龔新懷,李明春,辛梅華,趙瑨云,趙曉杰,呂 橄
茶生物質(zhì)填充高分子復(fù)合材料的研究進(jìn)展
龔新懷1,2,李明春2※,辛梅華2,趙瑨云1,趙曉杰1,呂 橄1
(1. 武夷學(xué)院生態(tài)與資源工程學(xué)院,福建省竹生態(tài)產(chǎn)業(yè)協(xié)同創(chuàng)新中心,武夷山 354300;2. 華僑大學(xué)材料科學(xué)與工程學(xué)院,環(huán)境友好功能材料教育部工程研究中心,廈門 361021)
茶葉在種植、生產(chǎn)、加工及消費(fèi)環(huán)節(jié)中會(huì)產(chǎn)生大量的茶剩余物,茶生物質(zhì)呈中空多孔隙結(jié)構(gòu),富含纖維素、木質(zhì)素、半纖維素及茶多酚、茶多糖等多種活性成分,在農(nóng)牧業(yè)、醫(yī)療健康、食品、環(huán)境治理及復(fù)合板材領(lǐng)域具有廣泛應(yīng)用前景,尤其是茶生物質(zhì)/高分子復(fù)合材料的研究與應(yīng)用得到快速和廣泛發(fā)展。該文首先概述了茶生物質(zhì)資源特點(diǎn)及其化學(xué)組成,然后綜述了茶生物質(zhì)填充不同高分子復(fù)合材料的研究進(jìn)展,并介紹了茶生物質(zhì)填充高分子復(fù)合材料在刨花板、仿木材料、吸聲材料、制漿造紙、環(huán)境治理及功能食品中的應(yīng)用研究現(xiàn)狀。并指出今后須加強(qiáng):1)茶生物質(zhì)中多種組分的綜合化、集成化利用研究;2)茶生物質(zhì)木塑復(fù)合材料在阻燃、電學(xué)、熱學(xué)及抗菌除臭等性能研究;3)茶生物質(zhì)填充高分子復(fù)合材料在旅游、養(yǎng)生、裝修等領(lǐng)域的應(yīng)用基礎(chǔ)研究;4)茶生物質(zhì)生化成分變化對(duì)茶食品口味、外觀及保健功能的影響機(jī)制研究。
復(fù)合材料;茶;生物質(zhì);環(huán)境保護(hù);資源循環(huán)利用;茶生物質(zhì)填充高分子復(fù)合材料
茶飲是目前世界上除水之外最流行的飲品之一,目前全球每年茶葉消耗量近600萬(wàn)t[1]。中國(guó)是世界上茶葉種植、生產(chǎn)與消費(fèi)第一大國(guó)。2019年中國(guó)茶園面積達(dá)290萬(wàn)hm2,占全球60%,茶葉產(chǎn)量260萬(wàn)余t,近全球茶葉產(chǎn)量的50%,皆占世界第一位[2]。茶葉在種植、生產(chǎn)、加工及消費(fèi)環(huán)節(jié)中會(huì)產(chǎn)生大量的如茶樹修剪枝葉、茶梗茶末、茶下腳料、低檔茶葉、滯銷茶等各種形式的茶產(chǎn)業(yè)剩余物,中國(guó)每年可產(chǎn)生500萬(wàn)t以上茶剩余物,是中國(guó)農(nóng)林產(chǎn)品余料的重要組成部分[2]。廢棄茶生物質(zhì)大量堆積,造成環(huán)境的固廢污染和資源的極大浪費(fèi)。開展茶生物質(zhì)資源化利用研究,對(duì)生態(tài)環(huán)境、茶產(chǎn)業(yè)發(fā)展及促進(jìn)茶農(nóng)增收具有積極意義。
目前茶生物質(zhì)主要用于提取活性成分[3]、植物生長(zhǎng)肥料[4]、動(dòng)物飼料[5]及環(huán)保吸附材料[6]。相關(guān)研究開展較充分,相關(guān)報(bào)道也較多。隨著對(duì)茶生物質(zhì)資源的進(jìn)一步研究及應(yīng)用,茶生物質(zhì)材料的一些新型使用形式及應(yīng)用領(lǐng)域得以發(fā)展,如茶塑復(fù)合材料、茶刨花板材料等。通常而言,單純一種材料的使用性能存在一定局限,通過(guò)不同種材料間的交叉與融合,可發(fā)展協(xié)同優(yōu)勢(shì)和新型材料[7]。高分子樹脂具有長(zhǎng)鏈橋聯(lián)作用、成型方式多樣化及機(jī)械性能優(yōu)良等優(yōu)勢(shì),將茶生物質(zhì)與高分子樹脂復(fù)合,可融合茶生物質(zhì)及高分子樹脂的雙重優(yōu)勢(shì),開發(fā)新型茶生物質(zhì)填充高分子復(fù)合材料及其應(yīng)用領(lǐng)域。相關(guān)研究已呈蓬勃發(fā)展之勢(shì),但也存在諸如茶生物質(zhì)綜合化與集成化利用程度不夠、茶生物質(zhì)填充高分子復(fù)合材料的基礎(chǔ)和應(yīng)用研究不夠深入及茶生物質(zhì)功能特性的發(fā)揮有待進(jìn)一步挖掘等問(wèn)題。因此為了明晰當(dāng)前茶生物質(zhì)填充高分子復(fù)合材料的研究現(xiàn)狀,本文首先研究茶生物質(zhì)資源的生化成分,然后綜述了茶生物質(zhì)填充高分子復(fù)合材料的研究及其應(yīng)用進(jìn)展,總結(jié)了其研究不足,并探討了茶生物質(zhì)填充高分子復(fù)合材料進(jìn)一步發(fā)展的對(duì)策。
茶生物質(zhì)種類有很多,其來(lái)源主要可分為茶樹枝、茶梗及茶葉類。圖1為茶梗茶末形式的茶生物質(zhì)實(shí)物及其微觀形態(tài)圖。圖1a為茶葉加工制作工程中產(chǎn)生的茶梗茶末,將其用粉碎機(jī)研磨得到茶粉(圖1b),圖1c和圖 1d為茶粉的掃描電鏡圖片,可見粉碎后的茶渣微觀形態(tài)有纖維狀、片狀及顆粒狀等,纖維性較差,在橫截面上有多孔道結(jié)構(gòu),呈中空多孔隙特性。
茶生物質(zhì)中含有豐富的纖維素、木質(zhì)素、半纖維素、茶氨酸、茶蛋白、茶多酚、咖啡因及微量元素等有用成分[8],其與木材及草本植物等主要化學(xué)成分含量對(duì)比如表 1所示[9]。從表1可知,茶生物質(zhì)中纖維素含量更低,但木質(zhì)素和各種抽提物含量要明顯高于木材及草本植物,而各種抽提物含量是木材和草本植物的數(shù)倍甚至數(shù)十倍。這些抽提物主要由茶多酚、茶氨酸、茶色素及咖啡堿等組成。茶飲具有特殊的香氣、口味和抗癌、抗老化及預(yù)防心血管疾病等醫(yī)療保健功能,受到人們的追捧。由此可知,有別于其他農(nóng)林生物質(zhì)材料,茶生物質(zhì)具有獨(dú)特的結(jié)構(gòu)與組成特點(diǎn),因此基于茶生物質(zhì)自身特點(diǎn),開展茶生物質(zhì)資源高值化利用具有重要意義。
圖1 茶生物質(zhì)形態(tài)圖
表1 茶生物質(zhì)與闊、針葉木材及草本植物主要化學(xué)成分含量對(duì)比[9]
脲醛樹脂是各種人造板中廣泛使用的黏合劑,以茶生物質(zhì)來(lái)部分替代或者完全替代各種木質(zhì)材料,與脲醛樹脂復(fù)合后,有望制備一種新的茶復(fù)合板材料。Yalinkilicy等[10]以廢茶葉為填料,以脲醛樹脂為黏合成分,經(jīng)熱壓工藝制備得到一種茶復(fù)合板,發(fā)現(xiàn)與木刨花復(fù)合板相比,茶復(fù)合板具有更好的耐老化防腐蝕性能,作者分析認(rèn)為這與其含有較多的多酚組分有關(guān),茶多酚作為一種天然的抗氧劑和抗菌劑,對(duì)茶復(fù)合板起到防老化抗腐蝕作用。Batiancela等[11]采用同樣方法制備了茶/脲醛樹脂復(fù)合板,在浸水24 h后其表現(xiàn)出較低的吸水率和吸水膨脹性;在廢茶中加入20%~50%的菲律賓楹木粉后,制備的復(fù)合板具有更低的吸水膨脹性和更高的剛度、強(qiáng)度,遠(yuǎn)高于刨花板的最低使用要求。Hanmin等[12]將木粉、綠茶粉和鋸末用于制備復(fù)合植物纖維刨花板,在質(zhì)量配比木粉∶茶粉∶鋸末為50∶40∶10下,壓制的刨花板動(dòng)態(tài)彈性模量最大,為1.41~1.65 GPa。蘇團(tuán)[13]則制備了茶梗刨花板,并系統(tǒng)研究了工藝與其甲醛釋放量的關(guān)系,研究結(jié)果顯示,茶梗的加入能夠明顯降低刨花板甲醛釋放量,茶梗中的茶多酚、茶黃素及茶氨酸等活性成分可與甲醛發(fā)生化學(xué)反應(yīng),可化學(xué)吸附刨花板中的部分甲醛,使其甲醛釋放量下降,此外,茶梗碎料本身的多孔隙性,可對(duì)刨花板中的甲醛發(fā)生物理吸附,共同來(lái)降低茶梗刨花板的甲醛釋放量。
2.2.1 茶生物質(zhì)/聚丙烯復(fù)合材料
Mattos等[14]將一定比例的茶廢棄物和桉樹粉混合用作植料,與聚丙烯熔融熱壓制備了聚丙烯基木塑復(fù)合材料。De Cademartori等[15]將馬黛茶和木粉混合作為植物填料,制備了聚丙烯基木塑復(fù)合材料,考察了植物填料配比及用量對(duì)復(fù)合材料表面粗糙度和顏色的影響。研究結(jié)果表明,馬黛茶粉的添加,使復(fù)合材料外觀呈現(xiàn)黑色狀態(tài),且茶粉含量越多,黑色越明顯;當(dāng)馬黛茶粉∶木粉∶PP的質(zhì)量配比為30∶30∶40時(shí),復(fù)合材料的表面粗糙度最高。Rathod等[16]采用苯乙烯處理茶粉,用于改善其與PP的界面相容性。Lanjewar等[17]采用馬來(lái)酸酐處理茶粉,用于改善其與PP的界面相容性,取得較好效果。Hassan等[18]則以茶末為植物填料,甲基丙烯酸縮水甘油酯接枝PP(glycidyl methacrylate grafted to PP,GMA-g-PP)為增容劑,熱壓制備了茶末/GMA-g-PP/PP復(fù)合材料,結(jié)果顯示GMA-g-PP增容劑添加量為2%以內(nèi)時(shí),可改善茶末/PP復(fù)合材料的拉伸強(qiáng)度及界面相容性。Bari等[19]采用硅烷偶聯(lián)劑改善茶粉與聚丙烯的界面結(jié)合,并添加氧化石墨烯粒子制備了石墨烯/茶粉/PP三元復(fù)合材料;發(fā)現(xiàn)硅烷偶聯(lián)劑及氧化石墨烯添加有效改善了茶粉/聚丙烯復(fù)合材料的機(jī)械性能和熱性能。龔新懷等[20]和王兆禮等[21]采用密煉-注塑工藝制備了茶渣/PP復(fù)合材料,考察了茶生物質(zhì)填料種類、處理方式及其添加量對(duì)復(fù)合材料結(jié)構(gòu)、形態(tài)及性能的影響;發(fā)現(xiàn)以茶樹枝為生物質(zhì)填料制備的復(fù)合材料力學(xué)性能最佳,茶梗次之,茶葉最差;茶梗填料經(jīng)水煮和馬來(lái)酸酐接枝聚丙烯增容處理后,復(fù)合材料的拉伸強(qiáng)度、彎曲強(qiáng)度、拉伸模量及彎曲模量分別提高了23.4%、9.0%、16.9%和13.9%。此外,龔新懷等[22-23]采用戶外自然老化和凍融加速老化形式研究了茶渣/PP復(fù)合材料的戶外應(yīng)用及老化機(jī)制,發(fā)現(xiàn)自然老化和凍融老化后茶渣/PP復(fù)合材料表面均存在褪色現(xiàn)象,形態(tài)變粗糙,出現(xiàn)裂紋或孔洞及力學(xué)性能下降;且隨老化進(jìn)程增加,材料表觀褪色程度越明顯,表面形態(tài)更粗糙,裂紋和孔洞尺寸變大,力學(xué)性能損耗增加,其中以戶外自然老化后變化更明顯。
2.2.2 茶生物質(zhì)/聚乙烯復(fù)合材料
于學(xué)領(lǐng)等[24-25]研究了茶粉粒徑和硅烷偶聯(lián)劑添加對(duì)茶粉/HDPE復(fù)合材料結(jié)構(gòu)與性能的影響,發(fā)現(xiàn)KH550用量為1.8%,茶粉目數(shù)為150m時(shí),復(fù)合體系的綜合性能較好。宋劍斌等[26]以茶葉梗為填料,HDPE為基體樹脂,制備了茶梗/HDPE復(fù)合材料,并研究了無(wú)機(jī)碳納米管引入對(duì)復(fù)合材料結(jié)構(gòu)、性能的影響,發(fā)現(xiàn)其添加在一定范圍內(nèi)時(shí)可改善復(fù)合材料的流動(dòng)性、力學(xué)及熱性能。He等[27]以茶渣為填料,HDPE為基體,制備了茶渣/HDPE復(fù)合材料,發(fā)現(xiàn)復(fù)合材料的剛度隨茶渣用量增加而明顯提高,但強(qiáng)度和韌性下降;馬來(lái)酸酐接枝聚乙烯增容劑可改善復(fù)合材料的界面粘結(jié);納米填料的加入可提高復(fù)合材料的熱穩(wěn)定性和維卡耐熱性。Cavdar等[28]將茶渣作為木質(zhì)纖維填料填充于熱塑性樹脂中制備茶塑復(fù)合材料,考察了茶渣添加量和樹脂種類對(duì)復(fù)合材料性能的影響。Cavdar等[29]還以氫氧化鋁和硼酸鋅為阻燃添加劑,生產(chǎn)阻燃性茶渣/HDPE復(fù)合材料,發(fā)現(xiàn)鋁系阻燃劑引入對(duì)復(fù)合材料的拉伸模量有利,而引入硼酸鋅不利;氫氧化鋁和硼酸鋅阻燃劑添加后復(fù)合材料的強(qiáng)度性能略有下降,但提高了復(fù)合材料的熱及阻燃性能。
2.2.3 茶生物質(zhì)/可降解樹脂復(fù)合材料
以石化資源為原料制備的聚烯烴類為不可降解樹脂,以其為基體制備的茶塑復(fù)合材料實(shí)際上屬于部分可降解復(fù)合材料,仍然會(huì)造成塑料的“白色污染”問(wèn)題。隨著石化資源的日益減少和人們環(huán)保意識(shí)的提高,以環(huán)保、可降解樹脂為基體,制備完全可降解茶塑復(fù)合材料是未來(lái)發(fā)展趨勢(shì)之一。
Wu等[30]以茶渣(Tea Waste,TW)為填料,聚羥基脂肪酸酯(Polyhydroxyalkanoates,PHA)為基體,采用混煉及模壓工藝制備了TW/PHA可降解復(fù)合材料,用馬來(lái)酸酐(Maleic Anhydride,MA)接枝PHA改善TW與PHA的界面相容性;結(jié)果顯示,MA的接枝反應(yīng)明顯提高了復(fù)合材料的機(jī)械強(qiáng)度,吸水性下降,而加工性提高;TW的引入提高了PHA材料的降解性能。Xia等[31]采用溶液澆鑄法制備了TW/聚碳酸亞丙酯(Poly(propylene Carbonate),PPC)復(fù)合膜;發(fā)現(xiàn)TW添加改善了PPC膜的力學(xué)性能和熱性能,在TW添加質(zhì)量分?jǐn)?shù)為25%時(shí),復(fù)合膜的拉伸強(qiáng)度和拉伸模量分別提高了86.6%和66.4%,最快熱分解失重溫度提高了13 ℃。
龔新懷等[32-33]以TW為填料,聚乳酸(Polylactic Acid,PLA)為基體,經(jīng)密煉、注塑工藝制備了環(huán)境友好型TW/PLA復(fù)合材料。并為改善二者的界面相容性,分別以亞甲基二苯基二異氰酸酯(Methylene Diphenyl Diisocyanate,MDI)和自制的甲基丙烯酸縮水甘油酯接枝聚乳酸(Glycidyl Methacrylate Grafting PLA,GMA-g-PLA)為界面改性劑,考察了其添加對(duì)TW/PLA復(fù)合材料結(jié)構(gòu)與性能的影響。結(jié)果表明,GMA-g-PLA的添加顯著改善了TW與PLA的界面相容性,提高了復(fù)合材料的力學(xué)性能和熱穩(wěn)定性,降低了吸水率,其界面增容效果明顯優(yōu)于MDI。在GMA-g-PLA添加質(zhì)量分?jǐn)?shù)為10%時(shí),復(fù)合材料的力學(xué)性能最佳,與未增容TW/PLA復(fù)合材料相比,其拉伸強(qiáng)度、彎曲強(qiáng)度及缺口沖擊強(qiáng)度分別提高43.8%、42.1%和24.1%,拉伸模量和彎曲模量提高26.5%和10.4%,斷裂伸長(zhǎng)率提高26.1%。
龔新懷等[34]采用凍融循環(huán)加速老化方式進(jìn)一步研究了TW/PLA復(fù)合材料的老化性能及行為,發(fā)現(xiàn)TW/PLA復(fù)合材料老化后表面出現(xiàn)略微褪色現(xiàn)象,復(fù)合材料相界面處出現(xiàn)裂紋或孔洞,在12次凍融循環(huán)老化后,復(fù)合材料的彎曲、沖擊及拉伸強(qiáng)度分別下降了29.19%、22.92%及24.15%。
此外,龔新懷等[35-36]為進(jìn)一步改善TW/PLA復(fù)合材料脆性大問(wèn)題,以甘油(Glycerol,GL)、聚乙二醇400、環(huán)氧大豆油(Epoxidized Soybean Oil,ESO)和乙酰檸檬酸丁酯(Acetyl Butyl Citrate,ATBC)為增塑劑,制備了可降解TW/PLA增韌增塑復(fù)合材料。發(fā)現(xiàn)ESO增韌增塑效果最佳,其添加制備的復(fù)合材料斷裂伸長(zhǎng)率及缺口沖擊強(qiáng)度分別提高了154.23%和65.53%。
橡膠在加工中受熱、光及自由基等影響易老化,為此需要添加防老化劑。茶生物質(zhì)含有較多的茶多酚,是一種天然的抗氧化、抗老化劑[37]。將低成本的茶生物質(zhì)剛性填料與生膠混煉,不僅可以降低成本、改善力學(xué)性能,還有望改善橡膠加工中的抗老化性能[38]。
Riyajan等[39]將茶渣經(jīng)甲基丙烯酸甲酯(Methyl Methacrylate,MMA)和硅烷改性后,與炭黑一起填充到天然橡膠中進(jìn)行煉膠。發(fā)現(xiàn)隨茶渣用量增加,復(fù)合橡膠的模量,硬度和耐油性增加,熱穩(wěn)定性提高;在添加30份茶渣和30份炭黑后的復(fù)合橡膠具有最好的綜合性能,茶渣的添加還賦予了復(fù)合橡膠特殊的茶香味。Masek等[40]發(fā)現(xiàn)將從綠茶葉中提取得到的多酚物質(zhì)添加于乙丙橡膠中,可以有效抑制乙丙橡膠的老化過(guò)程。
Ekici等[41-42]將用茶葉纖維與聚氨酯樹脂復(fù)合制備泡沫材料,發(fā)現(xiàn)茶葉纖維的添加,顯著提高了聚氨酯泡沫的吸聲性能。Rodney等[43]則以廢茶葉、茶梗及茶樹枝3種茶生物質(zhì)為增強(qiáng)材料,以木薯淀粉為基體,制備了完全可降解茶生物質(zhì)/淀粉復(fù)合材料。結(jié)果顯示,在加入質(zhì)量分?jǐn)?shù)為5%的茶生物質(zhì)填料后,復(fù)合材料的力學(xué)性能都獲得不同程度提高,茶葉、茶梗及茶樹枝增強(qiáng)木薯淀粉復(fù)合材料的拉伸強(qiáng)度比淀粉分別提高了34.39%、82.80%和203.18%。Auta等[44]將廢茶葉制備成活性炭后,以殼聚糖為包埋基質(zhì),采用溶膠凝膠法制備得到茶碳/殼聚糖復(fù)合凝膠微球,用于吸附水溶液中的亞甲基藍(lán)和AB29染料,發(fā)現(xiàn)微球在循環(huán)使用5次以后,其對(duì)2種染料的吸附去除率仍維持在50%以上。Cai等[45]將廢茶葉負(fù)載水合氧化鋁后,用陰離子聚丙烯酰胺將其絮凝橋聯(lián)后得到茶粉/聚丙烯酰胺/水合鋁氧化物三元復(fù)合吸附材料,用于吸附水溶液中氟離子。Zhang等[46]以PVA為聚合物基質(zhì)來(lái)包埋廢茶葉,并通過(guò)碳酸鈣和鹽酸反應(yīng)產(chǎn)生二氧化碳?xì)怏w,制備得到一種多孔復(fù)合凝膠球。
刨花板主要是以植物填料如竹木屑、稻殼稻草、麥草、甘蔗渣及玉米芯等,與脲醛樹脂經(jīng)熱壓得到的一種建筑用板材料,廣泛應(yīng)用于鑲板、臺(tái)面、櫥柜、門皮及家具構(gòu)件等[47]。但刨花板中存在甲醛釋放問(wèn)題,嚴(yán)重限制了其廣泛使用。茶生物質(zhì)中的多酚組分可與甲醛按酚醛樹脂機(jī)理發(fā)生反應(yīng),降低刨花板中的甲醛釋放量[48-49]。Yalinkilicy等[10]制備的茶葉刨花板表現(xiàn)出較好的耐白蟻和真菌性能。Yel等[50]以楊木粉、紙板及茶渣為原料,以Al2(SO4)3和Na2SiO3為粘結(jié)劑,壓制了5種木質(zhì)纖維刨花板,系統(tǒng)分析了不同木質(zhì)纖維材料制備的刨花板力學(xué)、吸水性能。蘇團(tuán)[13]系統(tǒng)研究了傳統(tǒng)刨花板中茶梗替代量與刨花板甲醛釋放量之間的關(guān)系,發(fā)現(xiàn)茶梗碎料具有多孔性,有利于其對(duì)甲醛的吸附,同時(shí)茶梗中的茶多酚、茶黃素等活性成分能與甲醛發(fā)生化學(xué)反應(yīng),從而降低刨花板中的甲醛釋放量。
仿木材料又名木塑復(fù)合材料(Wood Plastics Composites,WPC),是以植物纖維或粒料為增強(qiáng)相,熱塑性樹脂如PP、PE及PVC等為基體,經(jīng)混煉、模壓、擠出或注塑等工藝制備得到的一種新型環(huán)保復(fù)合材料,可應(yīng)用于建筑市場(chǎng)、家居裝修、包裝運(yùn)輸及汽車內(nèi)飾等領(lǐng)域[51]。
茶渣作為一種廉價(jià)易得的生物質(zhì)纖維材料,其與木材纖維材料類似,可用于仿木材料制造。目前茶生物質(zhì)填充高分子仿木復(fù)合材料研究主要以PP[14-23]和PE[24-29]為主,主要開展茶生物質(zhì)填料特性影響[14-15,20,27]、復(fù)合材料界面改善及力學(xué)性能優(yōu)化[16-21,24-25]、阻燃抑煙[29]及老化應(yīng)用[22-23]等研究。茶生物質(zhì)填充可降解樹脂復(fù)合材料近年來(lái)已有研究者開展研究,并在界面調(diào)控[30,32-33]、力學(xué)性能優(yōu)化[32-33]、老化應(yīng)用及功能改性[34-36]上取得一定進(jìn)展。隨著對(duì)茶生物質(zhì)結(jié)構(gòu)、性能的進(jìn)一步認(rèn)識(shí),茶生物質(zhì)填充高分子仿木復(fù)合材料研究將取得更大進(jìn)展。
具有優(yōu)良吸聲效果的隔音材料,對(duì)于控制環(huán)境噪音,提高人們工作或生活環(huán)境的舒適度具有重要意義。工業(yè)應(yīng)用中常將玻璃纖維棉、礦物纖維、泡沫塑料及其復(fù)合材料用于制備吸聲材料[52]。隨著人們環(huán)保要求的提高,開發(fā)天然植物纖維如竹纖維、麻纖維及茶葉纖維等來(lái)制備環(huán)保吸聲材料,成為趨勢(shì)之一。
Ersoy等[53]比較了茶葉纖維、機(jī)織棉紗和聚丙烯無(wú)紡纖維3種纖維層的吸聲性能,研究結(jié)果表明,茶葉纖維具有優(yōu)良的吸聲性能,1 cm厚有背襯的茶葉纖維層吸聲性能相當(dāng)于6層機(jī)織棉紗的吸聲效果,20 mm厚無(wú)背襯茶葉纖維層與無(wú)紡纖維在500~3 200 Hz頻率范圍內(nèi)幾乎具有等同的吸聲效果。Ekici等[41]用天然茶葉纖維和絲瓜泡沫填充聚氨酯制備軟質(zhì)吸聲泡沫復(fù)合材料,發(fā)現(xiàn)隨著茶葉纖維添加量增加,復(fù)合材料吸聲效果提高。Celebi等[42]將天然茶葉纖維與聚氨酯樹脂復(fù)合,制備了軟、硬質(zhì)聚氨酯復(fù)合泡沫塑料,并測(cè)試了2種復(fù)合泡沫材料的吸聲性能。發(fā)現(xiàn)在硬質(zhì)聚氨酯泡沫塑料中天然茶纖維的添加對(duì)吸聲性能影響較小,而對(duì)軟質(zhì)聚氨酯泡沫塑料的吸聲性能改善效果顯著;在茶葉纖維添加質(zhì)量分?jǐn)?shù)為24%時(shí),軟質(zhì)聚氨酯復(fù)合泡沫塑料具有最佳的吸聲性能。Ahsan等[54]則以廢棄茶葉為原料,制備了3種不同等級(jí)的茶纖維材料,填充于聚氨酯中制備復(fù)合吸聲材料,結(jié)果表明以廢棄茶葉為原料制備的茶纖維/聚氨酯復(fù)合材料的吸聲效果最好,而以顆粒狀填充的茶/聚氨酯復(fù)合材料吸聲效果最差。Wong等[55]同樣將不同形態(tài)的茶葉纖維填料與聚酯復(fù)合制備吸聲材料,發(fā)現(xiàn)纖維形態(tài)的茶纖維/聚氨酯復(fù)合材料的吸聲系數(shù)最大,傳輸損耗最低。
木材、竹材及草類等含有豐富的纖維素、半纖維素及木質(zhì)素等,是制漿造紙的主要原料來(lái)源。茶生物質(zhì)作為一種木質(zhì)纖維材料,其與木材含有類似的化學(xué)成分,理論上也可以用于制漿造紙生產(chǎn)。
Tutus等[9]探討了茶渣用于制漿造紙的可行性,研究結(jié)果顯示,茶廢棄物制漿的最大得率為33.26%,小于木材制漿得率。此外,由于茶渣纖維素、半纖維素、α-纖維素含量較低而木質(zhì)素含量較高,茶纖維較粗短等,以茶渣為原料制備的紙張強(qiáng)度并不理想,但添加部分松木漿后可以改善紙張性能。Takahashi等[56]將廢茶葉與紙漿、丁苯膠乳混勻,室溫下壓成100 mg/m2的紙張,然后在120 ℃旋轉(zhuǎn)干燥器中硬化,測(cè)試紙張的抗菌及除臭性能。發(fā)現(xiàn)經(jīng)短時(shí)間的紫外照射可大幅增加紙張的抑菌性能,而可見光照射對(duì)紙張抑菌性能沒有影響[57]。茶葉的添加可顯著提高紙張的除臭能力,當(dāng)紙張中廢茶葉質(zhì)量分?jǐn)?shù)達(dá)60%時(shí),在30 min內(nèi)可使氨氣濃度下降至1×10-3mg/m3,即使添加質(zhì)量分?jǐn)?shù)10%的廢茶葉,也可脫除95%的氣味,這是由于茶葉中兒茶素與氣味分子間的化學(xué)反應(yīng)所致[47]。
茶生物質(zhì)具有多孔微觀形態(tài),富含各種活性成分及極性基團(tuán),在廢水、廢氣等治理上具有廣泛應(yīng)用[58-60]。但各種茶生物質(zhì)基吸附材料主要以粉末狀形式應(yīng)用,存在吸附材料強(qiáng)度和吸附容量低、易分散、難以脫離水體及回收利用等問(wèn)題。在茶生物質(zhì)上引入磁性納米Fe3O4粒子和具有良好分子長(zhǎng)鏈橋聯(lián)作用的高分子化合物,將有效解決這個(gè)問(wèn)題[60-62]。
龔新懷等[62]采用簡(jiǎn)易化學(xué)共沉淀技術(shù)制備了磁性茶渣吸附材料(Magnetic Tea Waste,MTW),在303 K下其對(duì)亞甲基藍(lán)(Methylene Blue,MB)的最大吸附量提高了9.93%,并具有良好的回收與再生性能。龔新懷等[63]進(jìn)一步將其與高吸附容量的海藻酸鈣(Calcium Alginate,CA)復(fù)合,制得磁性茶渣/海藻酸鈣(MTW/CA)復(fù)合微球,發(fā)現(xiàn)在303 K下,質(zhì)量配比為MTW∶CA=4∶1的復(fù)合微球?qū)B的最大吸附量為272.5 mg/g,比TW提高86.7%。唐躍武等[61]則將制備的磁性茶用于水溶液中銅鉛離子的吸附處理。
張素玲等[64]用孔徑為0.5~2 μm的多孔性親水性聚丙烯膜包覆廢棄葉制備成一種鉻離子吸附用茶葉包,具有使用方便、回收容易等特點(diǎn)。Auta等[44]先將廢茶葉制備成活性炭,再用溶膠凝膠法制備得到茶活性炭/殼聚糖復(fù)合凝膠微球,用于水溶液中MB和AB29染料的吸附處理。Cai等[45]通過(guò)無(wú)機(jī)、有機(jī)及生物質(zhì)雜化,制備得到茶葉/水合鋁氧化物/聚丙烯酰胺三元復(fù)合吸附材料,用于吸附水溶液中氟離子,其對(duì)氟離子的Langmuir最大吸附量為42.14 mg/g,離子交換是其吸附主要驅(qū)動(dòng)力。Zhang等[46]則制備了一種多孔茶渣/PVA復(fù)合凝膠球,用于吸附水溶液中的Pb2+、Hg2+和Cu2+。研究結(jié)果顯示,在298 K時(shí)多孔凝膠對(duì)Pb2+、Hg2+和Cu2+的Langmuir最大吸附量分別為81.56、175.68和49.08 mg/g,優(yōu)于大多數(shù)其他生物質(zhì)材料;凝膠中的–COOH、–NH2及O–CH3基團(tuán)可與Pb2+、Hg2+和Cu2+發(fā)生絡(luò)合作用,是其吸附主要驅(qū)動(dòng)力。龔新懷等[59]基于酚醛縮合機(jī)理和反應(yīng),將茶多酚原位聚合于茶生物質(zhì)內(nèi)部,得到茶渣/茶多酚-醛縮聚物復(fù)合材料,可降低多酚組分的析出,保留多酚組分的活性官能團(tuán),提高茶生物質(zhì)對(duì)金屬離子的吸附能力,在重金屬離子廢水中具有較好的應(yīng)用前景。
茶葉富含茶氨酸、茶多糖、兒茶素及膳食纖維等功能成分,將茶葉粉碎得到超微茶粉,能保留茶葉的的色澤、營(yíng)養(yǎng)及藥理成分。用于食品加工中,則可賦予食品茶味、茶色、茶香和茶的功效,不僅改善感官和營(yíng)養(yǎng),還能延長(zhǎng)食品保質(zhì)期[65]。
即食沖調(diào)型食品是抹茶粉應(yīng)用于食品的常用種類,通過(guò)簡(jiǎn)單的調(diào)配和混勻即可制作抹茶即食沖調(diào)型食品。劉欣等[66]將綠茶粉加入到黑色沖調(diào)粉中,發(fā)現(xiàn)綠茶粉添加有助于提高黑色沖調(diào)粉的抗氧化能力,降低消化特性的功能。王秀蘭[67]則研究了綠茶粉添加對(duì)玉米即食性沖調(diào)粉擠壓膨化加工過(guò)程中營(yíng)養(yǎng)成分、口感風(fēng)味等的影響及其機(jī)制。茶葉中最重要活性成分茶多酚具有抗菌抗氧化功能,但易受環(huán)境影響而變性。牛奶富含蛋白質(zhì),可可與茶多酚通過(guò)分子間作用力及氫鍵等結(jié)合在一起,有效防止茶多酚的變性、失效。因此,奶茶能最大程度保留茶多酚的功效[68]。劉媛等[69]通過(guò)響應(yīng)曲面法優(yōu)化得到了一種抹茶牛奶,抹茶添加量?jī)H為0.81%所得抹茶牛奶飲料具有濃郁的綠茶感官,口感細(xì)膩,茶香醇厚。段雪梅等[70]則將抹茶粉添加于一種牛奶布丁制備過(guò)程,發(fā)現(xiàn)抹茶粉添加,改善了布丁質(zhì)構(gòu)和風(fēng)味,儲(chǔ)存穩(wěn)定性得到提高。
茶多酚在熱作用下會(huì)部分氧化,因此熱烘焙食品對(duì)抹茶粉應(yīng)用提出了更高要求。食品中氧化產(chǎn)物含量和組成決定了食品的健康和應(yīng)用狀況。Zbikowska等[71]比較了蛋糕中添加天然抗氧劑綠茶粉和人工合成抗氧劑對(duì)氧化產(chǎn)物含量影響,發(fā)現(xiàn)雖然綠茶粉添加后,蛋糕中氧化產(chǎn)物含量要略高于合成抗氧劑的蛋糕,但與未添加抗氧劑的蛋糕比較,添加綠茶粉質(zhì)量分?jǐn)?shù)為1%的蛋糕中氧化產(chǎn)物質(zhì)量分?jǐn)?shù)減少了82.3%。Ivani?ová等[72]制作了一種含抹茶粉小麥餅干,以未添加茶粉的餅干為對(duì)照,研究分析了茶粉添加對(duì)餅干味道、香氣、粗纖維含量、酚類及黃酮含量和抗氧化功能的差異;結(jié)果顯示,添加茶粉后,餅干的口感、氣味等感官更好,餅干中酚類及黃酮類組分含量更高,其抗氧化功能也更強(qiáng);此外,含綠茶粉餅干的粗纖維含量更高,而含紅茶粉餅干的酚類和黃酮含量更高。
茶產(chǎn)業(yè)是中國(guó)特色的重要經(jīng)濟(jì)產(chǎn)業(yè),茶產(chǎn)業(yè)中形成的茶渣剩余物是中國(guó)農(nóng)林生物質(zhì)的重要組成部分。茶生物質(zhì)呈中空多孔隙結(jié)構(gòu),并富含纖維素、木質(zhì)素、半纖維素、茶多酚及茶蛋白等多種有用成分。茶生物質(zhì)填充高分子復(fù)合材料在刨花板、仿木材料、吸聲材料、制漿造紙、環(huán)境治理及功能食品中具有廣泛應(yīng)用前景。今后開展茶生物質(zhì)資源的高值化利用及茶生物質(zhì)填充高分子復(fù)合材料研究應(yīng)注意以下幾點(diǎn):
1)基于茶生物質(zhì)中生化成分特點(diǎn),應(yīng)發(fā)展茶生物質(zhì)中多種組分的集成、一體化利用新技術(shù)研究,如對(duì)茶生物質(zhì)先開展茶多酚、茶氨酸及茶皂素等活性成分提取,然后將提取后的茶渣改性用作廢水吸附材料或者仿木材料的填料,這樣可對(duì)茶生物質(zhì)資源物盡其用,提高其利用率和價(jià)值。
2)目前茶生物質(zhì)/高分子仿木復(fù)合材料的研究主要集中在力學(xué)性能改善上,后期需要進(jìn)一步拓展茶生物質(zhì)/高分子仿木復(fù)合材料在阻燃、電學(xué)、熱學(xué)及抗菌除臭等性能研究,拓深其應(yīng)用基礎(chǔ)研究。
3)茶生物質(zhì)填充高分子復(fù)合材料融合了植物材質(zhì)、高聚物及茶文化元素功能,在建筑、交通、旅游及養(yǎng)生等具有很好應(yīng)用前景,目前研究主要集中在實(shí)驗(yàn)室開展茶生物質(zhì)填充高分子復(fù)合材料的工藝改進(jìn)及機(jī)械性能優(yōu)化,后期需要開展茶生物質(zhì)高分子復(fù)合材料在旅游、養(yǎng)生、裝修等領(lǐng)域的應(yīng)用基礎(chǔ)研究,為產(chǎn)業(yè)化奠定基礎(chǔ)。
4)健康產(chǎn)業(yè)有著巨大的市場(chǎng)需求。茶生物質(zhì)中富含茶多酚、茶氨酸、茶皂素等營(yíng)養(yǎng)成分,且茶多酚還具有抗菌抗氧化、防衰老及預(yù)防心腦血管疾病等保健功能,將茶生物質(zhì)與食品融合具有美好前景。但是在食品的烘焙過(guò)程中,茶生物質(zhì)中活性成分含量變化、結(jié)構(gòu)變化及其對(duì)食品口味、外觀品質(zhì)及其保健功能的影響機(jī)制還有待進(jìn)一步完善,這對(duì)夯實(shí)茶功能食品行業(yè)發(fā)展和科學(xué)理論建立具有重要意義。
[1] Batiancela M A, Acda M N, Cabangon R J. Particleboard from waste tea leaves and wood[J]. Journal of composite materials, 2014, 48(8): 911-916.
[2] 王刻銘,黃勇,劉仲華. 中國(guó)茶葉國(guó)際競(jìng)爭(zhēng)力分析[J]. 農(nóng)業(yè)現(xiàn)代化研究,2020,41(1):45-54. Wang Keming, Huang Yong, Liu Zhonghua. Empirical analysis of the international competitiveness of China’s tea industry[J]. Research of Agricultural Modernization, 2020, 41(1): 45-54. (in Chinese with English abstract).
[3] Maraschi F, Rivagli E, Sturini M, et al. Solid-phase extraction of vanadium(V) from tea infusions and wines on immobilized nanometer titanium dioxide followed by ICP-OES analysis[J]. Arabian Journal of Chemistry, 2019, 12(8): 1902-1907
[4] Patil P A, Mane S, Wakse A, et al. Evaluation of tea waste for nitrogen, phosphorous, potassium (NPK) as organic fertilizer[J]. Asian Journal of Research in Pharmaceutical Science, 2018, 8(4): 217-218.
[5] Chen Y, Ni Ji, Li Hongwei. Effect of green tea and mulberry leaf powders on the gut microbiota of chicken[J]. BMC Veterinary Research, 2019, 15(1): 77-80
[6] Savas Y, Yavuz G, Emine Y, et al. The performance of sulphur doped activated carbon supercapacitors prepared from waste tea[J]. Environmental Technology, 2020, 41(1): 36-48
[7] 于長(zhǎng)江,王苗,董心雨,等. 海藻酸鈣@Fe3O4/生物碳磁性復(fù)合材料的制備及其對(duì)Co(Ⅱ)的吸附性能和機(jī)制[J]. 復(fù)合材料學(xué)報(bào),2018,35(6):1549-1557. Yu Changjiang, Wang Miao, Dong Xinyu, et al. Preparation and characterization of calcium alginate@ Fe3O4/biochar magnetic microsphere and its adso[J]. Acta Materiae Compositae Sinica, 2018, 35(6): 1549-1557. (in Chinese with English abstract).
[8] 謝楓,金玲莉,涂娟,等. 茶廢棄物綜合利用研究進(jìn)展[J]. 中國(guó)農(nóng)學(xué)通報(bào),2015,31(1):140-145. Xie Feng, Jin Lingli, Tu Juan, et al. Comprehensive utilization of tea waste: A review[J]. Chinese Agricultural Science Bulletin, 2015, 31(1): 140-145. (in Chinese with English abstract).
[9] Tatus A, Kazaskeroglu Y, Cicekler M. Evaluation of tea wastes in usage pulp and paper production[J]. Bio- resources, 2015, 10(3): 5407-5416.
[10] Yalinkilicy M K, Imamuraa Y J, Takahashi M. Biological, physical and mechanical properties of particleboard manufactured from waste tea leaves[J]. International Biodeterioration & Biodegradation, 1998, 41(1): 75-84.
[11] Batiancela M A, Acda M N, Cabangon R J. Particleboard from waste tea leaves and wood particles[J]. Journal of Composite Materials, 2014, 48(8): 911-916.
[12] Hanmin P, Sookyeong L, JiHoon S, et al. Effect of green tea and saw dust contents on dynamic modulus of elasticity of hybrid composite boards and prediction of static bending strength performances[J]. Journal of Agriculture & Life Science, 2012, 46(2): 9-17.
[13] 蘇團(tuán). 茶梗碎料板工藝及甲醛釋放量控制機(jī)理的研究[D]. 福州:福建農(nóng)林大學(xué),2012. Su Tuan. Research on the Technology and Control Mechanism of Formaldehyde Emission from Tea Stalk Particlboard[D]. Fuzhou: Fujian Agriculture and Forest University, 2012. (in Chinese with English abstract).
[14] Mattos B D, Misso A L, De Cademartori P H G. et al. Properties of polypropylene composites filled with a mixture of household waste of mate-tea and wood particles[J]. Construction and Building Materials, 2014, 61: 60-68.
[15] De Cademartori P H G, Missio A L, Mattos B D, et al. Roughness and color evaluation of wood polymer composites filled by household waste of mate-tea[J]. Maderas-Cienciay Tecnologia, 2015, 17(3): 457-468.
[16] Rathod Y, Bari P, Hansora D P, et al. Elaboration of performance of tea dust–polypropylene composites[J]. Journal of Applied Polymer Science, 2017, 134(17): 44750-44758.
[17] Lanjewar S R., Bari P S, Hansora D P, et al. Preparation and analysis of polypropylene composites with maleated tea dust particles[J]. Science and Engineering of Composite Materials, 2018, 25(2): 1-9.
[18] Hassan M Masudul, Mueller Marco, Tartakowska Diana J, et al. Role of compatibilizers on the physicomechanical performance of tea dust polypropylene composites[J]. Journal of Applied Polymer Science, 2012, 125(S1): 413-420.
[19] Bari P, Lanjewar S, Hansora D P, et al. Influence of the coupling agent and graphene oxide on the thermal and mechanical behavior of tea dust-polypropylene composites[J]. Journal of Applied Polymer Science, 2016, 133(4): 42927-42936.
[20] 龔新懷,趙升云,陳良璧,等. 茶生物質(zhì)/聚丙烯復(fù)合材料的制備與性能研究[J]. 材料導(dǎo)報(bào),2016,30(24):48-53. Gong Xinhuai, Zhao Shengyun, Chen Liangbi, et al. Preparation and properties of wasted tea biomass/polypropylene composites[J]. Materials Review, 2016, 30(24): 48-53. (in Chinese with English abstract).
[21] 王兆禮,趙升云,趙縉云,等. 不同界面改性茶粉/聚丙烯復(fù)合材料的制備與性能研究[J]. 塑料工業(yè),2018,46(3):33-37. Wang Zhaoli, Zhao Shengyun, Zhao Jinyun, et al. Preparation and properties of tea dust/polypropylene composites through different interface modification[J]. China Plastics Industry, 2018, 46(3): 33-37. (in Chinese with English abstract).
[22] 龔新懷,趙升云,陳良璧. 茶粉/聚丙烯復(fù)合材料加速老化性能[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(12):308-314. Gong Xinhuai, Zhao Shengyun, Chen Liangbi. Properties of accelerated weathering of tea stalk/polypropylene composites[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(12): 308-314. (in Chinese with English abstract).
[23] 龔新懷,陳良壁. 茶粉/聚丙烯復(fù)合材料自然老化性能[J]. 復(fù)合材料學(xué)報(bào),2016,33(6):1437-1445. Gong Xinhuai, Chen Liangbi. Performances of tea dust/polypropylene composites under natural weathering[J]. Acta Materiae Compositae Sinica, 2016, 33(6): 1437-1445. (in Chinese with English abstract).
[24] 于學(xué)領(lǐng),楊江帆,楊文斌,等. 茶粉粒徑對(duì)茶塑復(fù)合體系流變性能的影響[J]. 福建農(nóng)林大學(xué)學(xué)報(bào):自然科學(xué)版,2015,44(1):108-112. Yu Xueling, Yang Jiangfan, Yang Wenbin, et al. Effects of particle size of tea flour on rheological properties of tea plastic composite system[J]. Journal of Fujian Agriculture and Forestry Univeserity: Natural Science Edition, 2015, 44(1): 108-112. (in Chinese with English abstract).
[25] 于學(xué)領(lǐng),宋劍斌,楊文斌,等. KH-550含量對(duì)茶梗粉/HDPE性能的影響[J]. 森林與環(huán)境學(xué)報(bào),2015,35(1):92-96. Yu Xueling, Song Jianbin, Yang Wenbin, et al. Effects of KH-550 content on properties of tea stems flour/HDPE[J]. Journal of Froest and Environment, 2015, 35(1): 92-96. (in Chinese with English abstract).
[26] 宋劍斌,劉學(xué)莘,袁全平,等. 茶葉梗/HDPE/CNT復(fù)合材料的流變及力學(xué)性能研究[J]. 塑料工業(yè),2015,43(4):79-82. Song Jianbin, Liu Xueshen, Yuan Quanping, et al. Rheological and mechanical properties of HDPE/tea stalk/CNTs composites[J]. China Plastics Industry, 2015, 43(4): 79-82. (in Chinese with English abstract).
[27] He Shuai, Zhou Lin, He Hui. Preparation and properties of wood plastic composites based on tea residue[J]. Polymer Composites, 2015, 36(12): 2265-2274.
[28] Cavdar A D, Kalaycioglu H, Mengeloglu F. Tea mill waste fibers filled thermoplastic composites: the effects of plastic type and fiber loading[J]. Journal of Reinforced Plastics and Composites, 2011, 30(10): 833-844.
[29] Cavdar A D, Kalaycioglu H, Mengeloglu F. Technological properties of thermoplastic composites filled with fire retardant and tea mill waste fiber[J]. Journal of Composite Materials, 2016, 50(12): 1627-1634.
[30] Wu Chinsan. Preparation, characterization and biodegradability of crosslinked tea plant-fibre-reinforced polyhydroxyalkanoate composites[J]. Polymer Degradation and Stability, 2013, 98(8): 1473-1480.
[31] Xia Guangmei, Reddy K O, Maheswari C U, et al. Preparation and properties of biodegradable spent tea leaf powder/poly(propylene carbonate) composite films[J]. International Journal of Polymer Analysis and Characterization, 2015, 20(4): 377-387.
[32] 龔新懷,辛梅華,李明春,等. MDI增容茶粉/聚乳酸生物質(zhì)復(fù)合材料的制備與性能[J]. 塑料工業(yè),2016,44(11):127-131,151. Gong Xinhuai, Xin Meihua, Li Mingchun, et al. Preparation and properties of tea waste/polylactic acid biomass composites compatibilized with MDI[J]. China Plastics Industry, 127-131, 151. (in Chinese with English abstract).
[33] 龔新懷,辛梅華,李明春,等. 增容劑改善茶粉/聚乳酸生物質(zhì)復(fù)合材料性能[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(2):308-314. Gong Xinhuai, Xin Meihua, Li Mingchun, et al. Compatibilizer improving properties of tea dust/polylactic acid biomass composites[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(2): 308-314. (in Chinese with English abstract).
[34] 龔新懷,戴忠豪,王兆禮,等. 凍融循環(huán)老化對(duì)PLA/TW生物質(zhì)復(fù)合材料性能的影響[J]. 工程塑料應(yīng)用,2018,46(10):39-43. Gong Xinhuai, Dai Zhonghao, Wang Zhaoli, et al. Effects of freeze-thaw cycling accelerated weathering on properties of poly (lactic acid)/tea waste[J]. Engineering Plastics Application, 2018, 46(10): 39-43. (in Chinese with English abstract).
[35] 龔新懷,辛梅華,李明春,等. 茶粉/聚乳酸復(fù)合材料的增韌改性[J]. 化工進(jìn)展,2016,35(10):3273-3280. Gong Xinhuai, Xin Meihua, Li Mingchun, et al. Toughening of tea dust/poly(lactic acid) composites[J]. Chemical Industry and Engeering Progress, 2016, 35(10): 3273-3280. (in Chinese with English abstract).
[36] 龔新懷,辛梅華,李明春,等. 環(huán)氧大豆油增塑聚乳酸/茶渣生物質(zhì)復(fù)合材料的制備與性能研究[J]. 塑料科技,2019,47(4):54-58. Gong Xinhuai, Xin Meihua, Li Mingchun, et al. Study on Preparation and properties of PLA/TW biocomposites plasticized with ESO[J]. Plastics Science and Technology, 2019, 47(4): 54-58. (in Chinese with English abstract).
[37] Li Xuedou, Ba Fangli, Kai Zhang, et al. Physical properties and antioxidant activity of gelatin?sodium alginate edible films with tea polyphenol[J]. International Journal of Biological Macromolecules: Part B, 2018, 118: 1137-1183.
[38] 王麗麗. 茶多酚基多功能橡膠助劑的制備及其在胎面膠中的應(yīng)用[D]. 青島:青島科技大學(xué),2018. Wang Lili. The Preparation of Multifunction Acceierators Derived from Tea Phenol in Tread Compounds[D]. Qingdao: Qingdao University of Science and Technology, 2018. (in Chinese with English abstract).
[39] Riyajan S A, Sukhlaaied W. Influence of tea waste on the physical properties of natural rubber[J]. KGK-Kautschuk Gummi Kunststoffe, 2012, 65(3): 20-24.
[40] Masek A, Zaborski M, Kosmalska A, et al. Eco-friendly elastomeric composites containing Sencha and Gun Powder green tea extracts[J]. Comptes Rendus Chimie, 2012, 15(4): 331-335.
[41] Ekici B, Kentli A, Kucuk H. Improving sound absorption property of polyurethane foams by adding tea-leaf fibers[J]. Archives of Acoustics, 2012, 37(4): 515-520.
[42] Celebi S, Kucuk H. Acoustic properties of tea-leaf fiber mixed polyurethane composites[J]. Cellular Polymers, 2012, 31(5): 241-255.
[43] Rodney J, Sahari J, Kamal M S M, et al. Thermochemical and mechanical properties of tea tree () fibre reinforced tapioca starch composites[J]. E-Polymers, 2015, 15(6): 401-409.
[44] Auta M, Hameed B H. Coalesced chitosan activated carbon composite for batch and fixed-bed adsorption of cationic and anionic dyes[J]. Colloids and Surfaces B: Biointerfaces, 2013, 105: 199-206.
[45] Cai Huimei, Chen Guijie, Peng Chuanyi, et al. Enhanced removal of fluoride by tea waste supported hydrous aluminium oxide nanoparticles: anionic polyacrylamide mediated aluminium assembly and adsorption mechanism[J]. RSC Advances, 2015, 5(37): 29266-29275
[46] Zhang Yun, Li Xiaoli, Li Yanfeng. Influence of solution chemistry on heavy metals removal by bioadsorbent tea waste modified by poly (vinyl alcohol)[J]. Desalination and Water Treatment, 2015, 53(8): 2134-2143.
[47] Grigoriou A H. Straw-wood composites bonded with various adhesive systems[J]. Wood Science & Technology, 2000, 34(4): 355-365.
[48] 蔡曉紅. 茶及茶制品廢棄物對(duì)甲醛的吸附動(dòng)力學(xué)與環(huán)保刨花板開發(fā)[D]. 杭州:浙江大學(xué),2010. Cai Xiaohong. Research on the Kinetics of Tea and Waste Tea Products to Adsorb Formaldehyde and Development of the Environment-Friendly Flakeboards[D]. Hangzhou: Zhejiang University, 2010. (in Chinese with English abstract).
[49] Hou Lijie, Song Dinghe, Chen Tiantian, et al. Manufacture and properties of particleboards by mixing green tea leaves waste with wood-based particles[J]. Forest Product Industry, 2009, 28(1): 53-62.
[50] Yel H, ?avdar A D, Kalaycio?lu H. Mechanical and physical properties of cement-bonded perticleboard made from tea residues and hardboards[J]. Key Engineering Materials, 2011, 471: 572-577.
[51] Khalil H A, Tehrani M, Davoudpour Y, et al. Natural fiber reinforced poly(vinylchloride) composites: A review[J]. Journal of Reinforced Plastics and Composites, 2013, 32(5): 330-356.
[52] Yang T L, Chiang D M, Chen R. Development of a novel porous laminated composite material for high sound absorption[J]. Journal of Vibration & Control, 2001, 7(5): 675-698.
[53] Ersoy S, Kucuk H. Investigation of industrial tea-leaf-fibre waste material for its sound absorption properties[J]. Applied Acoustics, 2009, 70(1): 215-220.
[54] Ahsan Q, Ching C P, Yaakob M Y B. Physical and sound absorption properties of spent tea leaf fiber filled polyurethane foam composite[J]. Applied Mechanics and Materials, 2014, 660: 541-546.
[55] Wong K, Ahsan Q, Putra A, et al. Acoustic benefits of ecofriendly spent tea leaves filled porous material[J]. Key Engineering Materials, 2017, 739: 125-134.
[56] Takahashi T, Aso Y, Kasai W, et al. Effect of light irradiation on the antibacterial activity of compounded papers containing wasted tea leaves[J]. Journal of Wood Science, 2010, 56(4): 299-306.
[57] Takahashi T, Aso Y, Kasai W, et al. Improving the antibacterial activity against Staphylococcus aureus of composite sheets containing wasted tea leaves by roasting[J]. Journal of Wood Science, 2010, 56(5): 403-410.
[58] Takahashi T, Aso Y, Kasai W, et al. Synergetic deodorant effect and antibacterial activity of composite paper containing waste tea leaves[J]. Journal of Wood Science, 2011, 57(4): 308-316.
[59] 龔新懷,戴忠豪,李素瓊,等. 多酚原位固化茶渣對(duì)水中Cr(Ⅵ)的吸附[J]. 化工環(huán)保,2017,37(6):655-660. Gong Xinhuai, Dai Zhonghao, Li Suqiong, et al. Removal of Cr(Ⅵ) from solution using polyphenol in-situ immobilized tea residue[J]. Environmental Protection of Chemical Industry, 2017, 37(6): 655-660. (in Chinese with English abstract).
[60] 姚時(shí),張鳴帥,李林璇,等. 茶渣負(fù)載納米四氧化三鐵復(fù)合材料制備及其對(duì)亞甲基藍(lán)的吸附機(jī)理[J]. 環(huán)境化學(xué),2018,37(1):96-107. Yao Shi, Zhang Mingshuai, Li Linxuan, et al. Preparation of tea waste-nano Fe3O4composite and its removal mechanism of methylene blue from aqueous solution[J]. Environmental Chemistry, 2018, 37(1): 96-107. (in Chinese with English abstract).
[61] 唐躍武,江勇,楊英,等. 茶渣修飾磁性Fe3O4納米粒子協(xié)同吸附銅鉛離子的研究[J]. 環(huán)境污染與防治,2019,41(1):60-66. Tang Yuewu, Jiang Yong, Yang Ying, et al. Study on synergistic adsorption of copper and lead ions by magnetic Fe3O4nanoparticles decorated by[J]. Environmental Pollution & Control, 2019, 41(1): 60-66. (in Chinese with English abstract).
[62] 龔新懷,辛梅華,李明春,等. 磁性響應(yīng)茶渣制備及其對(duì)水溶液中亞甲基藍(lán)的吸附[J]. 化工進(jìn)展,2019,38(2):1113-1121. Gong Xinhuai, Xin Meihua, Li Mingchun, et al. Preparation of magnetically responsive tea waste and it's adsorption of methylene blue from aqueous[J]. Chemical Industry and Engineering Progress, 2019, 38(2): 1113-1121. (in Chinese with English abstract).
[63] 龔新懷,李明春,楊坤,等. 納米Fe3O4@茶渣/海藻酸鈣磁性復(fù)合材料制備及其對(duì)亞甲基藍(lán)的吸附性能與吸附機(jī)制[J]. 復(fù)合材料學(xué)報(bào):2020,38(2):1451-1465. Gong Xinhuai, Li Mingchun, Yang Kun, et al. Preparation of nano-Fe3O4@tea waste/calcium alginate magnetic composited bead and it’s adsorption characteristics and mechanisms for methylene blue from aqueous solution[J]. Acta Materiae Compositae Sinica, 2020, 38(2): 1451-1465. (in Chinese with English abstract).
[64] 張素玲,張春曉,姚志通. 一種用于吸附廢水中鉻離子的茶葉包:CN201320774086. 4,[P]. 2013.
[65] 龍登星,黃忠,劉偉梅,等. 超微茶粉在食品加工中的應(yīng)用[J]. 食品工程,2020,155(1):5-7. Long Dengxing, Huang Zhong, Liu Weimei, et al. Application to ultra-micro tea powder as a new food resource in food processing[J]. Food Engineering, 2020, 155(1): 5-7. (in Chinese with English abstract).
[66] 劉欣,何新益,劉斌,等. 綠茶粉添加對(duì)黑色沖調(diào)粉抗氧化及消化特性的影響[J]. 食品研究與開發(fā),2019,49(17):64-68. Liu Xin, He Xinyi, Liu Bin, et al. Effect of green tea powder addition on antioxidant and digestive properties of black powder[J]. Food Research and Development, 2019, 49(17): 64-68. (in Chinese with English abstract).
[67] 王秀蘭. 夏秋綠茶復(fù)合玉米粉擠壓加工及其沖調(diào)特性研究[D].合肥: 安徽農(nóng)業(yè)大學(xué),2018. Wang Xiulan. Research on Extrusion Processing and Solubility of Extruded Summer and Autumn Green Tea Compound Corn Flour[D]. Hefei: Anhui Agricultural University, 2018. (in Chinese with English abstract).
[68] Bhagat A R, Delgado A M, Issaoui M, et al. Review of the role of fluid dairy in delivery of polyphenolic compounds in the diet: Chocolate milk, coffee beverages, matcha green tea, and beyond[J]. Journal of Aoac International, 2019, 102(5): 1365-1372.
[69] 劉媛,賈志磊,李啟明,等. 抹茶牛奶飲料配方優(yōu)化[J]. 食品工業(yè)科技,2019,40(14):100-107. Liu Yuan, Jia Zhilei, Li Qiming, et al. Formula optimization of Matcha milk beverage[J]. Science and Technology of Food Industry, 2019, 40(14): 100-107. (in Chinese with English abstract).
[70] 段雪梅,徐詩(shī)涵,李啟明,等. 抹茶風(fēng)味牛奶布丁的研制[J].中國(guó)乳品工業(yè),2019,47(6):60-64. Duan Xuemei, Xu Shihan, Li Qiming, et al. Development of matcha flavored milk pudding[J]. China Dairy Industry, 2019, 47(6): 60-64. (in Chinese with English abstract).
[71] Zbikowska A, Kowalska M, Rutkowska J, et al. Impact of green tea extract addition on oxidative changes in the lipid fraction of pastry products[J]. Acta Scientiarum Polonorum Technologia Alimentaria, 2017, 16(1): 25-35.
[72] Ivani?ová E, Mickowska B, Socha P, et al. Determination of biological and sensory profiles of biscuits enriched with tea (L) powder[J]. Proceedings of the Latvian Academy of Sciences. Section B: Natural, Exact, and Applied Sciences, 2018, 72(2): 113-117.
Research progress of polymer composites filled with tea biomass
Gong Xinhuai1,2, Li Mingchun2※, Xin Meihua2, Zhao Jinyun1, Zhao Xiaojie1, Lyu Gan1
(1.,,,354300,; 2.,,,,361021,)
The researches and applications of biomass materials have always been the interest of people, due to the advantages of low-cost, non pollution, regeneration and so on. Tea biomass is the general name of waste dominated during the cultivation, processing, deep processing and consumption processes of tea. The tea biomass includes 1)dead-wood, fallen leaves, pruning branches and leaves, seed shells and other tea residues produced during tea cultivation; 2)fannings, thick stems, old stems and tea ash produced during tea processing; 3)tea residues and tea oil cakes produced during deep processing of tea beverage, instant tea, tea polyphenols and tea oil; 4)tea leaves after drinking of tea. A large number of tea residues are produced during the process of planting, production, processing and consumption of tea. China is the biggest producer and consumer of tea all over the world. The cultivation area and yield of tea of China were more than 2.9×106hm2and 2.6×106t in 2019, respectively, which accounts for 60% and 50% of the world’s area harvested and yield of tea. The worldwide consumption of tea is about 6 million tons annually, and the amount of tea biomass produced during the tea industry reached up to 5×106t per pear merely in china, most of which were treated as agricultural waste, resulting in both environmental pollution and enormous natural resource waste. Therefore, the research and application of tea waste would be great benefit to the environment management and developpment of tea industry. The tea biomass resources showed a hollow porous structure and were rich in cellulose, lignin, hemicellulose, tea polyphenols, theanine and other useful components. Traditionally, the tea biomass were mainly used as raw materials to extract active components, plant growth fertilizers, animal feeds and environmental adsorption materials. It has extensive application potential in agriculture and animal husbandry, health care, food processing, environmental protection and composited materials. With the developpment of research focused on the tea biomass, the composites prepared by the combination of tea biomass with polymers have been developped rapidly and widely in recent years because of their excellent processing and application performance, and have became the most important part of tea biomass based materials. In order to clarify the current research status of the tea biomss/polymer composites, this paper introduced the characteristics and chemical composition of the tea biomass resources first, and then the advances in research of tea biomass filled different polymers composites were recommended, and the progress of application in particleboard, wood-plastic materials, sound-absorbing materials, rubber based composites, pulp and paper making, wastewater treatment and functional food of polymer composites filled with tea biomass were also overviewed. In addition, the future research of tea biomass resources are pointed out, which includes 1)developing comprehensive and integrated utilization technology of tea biomass; 2)exploiting the research in flame retardant, electrical, thermal, antibacterial and deodorizing properties of the tea biomass filled resin materials; 3)enhancing the application research in tourism, health preservation, decoration and other fields of the tea biomass filled polymer composites; 4)studying the influence and mechanism of the biochemical components changes of tea biomass on the taste, appearance and health performances of the tea functional foods.
composites; tea; biomass; environmental protection; resource recycled utilization; polymer composites filled with tea biomass
龔新懷,李明春,辛梅華,等. 茶生物質(zhì)填充高分子復(fù)合材料的研究進(jìn)展[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(18):283-291.doi:10.11975/j.issn.1002-6819.2020.18.033 http://www.tcsae.org
Gong Xinhuai, Li Mingchun, Xin Meihua, et al. Research progress of polymer composites filled with tea biomass[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(18): 283-291. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.18.033 http://www.tcsae.org
2020-05-21
2020-07-19
福建省自然科學(xué)基金項(xiàng)目(2018J01445);福建省高校杰出青年科研人才計(jì)劃(閩科教[2018]47號(hào));福建省中青年教師教育科研項(xiàng)目(JAT170594,JT180555);武夷學(xué)院引進(jìn)人才科研啟動(dòng)項(xiàng)目(YJ201810);福建省生態(tài)產(chǎn)業(yè)綠色技術(shù)重點(diǎn)實(shí)驗(yàn)室項(xiàng)目(WYKF2018-5);武夷學(xué)院師生共創(chuàng)科研團(tuán)隊(duì)項(xiàng)目(2020-SSTD-009)
龔新懷,博士,副教授,主要從事生物質(zhì)資源利用與高分子復(fù)合材料研究。Email:wyu_gxh@163.com
李明春,教授,博士生導(dǎo)師,主要從事功能高分子材料研究。Email:mcli@hqu.edu.cn
10.11975/j.issn.1002-6819.2020.18.033
TB322
A
1002-6819(2020)-18-0283-09