国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

海南熱區(qū)香蕉地預(yù)破土鑿式深松機(jī)設(shè)計(jì)與試驗(yàn)

2020-12-03 02:16張喜瑞汝紹鋒張秀梅
關(guān)鍵詞:機(jī)具香蕉土壤

張喜瑞,張 銳,汝紹鋒,張秀梅,李 粵,梁 棟

海南熱區(qū)香蕉地預(yù)破土鑿式深松機(jī)設(shè)計(jì)與試驗(yàn)

張喜瑞,張 銳,汝紹鋒※,張秀梅,李 粵,梁 棟

(海南大學(xué)機(jī)電工程學(xué)院,海口 570228)

針對(duì)海南熱帶農(nóng)業(yè)區(qū)香蕉地現(xiàn)有深松機(jī)具匱乏、松土質(zhì)量差等問題,該研究研制了一款預(yù)破土鑿式深松機(jī),首先確定整機(jī)深松方式,并采用三維建模方法建立深松機(jī)整體模型;進(jìn)一步確定了深松機(jī)的整體結(jié)構(gòu)與工作原理,并設(shè)計(jì)闡述了深松機(jī)的關(guān)鍵結(jié)構(gòu)參數(shù)?;谔镩g試驗(yàn),對(duì)深松作業(yè)后的土壤堅(jiān)實(shí)度及土壤容重進(jìn)行測(cè)定,確定了前進(jìn)速度、深松深度、破土刃入土深度為對(duì)土壤堅(jiān)實(shí)度及土壤容重有顯著影響效果的因素。進(jìn)一步以土壤堅(jiān)實(shí)度及土壤容重為響應(yīng)值,基于Box-Behnken設(shè)計(jì)試驗(yàn)得到響應(yīng)值與顯著性參數(shù)的二階回歸模型,并針對(duì)顯著性參數(shù)進(jìn)行尋優(yōu),得到最佳組合:前進(jìn)速度為1.15 m/s、深松深度為350 mm、破土刃入土深度為250 mm。在標(biāo)定的最優(yōu)參數(shù)下進(jìn)行的田間驗(yàn)證試驗(yàn)結(jié)果表明,土壤堅(jiān)實(shí)度為752 Pa,土壤容重為1.48 g/cm3,與預(yù)測(cè)值(734 Pa、1.42 g/cm3)之間的誤差分別為2.4%、4.2%,驗(yàn)證了分析的可信性。最后通過與現(xiàn)有傳統(tǒng)深松機(jī)具開展的對(duì)比試驗(yàn)得出:相較于傳統(tǒng)深松機(jī)具,預(yù)破土鑿式深松機(jī)作業(yè)后,土壤堅(jiān)實(shí)度下降6.39%,土壤容重下降9.76%,進(jìn)一步證明該試驗(yàn)研制樣機(jī)適用于海南熱區(qū)香蕉地深松作業(yè),該機(jī)器的設(shè)計(jì)可為海南熱帶地區(qū)香蕉地深松技術(shù)的推廣與應(yīng)用提供參考。

農(nóng)業(yè)機(jī)械;設(shè)計(jì);試驗(yàn);深松機(jī);香蕉地;鑿式

0 引 言

土壤耕層自上而下分為3層,分別為耕作層、犁底層和黃土層,長(zhǎng)期傳統(tǒng)耕作過程中,耕作層受犁鏵等耕作部件擠壓作用,不斷壓實(shí)形成堅(jiān)硬的犁底層[1-2]。犁底層一般距離地表120~180 mm,厚度約為80~100 mm,且土壤容重較大、總孔隙度較小[3]。犁底層阻礙了耕作層和黃土層之間的水分流動(dòng)和能量傳遞[4]。通過深松技術(shù),可在維持原有狀態(tài)和肥力的前提下,打破犁底層,保持土壤耕作層結(jié)構(gòu)不變,改善農(nóng)作物生長(zhǎng)所需土壤環(huán)境,因此可以大幅度增加深根系作物的產(chǎn)量。2016年,中央一號(hào)文件提出要高度重視農(nóng)機(jī)深松整地工作,并將其列入《政府工作報(bào)告》年度重點(diǎn)工作任務(wù)[5],因此深松機(jī)具及其關(guān)鍵技術(shù)的研究進(jìn)入快速發(fā)展機(jī)遇期。

香蕉作為熱帶地區(qū)廣泛種植的水果之一,在世界水果貿(mào)易市場(chǎng)中占有重要的地位,是中國(guó)農(nóng)業(yè)經(jīng)濟(jì)發(fā)展中不可或缺的一環(huán)[6-8]。目前,為增加香蕉產(chǎn)量、提高香蕉質(zhì)量,香蕉種植多采用“兩年一種”模式[9],短周期的香蕉種植模式與香蕉地傳統(tǒng)的耕作模式相結(jié)合,大大增加了農(nóng)機(jī)具的工作次數(shù),因不合理的農(nóng)事操作,耕作層的泥土被不斷壓實(shí),導(dǎo)致犁底層厚度增大、容重增加且較為封閉,進(jìn)而導(dǎo)致耕作層變淺,影響作物根系深扎,不利于香蕉的生長(zhǎng)和生產(chǎn)[10-11]。目前,由于香蕉種植的區(qū)域性特點(diǎn),香蕉地專用深松機(jī)具的開發(fā)研究較薄弱,傳統(tǒng)的深松機(jī)具作業(yè)普遍存在深松后土壤質(zhì)量差等問題,嚴(yán)重制約深松技術(shù)在熱帶農(nóng)業(yè)區(qū)的推廣應(yīng)用。

在國(guó)內(nèi),鄧衍夫等[12]研發(fā)了一款振動(dòng)式深松整地一體機(jī),該機(jī)可降低深松阻力,但系統(tǒng)能耗高。為解決秸稈隨意丟棄覆蓋田間的耕地問題,凱斯紐荷蘭公司[13]研發(fā)了一款730C聯(lián)合深松整地作業(yè)機(jī),該機(jī)可打破犁底層,增強(qiáng)土壤蓄水保墑能力。李成鑫[14]設(shè)計(jì)了一種深松整地聯(lián)合作業(yè)機(jī),通過加設(shè)大波紋圓盤刀,進(jìn)而達(dá)到減阻效果?;诜律恚瑥垙?qiáng)等[15]研制了一款仿生鉤形深松鏟,相較于傳統(tǒng)深松鏟,該鏟工作時(shí)阻力明顯減小。鄭侃等[16-17]設(shè)計(jì)的反旋深松聯(lián)合作業(yè)整地機(jī),可一次完成深松、旋耕、鎮(zhèn)壓等工序,該機(jī)可提高耕深穩(wěn)定性、植被覆蓋率,且牽引阻力降低了16.21%。在國(guó)外,Jankauskas等[18-19]通過試驗(yàn)研究出一種適用于黏性土壤的深松鏟結(jié)構(gòu)材料;Askari等[20]研發(fā)了一種翼板前傾角為10°的新型帶翼深松鏟,試驗(yàn)表明,安裝該鏟的機(jī)具作業(yè)時(shí)可明顯降低牽引阻力。

綜上,國(guó)內(nèi)現(xiàn)有深松機(jī)具種類繁多,但主要針對(duì)于北方地區(qū)玉米、小麥等作物,且更適用于地塊平整、土壤比阻小的耕地。南方熱區(qū)多為磚紅壤土且土層黏重,現(xiàn)有研究主要集中在甘蔗地,如李柏林等[21]對(duì)甘蔗地鑿式深松犁的角度參數(shù)進(jìn)行了一定優(yōu)化設(shè)計(jì),重點(diǎn)分析了犁柄傾角、入土角、入土隙角等參數(shù)對(duì)深松阻力的影響;韋麗嬌等[22]研制了1SG-230 型甘蔗地深松旋耕聯(lián)合作業(yè)機(jī),能同時(shí)完成深松和旋耕作業(yè)。當(dāng)前針對(duì)香蕉地深松機(jī)具研究較少,且主要致力于降低深松阻力[23]。本文針對(duì)香蕉地現(xiàn)有深松機(jī)具松土質(zhì)量差等問題,研究設(shè)計(jì)一種預(yù)破土鑿式深松機(jī),并對(duì)深松后的土壤理化特性進(jìn)行測(cè)定,以期為熱帶地區(qū)香蕉地深松機(jī)具松土質(zhì)量差提供解決方案。

1 設(shè)計(jì)方案與整體結(jié)構(gòu)

1.1 深松方式的確定

目前,深松機(jī)具按作業(yè)方式主要分為全方位深松和間隔深松。全方位深松作業(yè)后,耕深內(nèi)土壤疏松程度高,但動(dòng)力消耗大,對(duì)土壤擾動(dòng)大,且效率低;而間隔深松作業(yè)后,可在土層中形成“虛實(shí)并存”的耕層構(gòu)造[24]。其中,經(jīng)過擾動(dòng)的疏松土壤稱為“虛部”土層,包含大量的大孔隙,可實(shí)現(xiàn)水分的迅速下滲,形成整個(gè)耕作層的“蓄水庫(kù)”[25];未經(jīng)擾動(dòng)的緊實(shí)土壤稱為“實(shí)部”土層,包含較少的大孔隙,內(nèi)部通氣性較差,從而促進(jìn)了厭氧生物的活動(dòng),同時(shí)可實(shí)現(xiàn)協(xié)調(diào)水分供給的功能[26]。由于香蕉根系具有好氣性、喜濕性和喜溫性,同時(shí)考慮到海南熱區(qū)香蕉地多為磚紅壤土,黏性大且比阻大[27],設(shè)計(jì)深松機(jī)時(shí)應(yīng)盡量保證小機(jī)型、結(jié)構(gòu)簡(jiǎn)單、使用方便。綜上所述,本研究采用小型鑿式間隔深松的方式設(shè)計(jì)海南地區(qū)香蕉地深松機(jī)。

1.2 整機(jī)結(jié)構(gòu)與技術(shù)參數(shù)

所研制的預(yù)破土鑿式深松機(jī)主要由三點(diǎn)懸掛裝置、機(jī)架、深松鏟、破土裝置和限深輪等部件組成。整機(jī)通過三點(diǎn)懸掛裝置掛接于拖拉機(jī)上,由拖拉機(jī)牽引拖動(dòng)完成作業(yè)過程。拖拉機(jī)動(dòng)力輸出軸通過萬(wàn)向節(jié)、變速箱、傳動(dòng)裝置將動(dòng)力傳遞給破土裝置,預(yù)先切開土壤,最后深松鏟在拖拉機(jī)的帶動(dòng)下完成深松作業(yè)。破土裝置設(shè)置在深松鏟前方,由破土刃及連接桿組成,其中破土刃是破土裝置的關(guān)鍵工作部件。整機(jī)主要性能參數(shù)如表1所示。預(yù)破土鑿式深松機(jī)如圖1所示。

表1 預(yù)破土鑿式深松機(jī)主要性能參數(shù)

2 關(guān)鍵部件結(jié)構(gòu)設(shè)計(jì)

2.1 深松松土機(jī)理

當(dāng)前深松鏟主要類型有斜柄式和直柄式,其中斜柄式深松鏟在不斷前進(jìn)工作的過程中,鏟尖將土壤向上向前擠壓,同時(shí)斜置的深松鏟柄不斷抬升土壤,使土壤受拉伸應(yīng)力而破碎,故本次研究設(shè)計(jì)深松機(jī)選用斜柄式深松鏟,其鏟尖和鏟柄共同對(duì)土壤產(chǎn)生作用力,增大土壤破碎范圍,提高了松土系數(shù),進(jìn)一步增強(qiáng)松土效果。

2.2 深松鏟設(shè)計(jì)

2.2.1 深松鏟結(jié)構(gòu)

基于海南農(nóng)業(yè)區(qū)香蕉地工作環(huán)境,選定間隔深松工作方式,選用斜柄式深松鏟,最終設(shè)計(jì)深松鏟如圖2所示。整鏟采用65Mn鋼材料,具有良好的耐磨性,結(jié)構(gòu)簡(jiǎn)單、使用方便、部件質(zhì)量小。

圖2 深松鏟結(jié)構(gòu)

2.2.2 深松鏟受力分析

海南農(nóng)業(yè)區(qū)香蕉地多為磚紅壤,由于年降水量大,土層黏重,機(jī)具工作時(shí)土壤易附著在耕作部件上,導(dǎo)致出現(xiàn)強(qiáng)附著阻力。與一般沙土或壤土相比,由于磚紅壤土黏附于深松鏟上,前進(jìn)過程中會(huì)受切向黏附阻力作用,導(dǎo)致整鏟牽引阻力增大,同時(shí)鏟柄前方土壤容易出現(xiàn)黏附包現(xiàn)象[28],進(jìn)而影響松土質(zhì)量。因此,需分析在磚紅壤土工作條件下深松鏟的受力情況,合理設(shè)計(jì)相應(yīng)參數(shù)。深松機(jī)在香蕉地工作時(shí),深松鏟柄受對(duì)磚紅壤產(chǎn)生剪切作用的反向作用力、深松鏟尖受對(duì)磚紅壤產(chǎn)生切削作用的反向作用力[29-30],同時(shí)深松鏟面因被磚紅壤粘附,機(jī)具前進(jìn)過程受切向黏附阻力,鏟尖和鏟柄整體受力如圖 3所示。

注:F0為鏟尖所受的水平牽引力,N;p為磚紅壤對(duì)鏟尖單位面積黏附力,N·mm-2;S1為鏟尖上端面的面積,mm2;β為深松鏟入土角,(°);f為摩擦系數(shù);N1為鏟尖受到磚紅壤的垂直作用壓力,N;N2為鏟柄刃口受到磚紅壤的垂直作用壓力,N;B1為鏟尖寬度,mm;α為入土隙角,(°);l為深松鏟尖長(zhǎng)度,mm。其中S1=lB1。t為單位寬度土壤的切削阻力,N·mm-1;L為深松鏟柄刃口長(zhǎng)度,mm;d為鏟柄厚度,mm;B2為鏟柄側(cè)面寬度,mm;θ為鏟柄刃口夾角,(°);S2為鏟柄刃口面積,mm2;N3為鏟柄側(cè)面受到磚紅壤的垂直作用壓力,N;S3為鏟柄側(cè)面面積,mm2,F(xiàn)3為鏟柄所受的水平牽引力,N。

深松鏟尖、鏟柄主要受黏附阻力、剪切力、切削力、摩擦阻力作用,如圖3所示,其中鏟尖、鏟柄所受阻力的水平方向的合力分別與0、3大小相等,方向相反,因此可得

根據(jù)幾何關(guān)系,得

式中為深松深度,mm。

一般情況下,土壤的純切削很小,所以入土隙角、鏟尖寬度1和鏟柄刃口長(zhǎng)度對(duì)深松鏟牽引阻力的影響可忽略不計(jì)[31],故深松鏟工作時(shí)所受阻力=1+2。同時(shí)當(dāng)深松深度超出臨界范圍時(shí),疏松范圍會(huì)逐漸減少,反而影響深松效果。香蕉根系主要分布范圍為25~35 cm,故本次設(shè)計(jì)深松鏟深松深度為250~350 mm。磚紅壤土的最小入土角為40°[31],同時(shí)有研究表明,入土角在20°~45°范圍內(nèi)時(shí)耕作阻力最小[32],故選定深松鏟入土角為45°,鏟柄刃口夾角選定為45°,鏟柄厚度選定為30 mm,鏟柄側(cè)面寬度2選定為100 mm[33-34]。

2.3 破土刃設(shè)計(jì)

選取破土刃工作臨界狀態(tài)下的土壤顆粒進(jìn)行受力分析,如圖4所示。

注:FN1為地面對(duì)土壤顆粒的支撐力,N;FN2為破土刃作用于土壤顆粒的正壓力,N;Ff1為土壤顆粒與地面摩擦力,N;Ff2為破土刃與土壤顆粒間摩擦力,N;γ為破土刃與土壤顆粒的夾角,(°);R為破土刃半徑,mm;m為破土刃入土深度,mm;r為土壤顆粒半徑,mm;x、y為坐標(biāo)軸。

深松機(jī)工作時(shí),破土刃沿著軸向前運(yùn)動(dòng),為保證土壤被破碎且不被破土刃沿著軸拖走,由土壤顆粒受力條件可得

當(dāng)土壤顆粒處于將要運(yùn)動(dòng)的臨界狀態(tài)時(shí),此時(shí)靜摩擦力達(dá)到最大值,則

式中1為土壤顆粒與地面間摩擦角,(°);2為土壤顆粒與破土刃間摩擦角,(°)。

將式(6)代入式(5)中,得

由圖4幾何關(guān)系,可得

將式(8)代入式(7)中,得

當(dāng)不變時(shí),為滿足式(9),應(yīng)盡可能小,同時(shí)為保證能提前完成破土過程,以便后續(xù)深松鏟工作降低工作阻力,考慮香蕉根系分布范圍,本次設(shè)計(jì)選取破土刃入土深度為150~250 mm,此時(shí)破土刃半徑越大則越小,考慮到深松機(jī)結(jié)構(gòu)緊湊性和深松鏟總長(zhǎng)度限制,本次設(shè)計(jì)選取破土刃半徑=450 mm。

3 試驗(yàn)與結(jié)果分析

3.1 試驗(yàn)條件

試驗(yàn)在海南大學(xué)儋州香蕉試驗(yàn)田進(jìn)行,試驗(yàn)選用的香蕉樹品種為香蕉1號(hào),其他試驗(yàn)設(shè)備有雷沃歐豹M804拖拉機(jī)(田間實(shí)際作業(yè)速度范圍為1.15~1.69 m/s)、SC900型土壤堅(jiān)實(shí)度測(cè)定儀、JC-ST-3型土壤水分測(cè)定儀、NP-501型電子天平秤、8210型鋼卷尺、米尺、TA-396型秒表、環(huán)刀。

3.2 試驗(yàn)方法

土壤堅(jiān)實(shí)度指土壤抵抗外力壓實(shí)和破碎的能力,土壤堅(jiān)實(shí)度過大影響土壤的蓄水保墑能力[35];土壤容重指一定容積的土壤烘干后質(zhì)量與烘干前體積的比值,又稱土壤密度,是土壤理化特性最重要的一項(xiàng)指標(biāo),與作物產(chǎn)量有負(fù)相關(guān)關(guān)系[36],土壤容重小,表明土壤結(jié)構(gòu)性好,土層疏松,肥力較高;反之,土壤容重大,表明土體緊實(shí),結(jié)構(gòu)性和通透性較差。因此,本試驗(yàn)選取土壤堅(jiān)實(shí)度和土壤容重為試驗(yàn)指標(biāo)。由對(duì)深松鏟尖、鏟柄的受力分析可知深松深度、入土角、鏟柄厚度等參數(shù)為影響深松鏟松土效果的因素,結(jié)合整機(jī)工作環(huán)境,選定機(jī)器前進(jìn)速度、深松深度與破土刃入土深度為試驗(yàn)因素,根據(jù)參數(shù)范圍分別選定各因素水平,如表2所示,共進(jìn)行13次試驗(yàn)。

3.3 試驗(yàn)指標(biāo)的測(cè)試方法

3.3.1 土壤堅(jiān)實(shí)度

借助土壤堅(jiān)實(shí)度測(cè)定儀,將試驗(yàn)地點(diǎn)的土壤表面整平,按照內(nèi)對(duì)角線規(guī)則在檢測(cè)區(qū)域內(nèi)隨機(jī)選取5個(gè)采樣點(diǎn),測(cè)量時(shí)將土壤緊實(shí)度測(cè)定儀的錐形刺頭緩慢的垂直插入土壤中,并從表上讀取硬度指示值。一次測(cè)定完畢后,將指示表歸零,反復(fù)測(cè)量5次,計(jì)算平均值。

3.3.2 土壤容重

采用環(huán)刀法測(cè)定土壤容重,將試驗(yàn)地點(diǎn)的土壤表面整平,取土前對(duì)環(huán)刀質(zhì)量進(jìn)行稱量,記為1,在檢測(cè)區(qū)域內(nèi)隨機(jī)選取5個(gè)采樣點(diǎn),將環(huán)刀邊緣垂直刺入待測(cè)土壤;將待測(cè)土壤樣品從環(huán)刀圓筒中取出,將環(huán)刀兩端的多余土壤切至平齊,將環(huán)刀外覆蓋的土壤擦拭干凈,同時(shí)蓋上蓋子避免水分蒸發(fā);將盛滿土樣的環(huán)刀放入烤箱,加熱烘干4 h,待完全冷卻后稱質(zhì)量,記為2(精確至0.01 g)。則土壤容重為

式中為土壤容重,g/cm3;1為環(huán)刀質(zhì)量,g;2為環(huán)刀和烘干土質(zhì)量,g;為環(huán)刀容積,cm3。

3.4 結(jié)果與分析

試驗(yàn)結(jié)果如表3所示。

表3 試驗(yàn)結(jié)果

3.4.1 回歸模型分析

應(yīng)用Design-expert軟件對(duì)試驗(yàn)結(jié)果進(jìn)行多元回歸擬合分析,可分別得到土壤堅(jiān)實(shí)度、土壤容重回歸模型

回歸方程(11)、(12)的決定系數(shù)分別為12=0.977、22=0.975,表明兩模型可分別用來解釋97.66%、97.45%的試驗(yàn)差異,與實(shí)際數(shù)據(jù)的擬合程度高;校正決定系數(shù)分別為0.969、0.966,表明相關(guān)性較好;變異系數(shù)分別為0.48%、0.85%,表明數(shù)據(jù)離散程度低;綜上表明該模型具有較好的可靠性,可以用于進(jìn)一步分析。經(jīng)Design-Expert軟件處理后,分別得出土壤堅(jiān)實(shí)度和土壤容重方差分析結(jié)果如表4所示。

表4 回歸模型方差分析

注:<0.01 表示該項(xiàng)顯著,<0.001表示該項(xiàng)極顯著。

Note:<0.01 represents significant,<0.001 represents extremely significant.

由表 4可知土壤堅(jiān)實(shí)度和土壤容重的模型顯著性值均小于0.000 1,說明2個(gè)回歸模型都極顯著;在給定的試驗(yàn)因素水平范圍內(nèi),前進(jìn)速度、深松深度、破土刃入土深度對(duì)土壤堅(jiān)實(shí)度和土壤容重影響都極顯著。

3.4.2 參數(shù)優(yōu)化與試驗(yàn)驗(yàn)證

利用Design-Expert軟件的Optimization功能,進(jìn)行優(yōu)化分析,得到香蕉地預(yù)破土鑿式深松機(jī)的最優(yōu)參數(shù)組合為機(jī)器前進(jìn)速度1.15 m/s、深松深度350 mm、破土刃入土深度250 mm,在該最優(yōu)參數(shù)組合下,土壤堅(jiān)實(shí)度為734 Pa,土壤容重為1.42 g/cm3。根據(jù)優(yōu)化分析得到的最優(yōu)參數(shù)組合,進(jìn)行田間驗(yàn)證試驗(yàn),如圖5所示。

開展驗(yàn)證試驗(yàn),為消除隨機(jī)誤差,重復(fù)試驗(yàn)5次,取5次試驗(yàn)結(jié)果的平均值。根據(jù)田間試驗(yàn)驗(yàn)證得出,在給定的優(yōu)化參數(shù)下,土壤堅(jiān)實(shí)度為752 Pa,土壤容重為1.48 g/cm3,與最優(yōu)結(jié)果(734 Pa、1.42 g/cm3)之間的誤差為2.4%、4.2%,表明設(shè)計(jì)合理。

圖5 作業(yè)現(xiàn)場(chǎng)及效果

3.5 對(duì)比試驗(yàn)

為驗(yàn)證預(yù)破土鑿式深松機(jī)相較于傳統(tǒng)深松機(jī)具在松土質(zhì)量上的提高程度,將本次試驗(yàn)設(shè)計(jì)樣機(jī)與原有深松機(jī)具開展對(duì)比試驗(yàn),如圖6所示。兩臺(tái)深松機(jī)的前進(jìn)速度為1.15 m/s,深松深度、破土刃入土深度分別設(shè)置為350、250 mm。取5次試驗(yàn)的平均值,測(cè)得預(yù)破土鑿式深松機(jī)與傳統(tǒng)深松機(jī)工作后,土壤堅(jiān)實(shí)度分別為761、813 Pa;土壤容重分別為1.48、1.64 g/cm3。

綜合所測(cè)量數(shù)據(jù)可得,相較于傳統(tǒng)香蕉地深松機(jī),預(yù)破土鑿式深松機(jī)工作后,土壤堅(jiān)實(shí)度下降6.39%,土壤容重下降9.76%,進(jìn)一步證明本次試驗(yàn)研制樣機(jī)更加適用于海南熱區(qū)香蕉地深松作業(yè)。

圖6 深松試驗(yàn)對(duì)比

4 結(jié) 論

基于間隔深松方式及斜柄式深松機(jī)理研究,對(duì)深松鏟總成、破土刃等關(guān)鍵部件結(jié)構(gòu)進(jìn)行了設(shè)計(jì),對(duì)深松鏟尖及鏟柄受力進(jìn)行了分析。

1)應(yīng)用Box-Behnken試驗(yàn)設(shè)計(jì)確定3個(gè)顯著影響因素最優(yōu)值為機(jī)器前進(jìn)速度1.15 m/s、深松深度350 mm、破土刃入土深度250 mm。最優(yōu)參數(shù)組合下的土壤堅(jiān)實(shí)度為734 Pa,土壤容重為1.42 g/cm3。對(duì)比驗(yàn)證試驗(yàn)結(jié)果表明:在給定的優(yōu)化參數(shù)下,土壤堅(jiān)實(shí)度為752 Pa,土壤容重為1.48 g/cm3,與理論優(yōu)化值之間的誤差為2.4%、4.2%,表明設(shè)計(jì)合理。

2)與傳統(tǒng)深松機(jī)具開展對(duì)比試驗(yàn),結(jié)果表明:相較于傳統(tǒng)深松機(jī)具,預(yù)破土鑿式深松機(jī)作業(yè)后,土壤堅(jiān)實(shí)度下降6.39%,土壤容重下降9.76%,進(jìn)一步證明本次試驗(yàn)研制樣機(jī)適用于海南熱區(qū)香蕉地深松作業(yè)。

[1]朱瑞祥,張軍昌,薛少平,等. 保護(hù)性耕作條件下的深松技術(shù)試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2009,25(6):145-147. Zhu Ruixiang, Zhang Junchang, Xue Shaoping, et al. Experimentation about subsoiling technique for conservation tillage[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(6): 145-147. (in Chinese with English abstract)

[2]何進(jìn),李洪文,高煥文. 中國(guó)北方保護(hù)性耕作條件下深松效應(yīng)與經(jīng)濟(jì)效益研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2006,22(10):62-67. He Jin, Li Hongwen, Gao Huanwen, et al. Subsoiling effect and economic benefit under conservation tillage mode in Northern China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2006, 22(10): 62-67. (in Chinese with English abstract)

[3]Zeng Zhiwei, Chen Ying, Zhang Xirui. Modelling the interaction of a deep tillage tool with heterogeneous soil[J]. Computers and Electronics in Agriculture, 2017, 143: 130-138.

[4]孫亞朋,董向前,宋建農(nóng),等. 振動(dòng)深松機(jī)多組振動(dòng)深松鏟自平衡性能及仿真分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(4):92-99. Sun Yapeng, Dong Qianqian, Song Jiannong, et al. Self-balancing performance and simulation analysis of multi-group vibrating sholvels of oscillatory subsoiler[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(4): 92-99. (in Chinese with English abstract)

[5]中國(guó)農(nóng)業(yè)機(jī)械化信息網(wǎng). 農(nóng)業(yè)部發(fā)布《全國(guó)農(nóng)機(jī)深松整地作業(yè)實(shí)施規(guī)劃(2016-2020年)》[N]. (2017-11-27) [2020-06-08]. http: //www. moa. gov. cn/nybgb/2016/disanqi/ 201711/t20171127_5920218. htm.

[6]Lava K P, Hanna R, Alabi O J, et al. Bananabunchy top virusin sub-Saharan Africa: Investigations on virus distribution and diversity[J]. Virus Research, 2011, 38(4): 171-182.

[7]Reddy N, Yang Y. Biofibers from agricultural byproducts for industrial applications[J]. Trends Biotechnol, 2005, 23(1): 22-27.

[8]中國(guó)科學(xué)報(bào). 香蕉產(chǎn)業(yè):小概念欲創(chuàng)大格局[R]. (2015-06-24) [2020-09-08]. http: //tech. hexun. com/2015-06-24/ 176969253. html.

[9]陳小敏,陳珍莉,陳匯林. 海南島香蕉種植農(nóng)業(yè)氣候區(qū)劃初探[J]. 氣象研究與應(yīng)用,2013,34(2):51-54. Chen Xiaomin, Chen Zhenli, Chen Huilin. Agricultural climate zoning for banana planting in Hainan[J]. Journal of Meteorological Research and Application, 2013, 34(2): 51-54. (in Chinese with English abstract)

[10]高茂盛,薛少平,廖允成,等. 手扶拖拉機(jī)專用深松機(jī)果園試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2010,41(10):35-39. Gao Maosheng, Xue Shaoping, Liao Yuncheng, et al. Experiment of Subsoiling Technique in Apple Orchard[J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(10): 35-39. (in Chinese with English abstract)

[11]張喜瑞,王自強(qiáng),李粵,等. 滑切防纏式香蕉秸稈還田機(jī)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(3):26-34. Zhang Xirui, Wang Ziqiang, Li Yue, et al. Design and experiment of sliding-cutting and anti-twining returning device for banana straw[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(3): 26-34. (in Chinese with English abstract)

[12]鄧衍夫,鄧傳虎,鄧傳林. 振動(dòng)式旋耕、深松一體機(jī)[P]. 201210286100. 6,2012-11-07.

[13]凱斯紐荷蘭公司. 耕整地機(jī)械[R]. (2019-06-24) [2020-09-08]. http://www.nongjitong. com/product/4929.htm.

[14]李成鑫. 深松整地聯(lián)合作業(yè)機(jī)的優(yōu)化設(shè)計(jì)[D]. 楊凌:西北農(nóng)林科技大學(xué),2015. Li Chengxin. Optimization of Combined Machine for Subsoiling and Land Preparation[D]. Yangling: Northwest A&F University, 2015. (in Chinese with English abstract)

[15]張強(qiáng),張璐,劉憲軍,等. 基于有限元法的仿生鉤形深松鏟耕作阻力[J]. 吉林大學(xué)學(xué)報(bào):工學(xué)版,2012,42(增刊1):117-121. Zhang Qiang, Zhang Lu, Liu Xianjun, et al. Soil resistance of the bionic hook-shape subsoiler based on the finite element method[J]. Journal of Jilin University: Engineering and Technology Edition, 2012, 42(Supp.1): 117-121. (in Chinese with English abstract)

[16]鄭侃,何進(jìn),李洪文,等. 反旋深松聯(lián)合作業(yè)耕整機(jī)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2017,48(8):61-71. Zheng Kan, He Jin, Li Hongwen, et al. Design and experiment of combined tillage implement of reverse-rotary and subsoiling[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(8): 61-71. (in Chinese with English abstract)

[17]鄭侃,陳婉芝. 深松機(jī)具研究現(xiàn)狀與展望[J]. 江蘇農(nóng)業(yè)科學(xué),2016,44(8):16-20.

[18]Jankauskas V, Katinasa E, Varnauskas V, et al. Assessment of the reliability of hardfacings for soil rippers[J]. Journal of Friction and Wear, 2015, 36(1): 89-95.

[19]Jankauskas V, Katinas E, Skirkus R, et al. The method of hardening soil rippers by surfacing and technical-economic assessment[J]. Journal of Friction and Wear, 2014, 35(4): 270-277.

[20]Askari M, Shahgholi G, Abbaspour-Gilandeh Y, et al. The effect of new wings on subsoiler performance[J]. American Society of Agricultural and Biological Engineers, 2016, 32(3): 353-362.

[21]李柏林,李明,廖宇蘭,等. 甘蔗地鑿式深松犁角度參數(shù)的優(yōu)化研究[J]. 農(nóng)機(jī)化研究,2017,39(6):170-176. Li Bolin, Li Ming, Liao Yulan, et al. Optimization study on the angle parameter of chisel shaped sub-soiling plough used in sugarcane land[J]. Journal of Agricultural Mechanization Research, 2017,39(6): 170-176. (in Chinese with English abstract)

[22]韋麗嬌,董學(xué)虎,李明,等. 1SG- 230 型甘蔗地深松旋耕聯(lián)合作業(yè)機(jī)的設(shè)計(jì)[J]. 廣東農(nóng)業(yè)科學(xué),2013(13):177-179. Wei Lijiao, Dong Xuehu, Li Ming, et al. Design of 1SG-230 typed sugarcane ripper cum rotary tiller[J]. Guangdong Agricultural Sciences, 2013(13): 177-179. (in Chinese with English abstract)

[23]甘聲豹,張喜瑞,李粵,等. 熱帶香蕉地振動(dòng)深松機(jī)的設(shè)計(jì)與研究[J]. 農(nóng)機(jī)化研究,2015,37(4):83-86. Gan Shengbao, Zhang Xirui, Li Yue, et al. The design and research of deep loosening vibration machine for the tropical banana field[J]. Journal of Agricultural Mechanization Research, 2015, 37(4): 83-86. (in Chinese with English abstract)

[24]李偉. 分層深松對(duì)土壤擾動(dòng)的影響研究[D]. 楊凌:西北農(nóng)林科技大學(xué),2017. Li Wei. Influence Research of Subsoiling in Tandem on Soil Disturbance[D]. Yangling: Northwest A&F University, 2017. (in Chinese with English abstract)

[25]高喜杰. 行間深松土壤虛實(shí)結(jié)構(gòu)影響因素及其耕種效果研究[D]. 楊凌:西北農(nóng)林科技大學(xué),2018. Gao Xijie. Influence Factor of Soil Furrow Loose and Ridge Compations Structure and Tliiage Effect of In-line Subsoiler[D]. Yang ling: Northwest A&F University, 2018. (in Chinese with English abstract)

[26]王亞東. 虛實(shí)并存(間隔)耕作產(chǎn)生發(fā)展及其啟示[D]. 北京:中國(guó)農(nóng)業(yè)大學(xué),2005. Wang Yadong. Origin, Development of Zone Tillage and Its Enlightenment[D]. Beijing: China Agricultural University, 2005. (in Chinese with English abstract)

[27]中國(guó)農(nóng)業(yè)機(jī)械化科學(xué)研究所. 農(nóng)業(yè)機(jī)械設(shè)計(jì)手冊(cè)[M]. 北京:中國(guó)農(nóng)業(yè)科學(xué)技術(shù)出版社,2007.

[28]任泉露. 土壤粘附力學(xué)[M]. 北京:機(jī)械工業(yè)出版社,2011.

[29]蔣建東,高潔,趙穎娣,等. 基于ALE有限元仿真的土壤切削振動(dòng)減阻[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(增刊1):33-38. Jiang Jiandong, Gao Jie, Zhao Yingdi, et al. Numerical simulation on resistance reduction of soil vibratory tillage using ALE equation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(Supp.1): 33-38. (in Chinese with English abstract)

[30]余泳昌,劉文藝,趙迎芳,等. 立柱式深松鏟受力數(shù)學(xué)模型及試驗(yàn)分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2007,23(6):109-113. Yu Yongchang, Liu Wenyi, Zhao Yingfang, et al. Force mathematical model and examination analysis of the column subsoiler[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2007, 23(6): 109-113. (in Chinese with English abstract)

[31]曾德超. 機(jī)械土壤動(dòng)力學(xué)[M]. 北京:北京科學(xué)技術(shù)出版社,1995.

[32]許春林,李連豪,趙大勇. 北方大型聯(lián)合整地機(jī)設(shè)計(jì)與試驗(yàn)[M]. 北京:中國(guó)農(nóng)業(yè)大學(xué)出版社,2014.

[33]仇倩倩,張喜瑞,梁棟,等. 香蕉免耕地深松鏟的設(shè)計(jì)與有限元分析[J]. 農(nóng)機(jī)化研究,2013,35(5):64-67. Qiu Qianqian, Zhang Xirui, Liang Dong, et al. Loosening shovel's design and finite element analysis used in banana no-till land[J]. Journal of Agricultural Mechanization Research, 2013, 35(5): 64-67. (in Chinese with English abstract)

[34]陳坤. 后掠式弧形深松鏟柄的結(jié)構(gòu)優(yōu)化研究[D]. 長(zhǎng)春:吉林農(nóng)業(yè)大學(xué),2012. Chen Kun. Study on Structural Optimization of Extroverted Arc Subsoiler[D]. Changchun: Jilin Agricultural University, 2012. (in Chinese with English abstract)

[35]周華,張文良,楊全軍,等. 滑切型自激振動(dòng)減阻深松裝置設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2019,50(5):71-78. Zhou Hua, Zhang Wenliang, Yang Quanjun, et al. Design and experiment of sliding cutting self-excited vibration drag reduction subsoiling device[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(5): 71-78. (in Chinese with English abstract)

[36]胡立峰. 中國(guó)土壤類型下免耕對(duì)土壤容重的影響[J]. 中國(guó)農(nóng)學(xué)通報(bào),2020,36(12):73-78. Hu Lifeng. No-tillage affects soil bulk density under major soil types in China[J]. Chinese Agricultural Science Bulletin, 2020, 36(12): 73-78. (in Chinese with English abstract)

Design and experiment of pre-soil-breaking chisel-type subsoilers for banana field in hot areas of Hainan Province, China

Zhang Xirui, Zhang Rui, Ru Shaofeng※, Zhang Xiumei, Li Yue, Liang Dong

(,,570228,)

As one of the fruits widely planted in tropical areas, banana occupies an important position in the world fruit trade market. At present, in order to increase banana yield and improve banana quality, banana planting mostly adopts the “one in two years” mode. The operation times of agricultural machinery greatly increased because the short cycle banana planting mode combined with the traditional banana field tillage and rotary tillage mode, which results in the continuous compaction and formation of plough bottom under the soil tillage layer of banana field, then the soil surface roughness reduce. Rainwater is difficult to penetrate into the soil to form surface runoff and take away a large amount of surface soil and organic matter, affecting the growth of banana trees and banana production. Traditional subsoiling machines and tools generally have problems such as high work resistance, high energy consumption and low efficiency. At present, due to the regional characteristics of banana planting, the development and research of special subsoiler for banana field is still relatively weak, which seriously restricts the popularization and application of subsoiling technology in tropical agricultural areas. Firstly, the subsoiling method of the whole machine was determined in this study, and the three-dimensional model of the pre-soil-breaking chisel-type subsoiler was established. Based on the research of interval subsoiling method and inclined handle subsoiling mechanism, the structure of subsoiling shovel assembly, soil breaking disc and other key components were designed, and the force of subsoiling shovel tip and shaft was analyzed to ensure the working stability. At the same time, field experiments were carried out to determine the soil firmness and soil bulk density after subsoiling, and the factors that had significant effect on soil firmness and soil bulk density were determined, that was, working speed, subsoiling depth and penetration depth of soil breaking disc. Moreover, the second-order regression model of response value and significant parameters were obtained by taking soil firmness and soil bulk density as response values, and the optimal parameter combination was obtained by optimizing the significant parameters. The Box-Behnken test design was used to determine the optimal values of three significant factors: the working speed of the machine was 1.15 m/s, the subsoiling depth was 350 mm, and the penetration depth of the disc was 250 mm. The soil firmness was 734 Pa, the soil bulk density was 1.42 g/cm3under the given optimized parameters. Furthermore, the verified test was carried out and the results showed that the error of soil firmness and the soil bulk density between the test value and the theoretical value were 2.4% and 4.2% respectively. Finally, the comparative results between the existing traditional subsoiling machines and pre-soil-breaking chisel-type subsoiler showed that the soil firmness of the developed pre breaking chisel subsoiler reduced by 6.39% and the soil bulk density decreased by 9.76%. which indicated that the pre-soil-breaking chisel-type subsoiler was more suitable for the subsoiling operation of banana field in Hainan hot area. The design of the machine can promote of subsoiling technology in tropical area of Hainan and supply references for application.

agricultural machinery; design; experiment; subsoiler; banana field; chisel-type

張喜瑞,張銳,汝紹鋒,等. 海南熱區(qū)香蕉地預(yù)破土鑿式深松機(jī)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(18):49-55.doi:10.11975/j.issn.1002-6819.2020.18.007 http://www.tcsae.org

Zhang Xirui, Zhang Rui, Ru Shaofeng, et al. Design and experiment of pre-soil-breaking chisel-type subsoilers for banana field in hot areas of Hainan Province, China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(18): 49-55. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.18.007 http://www.tcsae.org

2020-07-01

2020-09-08

國(guó)家自然科學(xué)基金(51865007)、海南省自然科學(xué)基金高層次人才項(xiàng)目(2019RC014)

張喜瑞,教授,博士生導(dǎo)師,主要從事熱帶智能農(nóng)業(yè)機(jī)械研究。Email:zhangxirui_999@sina.com

汝紹鋒,副教授,主要從事熱帶智能農(nóng)業(yè)機(jī)械研究。Email:ru.shaofeng@163.com

10.11975/j.issn.1002-6819.2020.18.007

S220.1

A

1002-6819(2020)-18-0049-07

猜你喜歡
機(jī)具香蕉土壤
鄭州航空區(qū)炎黃不銹鋼蜂機(jī)具部
土壤
鄭州航空區(qū)炎黃不銹鋼蜂機(jī)具部
打造新亮點(diǎn)!山西將這個(gè)產(chǎn)業(yè)的7類機(jī)具全部納入補(bǔ)貼!
靈感的土壤
為什么土壤中的微生物豐富?
芻議電力工程建設(shè)過程中的機(jī)具管理
識(shí)破那些優(yōu)美“擺拍”——鏟除“四風(fēng)”的土壤
快手香蕉餅
瓶里有香蕉
南京市| 平果县| 宝丰县| 遂昌县| 阜平县| 元阳县| 和林格尔县| 蓝田县| 佛教| 辽阳县| 齐河县| 元阳县| 金阳县| 白玉县| 信宜市| 汝州市| 怀集县| 芜湖市| 台中市| 开江县| 濮阳市| 同江市| 酒泉市| 遂宁市| 睢宁县| 灵台县| 黄梅县| 冀州市| 丹寨县| 桐庐县| 宜川县| 故城县| 山东省| 资中县| 深水埗区| 潞城市| 靖安县| 雷州市| 无棣县| 邵武市| 松阳县|