郭海琴
(河北省承德市第三中學,河北 承德 067000)
由于數(shù)學教學的本質(zhì)是數(shù)學思維活動的展開,因此數(shù)學課堂上學生的主要活動是通過動腦、動手、動口參與數(shù)學思維活動。教師不僅要鼓勵學生參與,而且要引導學生主動參與,才能使學生主體性得到充分的發(fā)揮和發(fā)展,才能不斷提高數(shù)學活動的開放度。這就要求我們在教學過程中為學生創(chuàng)造良好的主動參與條件,提供充分的參與機會。相對而言,傳統(tǒng)課堂教學較為重視師生之間的聯(lián)系、溝通,而忽略學生之間的相互聯(lián)系,忽視發(fā)揮學生群體在教學中的作用,現(xiàn)代教學論認為,數(shù)學教學過程應是學生主動學習的過程,它不僅是一個認識過程,而且也是一個交流和合作的過程。交流和合作的互利過程,為學生主動學習提供了開放的活動方式,提供了寬松和民主的環(huán)境,更有利于發(fā)展學生的主體性,促進學生智力、情感和社會技能的發(fā)展及創(chuàng)造能力的發(fā)展。
對于在數(shù)學課堂每一位學生來說,他們的頭腦并不是一張白紙--對數(shù)學有著自己的認識和感受。教師不能把他們看著"空的容器",按照自己的意思往這些"空的容器"里"灌輸數(shù)學"這樣常常會進入誤區(qū),因為師生之間在數(shù)學知識、數(shù)學活動經(jīng)驗、興趣愛好、社會生活閱歷等方面存在很大的差異,這些差異使得他們對同一個教學活動的感覺通常是不一樣的。應該怎樣對學生進行教學,教師會說要因材施教.可實際教學中,又用一樣的標準去衡量每一位學生,要求每一位學生都應該掌握哪些知識,要求每一位學生完成同樣難度的作業(yè)等等.每一位學生固有的素質(zhì),學習態(tài)度,學習能力都不一樣,對學習有余力的學生要幫助他們向更高層次邁進.平時布置作業(yè)時,讓優(yōu)生做完書上的習題后,再加上兩三道有難度的題目,讓學生多多思考,提高思含量.對于學習有困難的學生,則要降低學習要求,努力達到基本要求.布置作業(yè)時,讓學困生,盡量完成書上的習題,課后習題不在家做,對于書上個別特別難的題目可以不做練。
教學目標分為三大領域,即認知領域、情感領域和動作技能領域。因此,在備課時要圍繞這些目標選擇教學的策略、方法和媒體,把內(nèi)容進行必要的重組。備課時要依據(jù)教材,但又不拘泥于教材,靈活運用教材。在數(shù)學教學中,要通過師生的共同努力,使學生在知識、能力、技能、心理、思想品德等方面達到預定的目標,以提高學生的綜合素質(zhì)。每一堂課都要有教學重點,而整堂的教學都是圍繞著教學重點來逐步展開的。為了讓學生明確本堂課的重點、難點,教師在上課開始時,可以在黑板的一角將這些內(nèi)容簡短地寫出來,以便引起學生的重視。講授重點內(nèi)容,是整堂課的教學高潮。教師要通過聲音、手勢、板書等的變化或應用模型、投影儀等直觀教具,刺激學生的大腦,使學生能夠興奮起來,適當?shù)剡€可以插入與此類知識有關的笑話,對所學內(nèi)容在大腦中刻下強烈的印象,激發(fā)學生的學習興趣,提高學生對新知識的接受能力。
在新課標和新教材的背景下,教師掌握現(xiàn)代化的多媒體教學手段顯得尤為重要和迫切?,F(xiàn)代化教學手段的顯著特點:一是能有效地增大每一堂課的課容量,從而把原來40 分鐘的內(nèi)容在35 分鐘中就加以解決;二是減輕教師板書的工作量,使教師能有精力講深講透所舉例子,提高講解效率;三是直觀性強,容易激發(fā)起學生的學習興趣,有利于提高學生的學習主動性;四是有利于對整堂課所學內(nèi)容進行回顧和小結(jié)。在課堂教學結(jié)束時,教師引導學生總結(jié)本堂課的內(nèi)容,學習的重點和難點。同時通過投影儀,同步地將內(nèi)容在瞬間躍然“幕”上,使學生進一步理解和掌握本堂課的內(nèi)容。在課堂教學中,對于板演量大的內(nèi)容,如立體幾何中的一些幾何圖形、一些簡單但數(shù)量較多的小問答題、文字量較多應用題,復習課中章節(jié)內(nèi)容的總結(jié)、選擇題的訓練等等都可以借助于投影儀來完成。可能的話,教學可以自編電腦課件,借助電腦來生動形象地展示所教內(nèi)容。如講授正弦曲線、余弦曲線的圖形、棱錐體積公式的推導過程都可以用電腦來演示。每一堂課都有規(guī)定的教學任務和目標要求。所謂“教學有法,但無定法”,教師要能隨著教學內(nèi)容的變化,教學對象的變化,教學設備的變化,靈活應用教學方法。數(shù)學教學的方法很多,對于新授課,我們往往采用講授法來向?qū)W生傳授新知識。而在立體幾何中,我們還時常穿插演示法,來向?qū)W生展示幾何模型,或者驗證幾何結(jié)論。如在教授立體幾何之前,要求學生每人用鉛絲做一個立方體的幾何模型,觀察其各條棱之間的相對位置關系,各條棱與正方體對角線之間、各個側(cè)面的對角線之間所形成的角度。這樣在講授空間兩條直線之間的位置關系時,就可以通過這些幾何模型,直觀地加以說明。
常用的數(shù)學思想方法有:轉(zhuǎn)化的思想,類比歸納與類比聯(lián)想的思想,分類討論的思想,數(shù)形結(jié)合的思想以及配方法、換元法、待定系數(shù)法、反證法等。這些基本思想和方法分散地滲透在中學數(shù)學教材的條章節(jié)之中。在平時的教學中,教師要在傳授基礎知識的同時,有意識地、恰當在講解與滲透基本數(shù)學思想和方法,幫助學生掌握科學的方法,從而達到傳授知識,培養(yǎng)能力的目的,只有這樣。學生才能靈活運用和綜合運用所學的知識。