiFi[J]. Optik, 2019: 939-940.

[6]Mithun Mukherjee, Jaime Lloret, et al. Leveraging light-fidelity for internet of light: State-of-the-art and research challenges[J]. Internet Technology Letters, 2018: 1-2.

[7]Xue-xuan Xu, Tong-jun Ju, et al. Sediment sources of Yan'gou watershed in the Loess Hilly region China under a certain rainstorm event[J]. SpringerOpen, 2013: 2-3.

[8]Gonzalez-Camejo, Viruela, et al. Dataset to assess the shadow effect of an outdoor microalgae culture[J]. Data in brief, 2019: 1-25.

[9]Januszkiewicz, Lukasz. Analysis of human body shadowing effect on wireless sensor networks operating in the 2. 4 GHz band[J]. Sensors, 2018: 1-2.

[10]Ali, Hatam H., Sunar, et al. Realistic real-time rendering of light shafts using blur filter: considering the effect of shadow maps[J]. Multimedia Tools and Applications, 2018: 1-2.

[11]Hatam H. Ali, Mohd Shahrizal Sunar, et al. Realistic real-time rendering of light shafts using blur filter: considering the effect of shadow maps[J]. Multimedia Tools and Applications, 2018: 1-3.

[12]Park, Cheol Young, et al. Effects of surface treatment of ITO anode layer patterned with shadow mask technology on characteristics of organic light-emitting diodes[J]. Organic Electronics, 2013: 1-2.

[13]Nihat Daldal, et al. Classification of multi-carrier digital modulation signals using NCM clustering based feature- weighting method[J]. Computers in Industry, 2019: 45-46.

[14]Zhang Xing, et al. Blind interference detection and recognition for the multi-carrier signal[J]. The Journal of China Universities of Posts and Telecommunications, 2017: 48-50.

[15]Sasan Mahmoodi. Discontinuity preserving method for noise removal of multi-carrier signals[J]. Signal Processing, 2017: 8-9.

[16]Jia Kejun, et al. Modeling of Multipath Channel and Performance Analysis of MIMO-DCO-OFDM System in Visible Light Communications[J]. Chinese Journal of Electronics, 2019: 630-631.

[17]Haochuan Song, et al. Polar-coded forward error correction for MLC NAND flash memory[J]. Science China Information Sciences, 2018: 1-16.

[18]I. Tal, et al. How to construct polar codes[J]. IEEE Trans. Inf. Theory, 2013: 6562-6582.

[19]T. Koike-Akino, et al. Bit-interleaved polar-coded OFDM for low-latency M2M wireless communications[J]. Proc. IEEE Int. Conf. Commun., 2017: 1-7.

[20]HE Jing, et al. An Efficient Encoder-Subcarrier Mapping Method Combined With Polar Code for Visible Light Communication[J]. IEEE Access, 2019: 69120-69121.

[21]I. Tal, A. Vardy. List decoding of polar codes[J]. Proc. IEEE Int. Symp. Inf. Theory, 2011: 1-5.

[22]L. Liu, et al. High performance and cost effective CO-OFDM system aided by polar code[J]. Opt. Express, 2017: 2763-2770.

[23]Irina Stefan, Hany Elgala, Harald Haas. Study of dimming and LED nonlinearity for ACO-OFDM based VLC systems[J]. IEEE Wireless Communications and Networking Conference, 2012: 990-991.

[24]Farshad Miramirkhani, Murat Uysal. Visible Light Communication Channel Modelingfor Underwater Environments WithBlocking and Shadowing[J]. IEEE Access, 2017: 1084- 1085.

[25]N. Lourenc, et al. Visible light communication system for outdoor applications[J]. Proc. 8th Int. Symp Commun Syst, Netw Digit Signal Process, 2012: 1-6.

[26]T. Komine, M. Nakagawa. “Fundamental analysis for visible-light communication system using LED lights[J]. IEEE Trans Consum Electron, 2004: 100-107.

[27]L. Liu, et al. Performance evaluation of high-speed polar coded CO-OFDM system with nonlinear and linear impairments[J]. IEEE Photon, 2017, Art. no. 7202909.

[28]J. He, et al. An ISFA-combined pilotaided channel estimation scheme in multiband orthogonal frequency division multiplexing ultra-wideband over fiber system[J]. Proc. IEEE Symp. Comput. Commun. (ISCC), 2015: 913-917.

[29]K. Niu, et al. Polar codes: Primary concepts and practical decoding algorithms[J]. IEEE Commun. Mag., 2014: 192-203.

[30]Yan Zhou, et al. Beam spreading, kurtosis parameter and Strehl ratio of partially coherent cosh-Airy beams in atmospheric turbulence[J]. Optik, 2019: 656-657.

猜你喜歡
衰減系數(shù)信道解決方案
解決方案和折中方案
簡潔又輕松的Soundbar環(huán)繞聲解決方案
復(fù)合材料孔隙率的超聲檢測衰減系數(shù)影響因素
無損檢測(2018年11期)2018-11-28 08:27:42
近岸及內(nèi)陸二類水體漫衰減系數(shù)的遙感反演研究進展
對《電磁波衰減系數(shù)特性分析》結(jié)果的猜想
一種壓縮感知電力線信道估計機制
HT250材料超聲探傷中的衰減性探究
中國測試(2016年3期)2016-10-17 08:54:04
基于導(dǎo)頻的OFDM信道估計技術(shù)
4G LTE室內(nèi)覆蓋解決方案探討
一種改進的基于DFT-MMSE的信道估計方法
车致| 筠连县| 云南省| 诸城市| 锦屏县| 湄潭县| 正安县| 淄博市| 广西| 易门县| 齐河县| 苗栗市| 安阳县| 和平县| 百色市| 张北县| 承德市| 五台县| 望江县| 灌南县| 双辽市| 白山市| 阜平县| 长治市| 金平| 伊宁市| 康马县| 泸溪县| 凌源市| 宽甸| 壤塘县| 双城市| 会理县| 灵丘县| 桐柏县| 安岳县| 黄骅市| 鸡西市| 吉安县| 砀山县| 松江区|