徐祿江,史陳晨,何子健,劉 洋,吳晟紅,方 真
針葉木木質(zhì)素單體模型化合物熱解研究進(jìn)展
徐祿江,史陳晨,何子健,劉 洋,吳晟紅,方 真※
(南京農(nóng)業(yè)大學(xué)工學(xué)院,南京 210031)
木質(zhì)素目前是唯一可持續(xù)生產(chǎn)芳香基化合物的可再生資源。然而,當(dāng)前絕大多數(shù)的木質(zhì)素未能得到有效利用。熱解可以將木質(zhì)素快速轉(zhuǎn)化為生物炭、生物油和生物氣等產(chǎn)物并實(shí)現(xiàn)其資源化和高值化利用的有效途徑。愈創(chuàng)木基單元是針葉木木質(zhì)素的主要組成單元,且其結(jié)構(gòu)中的甲氧基和酚羥基等官能團(tuán)在木質(zhì)素中廣泛存在,因此作為模型化合物被廣泛應(yīng)用。愈創(chuàng)木酚類化合物直接熱解產(chǎn)物以苯酚類和鄰苯二酚類化合物為主,且熱解溫度對(duì)其熱解過(guò)程具有一定影響,提高熱解溫度提高轉(zhuǎn)化率且產(chǎn)生少量芳烴和更多的烯烴,且愈創(chuàng)木基結(jié)構(gòu)單元的C4取代基官能團(tuán)對(duì)愈創(chuàng)木酚直接熱解的影響較小。分子篩由于具有獨(dú)特結(jié)構(gòu)和酸性位點(diǎn),是催化裂解愈創(chuàng)木酚脫氧制備芳烴和單酚的有效催化劑。催化熱解反應(yīng)條件(如熱解溫度、重時(shí)空速和原料分壓等)對(duì)催化熱解產(chǎn)物具有重要影響;且在熱解過(guò)程中添加氫供體可以顯著提高愈創(chuàng)木酚脫氧率并降低催化劑的積碳。熱解機(jī)理方面,愈創(chuàng)木酚基化合物直接熱解反應(yīng)主要反應(yīng)途經(jīng)是自由基反應(yīng),且結(jié)構(gòu)單元中的甲氧基與焦炭形成具有直接關(guān)系。初步熱解產(chǎn)物鄰苯二酚及其衍生的鄰羥基苯醌是形成氣體產(chǎn)物的重要中間體。與直接熱解不同的是,愈創(chuàng)木酚催化熱解的主要反應(yīng)機(jī)理是“烴池機(jī)理”。該研究通過(guò)對(duì)愈創(chuàng)木酚類化合物直接熱解研究、催化熱解研究和反應(yīng)機(jī)理等方面進(jìn)行總結(jié)和綜述,期望加深對(duì)木質(zhì)素?zé)峤膺^(guò)程的理解,為木質(zhì)素?zé)峤猱a(chǎn)物的調(diào)控提供理論指導(dǎo)。
木質(zhì)素;催化熱解;生物質(zhì);愈創(chuàng)木酚型單體;反應(yīng)機(jī)理;研究進(jìn)展
隨著化石能源的枯竭和環(huán)境問(wèn)題日益嚴(yán)峻,人們將迫切需要開(kāi)發(fā)利用可再生資源[1]。木質(zhì)纖維素基生物質(zhì)儲(chǔ)量十分豐富,每年的生長(zhǎng)量高達(dá)1 460億t左右[2-3]。木質(zhì)素是生物質(zhì)組分中僅次于纖維素的天然高分子材料,含量約為20%~40%,也是自然界中唯一能夠提供大宗可再生芳香基化合物的可再生資源[4-5]。目前全球每年有近1.5~1.8億t的木質(zhì)素作為副產(chǎn)物從造紙工業(yè)和乙醇工業(yè)中產(chǎn)生, 但其中只有2%~5%的木質(zhì)素得到有效利用,絕大多數(shù)的木質(zhì)素被作為低熱值燃料燃燒或被任意排放,未能得到有效利用,造成很大的環(huán)境問(wèn)題[6-8]。因此,以木質(zhì)素為原料選擇性利用木質(zhì)素結(jié)構(gòu)中的芳香基官能團(tuán)和含氧官能團(tuán)實(shí)現(xiàn)木質(zhì)素的資源化和高附加值化利用具有重要的意義。
木質(zhì)素主要由羥基和甲氧基取代的苯丙烷基結(jié)構(gòu)(愈創(chuàng)木基、紫丁香基和對(duì)羥苯基)通過(guò)C-O-C和C-C鍵(-O-4、-O-4、4-O-5、-等)交織相連構(gòu)成的一種三維網(wǎng)狀結(jié)構(gòu)的大分子[9]。針葉木木質(zhì)素以愈創(chuàng)木基結(jié)構(gòu)單元(>95%)為主[10];在禾本科木質(zhì)素中的質(zhì)量分?jǐn)?shù)約為25%~50%[11]。木質(zhì)素由于結(jié)構(gòu)復(fù)雜、化學(xué)鏈接形式多樣,熱解機(jī)理復(fù)雜[12-13]。愈創(chuàng)木基模型化合物結(jié)構(gòu)中含有的甲氧基和酚羥基等官能團(tuán)在木質(zhì)素中廣泛存在,目前作為典型木質(zhì)素單體模型化合物應(yīng)用于熱解轉(zhuǎn)化研究,并通過(guò)研究其在熱解反應(yīng)的轉(zhuǎn)化過(guò)程、結(jié)焦機(jī)理和進(jìn)一步的關(guān)鍵控制點(diǎn)以加深對(duì)木質(zhì)素?zé)峤膺^(guò)程的理解。本文通過(guò)對(duì)愈創(chuàng)木基模型化合物直接熱解研究、催化熱解研究和反應(yīng)機(jī)理等方面進(jìn)行總結(jié)和綜述,期望為后續(xù)進(jìn)一步調(diào)控愈創(chuàng)木酚型木質(zhì)素的熱解轉(zhuǎn)化過(guò)程提供理論指導(dǎo)。
當(dāng)前作為木質(zhì)素單體化合物研究的愈創(chuàng)木酚類化合物主要指芳環(huán)結(jié)構(gòu)中同時(shí)具有酚羥基和鄰甲氧基官能團(tuán)結(jié)構(gòu)的一類化合物(圖1所示),如:愈創(chuàng)木酚、香草醛、香草醇、香草酸、丁香酚、異丁香酚、松柏醇和阿魏酸等。愈創(chuàng)木酚(鄰羥基苯甲醚)是一種具有廣泛應(yīng)用的重要精細(xì)化工中間體[14-15],主要以鄰氨基苯甲醚或鄰苯二酚為原料合成[16-17],也可以通過(guò)木質(zhì)素選擇性轉(zhuǎn)化制備[18],同時(shí)它也是木質(zhì)素?zé)峤猱a(chǎn)物的主要成分之一[19]。香草醛、香草酸、香草醇、丁香酚、松柏醇和阿魏酸也是一類重要的愈創(chuàng)木基木質(zhì)素單體模型化合物,它們之間的主要差別是C4位取代基官能團(tuán)不同,分別是-CHO、-COOH、-CH3OH、-CH3-CH2=CH2、-CH2=CH2-CH3OH和-CH2=CH2-COOH。它們也是重要的木質(zhì)素基化學(xué)品,被廣泛用于食品、飲料、醫(yī)藥和化妝品等行業(yè)[20-23]。Zhao等[24]通過(guò)木質(zhì)素選擇性氧化可以選擇性制備香草醛和香草酸。
圖1 主要愈創(chuàng)木基木質(zhì)素單體模型化合物
目前愈創(chuàng)木基木質(zhì)素單體模型化合物的熱解試驗(yàn)都是在流管熱解裝置與光電離時(shí)間-螢光質(zhì)譜聯(lián)用儀(PI-TOF-MS)、熱解-氣相色譜質(zhì)譜聯(lián)用儀(Py-GCMS)和熱重紅外聯(lián)用儀(TG-FTIR)等熱解產(chǎn)物分析聯(lián)用設(shè)備上進(jìn)行。研究人員發(fā)現(xiàn)愈創(chuàng)木酚低溫?zé)o催化劑直接熱解條件下不易產(chǎn)生芳烴,主要產(chǎn)物是酚類化合物[25]。Liu等[26]通過(guò)流管熱解裝置與光電離時(shí)間-螢光質(zhì)譜聯(lián)用儀(PI-TOF-MS)熱解愈創(chuàng)木酚試驗(yàn)結(jié)果表明,其熱解液體產(chǎn)物主要是酚類化合物,包括鄰苯二酚、苯酚、甲基苯酚和2-羥基苯甲醛,且提高裂解溫度利于甲氧基轉(zhuǎn)化;氣體產(chǎn)物主要為CH4、CO和少量CO2,且延長(zhǎng)反應(yīng)時(shí)間可以產(chǎn)生更多的氣體產(chǎn)物。Yerrayya 等[27]通過(guò)熱解氣相色譜質(zhì)譜聯(lián)用儀(Py-GC/MS)熱解愈創(chuàng)木酚試驗(yàn)也得到類似結(jié)果,且提高熱解溫度從450 ℃升高到650 ℃可以提高愈創(chuàng)木酚的轉(zhuǎn)化率,550~600 ℃時(shí)鄰苯二酚、苯酚和甲基酚最高,當(dāng)熱解溫度達(dá)到650 ℃時(shí)有更多烯烴和芳烴的生成。
目前C4位取代的愈創(chuàng)木基木質(zhì)素單體的熱解反應(yīng)主要是取代基官能團(tuán)的裂解反應(yīng),熱解產(chǎn)物主要也是愈創(chuàng)木酚類化合物。Liu等[28]在研究熱解香草醛、香草酸和香草醇3種愈創(chuàng)木基化合物熱解行為時(shí)發(fā)現(xiàn)香草醛具有比香草酸與香草醇高的穩(wěn)定性。氣體產(chǎn)物中香草醛、香草酸和香草醇的典型產(chǎn)物分別為CO、CO2和HCHO;生物油液體產(chǎn)物中主要包括苯酚、5-醛基水楊醛和愈創(chuàng)木酚等。但由于C4取代基官能團(tuán)不同,香草醛容易發(fā)生脫羰,生成愈創(chuàng)木酚與由甲氧基引發(fā)的芳環(huán)異構(gòu)生成5-醛基水楊醛;香草酸較易發(fā)生脫羧生成愈創(chuàng)木酚,表明羧基的脫除容易發(fā)生,競(jìng)爭(zhēng)優(yōu)勢(shì)明顯;香草醇的產(chǎn)物更為復(fù)雜,雖然也能生成愈創(chuàng)木酚,但含量不高,而C4-位的羥甲基容易發(fā)生脫氫或脫氧反應(yīng)轉(zhuǎn)化為醛基或甲基。與香草酸熱解反應(yīng)類似,阿魏酸的熱解過(guò)程主要發(fā)生脫羧反應(yīng),氣體產(chǎn)物主要為CO2,液體產(chǎn)物是主要為4-乙烯基愈創(chuàng)木酚[29]。呂薇等[30]利用熱重紅外聯(lián)用儀(TG-FTIR)對(duì)丁香酚熱解行為進(jìn)行研究發(fā)現(xiàn)丁香酚的熱穩(wěn)定性較愈創(chuàng)木酚和香草醛低,它的熱解反應(yīng)(側(cè)鏈斷裂和脫水反應(yīng))主要發(fā)生在90~230 ℃范圍內(nèi),主要熱解產(chǎn)物為小分子物質(zhì)、烷烯烴和酚類化合物。Harman-Ware等[31]發(fā)現(xiàn)松柏醇熱解過(guò)程中主要是C4位的烯丙醇基官能團(tuán)發(fā)生熱解,甲氧基較為穩(wěn)定,650 ℃熱解產(chǎn)物中鄰苯二酚和苯酚較少,主要為異丁香酚、香草醛、4-丙基愈創(chuàng)木酚、4- 乙烯基愈創(chuàng)木酚、香草酸和4-丙烯醛基愈創(chuàng)木酚。與其他活性C4取代基不同,Ledesma等[32]研究4-丙基愈創(chuàng)木酚的熱解過(guò)程,發(fā)現(xiàn)由于C4丙基取代基較為穩(wěn)定,其熱解產(chǎn)物主要是4-丙基鄰苯二酚和5-丙基水楊醛。因此,C4取代基官能團(tuán)會(huì)引起愈創(chuàng)木酚類化合物的熱解行為和產(chǎn)物分布具有明顯差異。
此外,研究者還研究了愈創(chuàng)木酚與其他模型化合物之間的相互影響。Asmadi等[33]研究愈創(chuàng)木酚和紫丁香酚之間的相互影響,發(fā)現(xiàn)兩者之間的熱解過(guò)程明顯不同,紫丁香酚產(chǎn)生較多的一級(jí)焦炭,也產(chǎn)生了更多的氣體,尤其是CH4和CO2。此外他們還發(fā)現(xiàn)紫丁香酚可以產(chǎn)生氫供體從而抑制愈創(chuàng)木酚的OCH3均解反應(yīng),產(chǎn)生更少的鄰苯二酚,并促進(jìn)愈創(chuàng)木酚氫解離產(chǎn)生的酚氧基自由基發(fā)生重排反應(yīng)從而形成更多甲基酚。呂薇等[30]也研究了丁香酚、香草醛和左旋葡聚糖之間的相互影響,發(fā)現(xiàn)糖類可以顯著影響酚類化合物的熱解速率,且酚羥基官能團(tuán)容易與糖類熱解形成羰基產(chǎn)生縮合形成難以分解的縮聚物。研究者們還研究氫供體對(duì)愈創(chuàng)木酚熱解的影響。Zhou等[34]還研究了甲醇、丙酮和二甲醚3種氫供體對(duì)愈創(chuàng)木酚熱解行為的影響,發(fā)現(xiàn)氫供體可以顯著提高愈創(chuàng)木酚的脫氧反應(yīng)產(chǎn)生更多的芳烴。
當(dāng)前,愈創(chuàng)木基木質(zhì)素單體模型化合物的催化熱解研究主要是愈創(chuàng)木酚催化熱解,因此本文主要對(duì)近期愈創(chuàng)木酚催化熱解的研究進(jìn)展,特別是對(duì)催化劑影響、催化共熱解、反應(yīng)條件影響和催化劑失活機(jī)制等方面進(jìn)行總結(jié)。
催化愈創(chuàng)木酚熱解轉(zhuǎn)化過(guò)程主要發(fā)生脫氧和環(huán)化反應(yīng),使用的催化劑主要是分子篩以及金屬氧化物等。Behrens等[35]對(duì)SiO2、ZrO2-TiO2、HZSM-5催化裂解愈創(chuàng)木酚進(jìn)行比較發(fā)現(xiàn)ZrO2-TiO2可以有效催化愈創(chuàng)木酚脫除甲氧基生成苯酚,并發(fā)現(xiàn)在500 ℃熱解條件下HZSM-5的催化效果比金屬氧化物更好,且液體產(chǎn)物收率更高、脫氧效果更佳,他們進(jìn)一步還提出HZSM-5的表面酸性和獨(dú)特的孔道結(jié)構(gòu)是催化脫氧的活性位點(diǎn)。Ro等[36]通過(guò)對(duì)廢棄FCC催化劑和HZSM-5的催化效果進(jìn)行比較,進(jìn)一步明確了HZSM-5具有的較多強(qiáng)酸位點(diǎn)和合適的孔道結(jié)構(gòu)催化劑可以導(dǎo)致熱解產(chǎn)物更傾向于產(chǎn)生芳烴。馬文超等[37]在550 ℃利用HZSM-5催化熱解愈創(chuàng)木酚發(fā)現(xiàn)熱解液體產(chǎn)物主要以酚類化合物和芳烴為主,并提出HZSM-5催化劑提供的強(qiáng)酸質(zhì)子可以輔助愈創(chuàng)木酚脫除甲氧基形成苯酚。在此基礎(chǔ)上,王蕓等[38]也得到類似的結(jié)果并發(fā)現(xiàn)熱解產(chǎn)物中有大量烯烴。馮占元等[39]對(duì)以高嶺土為載體、不同分子篩(HY、5A和HZMS-5)為活性組分合成的系列高嶺土(Kaolin)基催化劑的催化活性進(jìn)行了對(duì)比研究,發(fā)現(xiàn)由于HZSM-5具有獨(dú)特的孔道結(jié)構(gòu)和酸性具有最好的催化效果,HZSM-5/ Kaolin催化劑可以選擇性脫甲氧基,單環(huán)芳烴可以達(dá)到57.14%。除了催化劑類型的影響,Jiang等[40]還研究了HZSM-5分子篩Si/Al比對(duì)愈創(chuàng)木酚熱解過(guò)程的影響,發(fā)現(xiàn)低Si/Al比的HZSM-5具有較多強(qiáng)酸位點(diǎn),使得愈創(chuàng)木酚催化熱解過(guò)程中發(fā)生更劇烈的脫水、脫羧、脫烷基、異構(gòu)化和聚合等反應(yīng),從而產(chǎn)生更多的芳烴。Jiang等[40]合成了不同Ni負(fù)載量的Ni/HZSM-5,發(fā)現(xiàn)1%Ni的改性可以提高脫氧效率,且有效抑制熱解液體產(chǎn)物中甲苯等烷基苯選擇性,并提高苯的選擇性。宋鏘等[41]還發(fā)現(xiàn)通過(guò)La 對(duì)HZSM進(jìn)行改性可以使HZSM-5產(chǎn)生孔徑較大的二次孔從而減少裂解物的低聚而降低催化劑結(jié)焦;而P改性可以使孔徑減小,從而阻止易形成焦炭的化合物進(jìn)入孔道,提高 ZSM-5 分子篩的抗積炭性能。表1總結(jié)不同催化劑催化熱解愈創(chuàng)木酚的反應(yīng)結(jié)果,HZSM-5分子篩基催化劑可以有效催化愈創(chuàng)木酚裂解脫氧形成單酚或芳烴為主的熱解產(chǎn)物。
表1 催化劑對(duì)愈創(chuàng)木酚催化熱解的影響
Graca等[42]研究愈創(chuàng)木酚和正庚烷催化共熱解發(fā)現(xiàn)愈創(chuàng)木酚對(duì)正庚烷有負(fù)面影響,導(dǎo)致催化劑表面產(chǎn)生更多的積碳;同時(shí)也發(fā)現(xiàn)正庚烷可以促進(jìn)愈創(chuàng)木酚脫甲氧基產(chǎn)生更多的苯酚和甲烷。Cheah等[43]在研究碳水化合物基熱解產(chǎn)物-羥基丙酮對(duì)愈創(chuàng)木酚熱解影響過(guò)程中發(fā)現(xiàn)在480 oC時(shí),兩者熱解行為存在著明顯的協(xié)同效應(yīng),羥基丙酮可以促進(jìn)脫氧、增加產(chǎn)物中芳烴含量并降低酚類化合物含量;然而同時(shí)也會(huì)提高焦炭收率,導(dǎo)致催化劑表面微孔發(fā)生堵塞。研究者們還通過(guò)添加氫供體與愈創(chuàng)木酚共熱解促進(jìn)愈創(chuàng)木酚熱解脫氧效果。Si等[44]在氧化鋁催化愈創(chuàng)木酚和甲醇共熱解的過(guò)程中發(fā)現(xiàn),甲醇不僅是良好的氫供體可以顯著提高愈創(chuàng)木酚的脫氧效率,同時(shí)還是烷基化試劑,熱解產(chǎn)物以五甲苯和六甲苯為主的取代芳烴為主。除了甲醇,毛陳等[45]利用正丁醇作為氫供體與愈創(chuàng)木酚催化共熱解,發(fā)現(xiàn)添加正丁醇可以降低催化劑積碳,促進(jìn)熱解脫氧反應(yīng)提高熱解產(chǎn)物的熱值,降低熱解產(chǎn)物中含氧化合物的含量和含水率。表2總結(jié)不同添加劑對(duì)愈創(chuàng)木酚催化熱解的影響,添加氫供體對(duì)可以明顯提高愈創(chuàng)木酚轉(zhuǎn)化率和脫氧效率且降低積碳的效果。
表2 愈創(chuàng)木酚催化共熱解效果
催化熱解是一個(gè)涉及熱質(zhì)傳遞、多相流動(dòng)和化學(xué)反應(yīng)等過(guò)程的復(fù)雜熱化學(xué)轉(zhuǎn)化過(guò)程,熱解過(guò)程中的熱解溫度、重時(shí)空速和愈創(chuàng)木酚分壓等因素對(duì)愈創(chuàng)木酚催化熱解具有重要影響。Li等[46]研究發(fā)現(xiàn)溫度對(duì)積碳形成具有重要影響,在溫度低于520 ℃時(shí),隨著溫度升高積碳收率下降,說(shuō)明含氧化合物的裂解率比聚合速率快;溫度高于520 ℃時(shí),積碳隨溫度升高而升高,表面高溫下的積碳主要是裂解碎片在高溫下發(fā)生二次聚合產(chǎn)生的。此外,Zhang等[47]也發(fā)現(xiàn)類似的結(jié)果,低溫有利于愈創(chuàng)木酚的轉(zhuǎn)化,且高溫有利于愈創(chuàng)木酚的轉(zhuǎn)化并促進(jìn)烯烴和芳烴的生產(chǎn),但也導(dǎo)致了較高的焦炭生成。除了熱解溫度,重時(shí)空速是另外一個(gè)重要影響愈創(chuàng)木酚催化劑熱解的因素,也是評(píng)價(jià)催化劑處理愈創(chuàng)木酚能力的重要評(píng)價(jià)指標(biāo)。提高重時(shí)空速可以降低愈創(chuàng)木酚裂解蒸汽在催化劑床層的停留時(shí)間,從而減少二次反應(yīng)并抑制積碳形成。他們還發(fā)現(xiàn)提高重時(shí)空速和愈創(chuàng)木酚分壓可以抑制積碳生成,但同時(shí)也降低了催化劑的脫氧效果、產(chǎn)生更多酚類化合物,并發(fā)現(xiàn)可以通過(guò)調(diào)節(jié)載氣流速調(diào)節(jié)分壓,在高分壓下愈創(chuàng)木酚的裂解反應(yīng)時(shí)間更長(zhǎng),從而可以充分地脫除官能團(tuán)產(chǎn)生更多的芳烴。
催化熱解過(guò)程中催化劑的穩(wěn)定性是一個(gè)非常重要的因素,直接關(guān)系到工藝的后續(xù)應(yīng)用,目前很多研究者對(duì)其進(jìn)行了深入的研究。Chen等[48]通過(guò)傅里葉紅外光譜(FTIR)、熱重質(zhì)譜聯(lián)用儀(TG-MS)和拉曼光譜(Raman)對(duì)HZSM-5催化熱解愈創(chuàng)木酚的失活機(jī)制進(jìn)行了詳細(xì)的研究,并發(fā)現(xiàn)催化劑失活機(jī)理主要由兩步組成:首先,由大量長(zhǎng)鏈飽和脂肪族烴類和少量含C=C的芳烴組成的積碳前驅(qū)體在催化劑表面形成;然后催化劑的活性位點(diǎn)被前驅(qū)體覆蓋,催化劑積碳類型由熱焦炭轉(zhuǎn)變?yōu)榇呋固浚⒅饾u堵塞分子篩的通道,從而加速催化劑的失活,最后導(dǎo)致催化劑完全失活。Zhang等[47]進(jìn)一步通過(guò)氮?dú)獾葴匚矫摳健⒎治霭睔獬绦蛏郎孛摳剑∟H3-TPD)、X射線衍射(XRD)和掃描電鏡(SEM)證明催化劑失活主要是由于積碳覆蓋了酸性位點(diǎn)和孔道結(jié)構(gòu)。他們還構(gòu)建了考慮積炭的愈創(chuàng)木酚催化轉(zhuǎn)化動(dòng)力學(xué)模型,發(fā)現(xiàn)產(chǎn)物分布和轉(zhuǎn)化率的試驗(yàn)數(shù)據(jù)與模型預(yù)測(cè)數(shù)據(jù)吻合度較高,進(jìn)一步證明積碳是催化劑失活的原因。此外,Li等[46]對(duì)熱解工況因素和催化劑積碳也進(jìn)行了詳細(xì)研究,發(fā)現(xiàn)熱解溫度和重時(shí)空速對(duì)催化劑的失活和積碳的形成具有重大影響,熱解溫度越高導(dǎo)致裂解碎片越易發(fā)生二次聚合而更易產(chǎn)生積碳;提高重時(shí)空速可以降低愈創(chuàng)木酚裂解蒸汽在催化劑床層的停留時(shí)間、使得二次反應(yīng)減少,從而減少積碳形成。他們還通過(guò)13CNMR對(duì)催化劑積碳的脂肪度和芳香度進(jìn)行表征,發(fā)現(xiàn)催化劑積碳的芳香碳的含量遠(yuǎn)遠(yuǎn)大于脂肪族碳,證明焦炭前驅(qū)體的組成以芳烴為主,且其形成途徑可能與較重芳烴聚合形成焦炭的裂解途徑類似。因此,愈創(chuàng)木酚催化熱解過(guò)程中催化劑的失活主要是由催化劑表面積碳引起的活性位點(diǎn)缺失和孔道堵塞導(dǎo)致的[49]。
由于木質(zhì)素復(fù)雜性結(jié)構(gòu)、含有各種化學(xué)鍵和官能團(tuán),因而木質(zhì)素的熱解過(guò)程復(fù)雜多變、催化熱解機(jī)理較為復(fù)雜。為了研究木質(zhì)素的熱解機(jī)理,研究者們會(huì)以木質(zhì)素模型物為原料對(duì)木質(zhì)素的化學(xué)鍵斷裂、中間體和重組等進(jìn)行研究,從而明確木質(zhì)素的熱解機(jī)理,為木質(zhì)素的熱解機(jī)制奠定基礎(chǔ)。愈創(chuàng)木基模型化合物結(jié)構(gòu)中含有的甲氧基和酚羥基等官能團(tuán)在木質(zhì)素中廣泛存在,目前廣泛作為模型化合物通過(guò)分析熱解試驗(yàn)和量子化學(xué)計(jì)算模擬闡明其熱解機(jī)理,從而為木質(zhì)素的催化轉(zhuǎn)化提供理論依據(jù)。
愈創(chuàng)木酚基單體模型化合物的熱解產(chǎn)物主要包括固體焦炭、液體產(chǎn)物和氣體產(chǎn)物。前文中C4位取代的愈創(chuàng)木酚基化合物熱解產(chǎn)物主要產(chǎn)物是鄰苯二酚類化合物、苯酚類化合物、鄰羥基苯甲醛類化合物和少量穩(wěn)定愈創(chuàng)木酚類化合物等;其與愈創(chuàng)木酚熱解產(chǎn)物比較類似[27-30,50]。Wang等[51]通過(guò)利用密度泛函理論對(duì)香草醛單分子和雙分子理解進(jìn)行計(jì)理論研究,發(fā)現(xiàn)O-CH3均裂形成鄰苯二酚類化合物是最主要和最開(kāi)始的熱解步驟,且鄰苯二酚和鄰羥基苯甲醛生成機(jī)制與愈創(chuàng)木酚熱解機(jī)理類似。武書(shū)彬等[52-53]通過(guò)研究香草醛、香草醇和香草酸等也得到類似結(jié)果;并發(fā)現(xiàn)當(dāng)氫自由基存在情況下,C4-C會(huì)發(fā)生優(yōu)先斷裂發(fā)生脫羰、脫羧等C-C斷裂反應(yīng)產(chǎn)生CO、CO2和HCHO等氣體產(chǎn)物和愈創(chuàng)木酚。他們還發(fā)現(xiàn)C4-C斷裂解離能與取代基吸電子能力有關(guān),香草醛>香草酸>香草醇。呂薇等[30]通過(guò)TG-FTIR研究發(fā)現(xiàn)香草醛更穩(wěn)定可能是香草醛結(jié)構(gòu)中具有醛羰基C=O和苯環(huán)的C=C形成更穩(wěn)定共軛雙鍵。Kotake等[54]和Harman-Ware等[31]在研究松柏醇熱解主要是烯丙醇發(fā)生自由基反應(yīng)、斷裂反應(yīng)、脫水反應(yīng)、異構(gòu)反應(yīng)和重排反應(yīng)等生成愈創(chuàng)木酚、4-乙烯基愈創(chuàng)木酚、4-丙基愈創(chuàng)木酚等產(chǎn)物。目前已有文獻(xiàn)報(bào)道愈創(chuàng)木酚的熱解產(chǎn)物主要包括固體焦炭、液體產(chǎn)物和氣體產(chǎn)物,本文以熱解產(chǎn)物為線索對(duì)熱解反應(yīng)機(jī)理進(jìn)行總結(jié)。
3.1.1 焦炭形成機(jī)理
Hosoya等[55-56]通過(guò)對(duì)比愈創(chuàng)木酚和2-乙氧基苯酚的熱解,有力的證明了甲氧基的存在與焦炭的形成具有密切的聯(lián)系,并提出由鄰甲氧基酚脫氫異構(gòu)形成的鄰亞甲基醌活性中間體可能是形成焦炭的重要中間體。Asmadi等[57]等根據(jù)對(duì)比熱解愈創(chuàng)木酚和紫丁香酚也發(fā)現(xiàn)類似結(jié)果,且進(jìn)一步證明焦炭的形成與鄰甲氧基的數(shù)量之間的關(guān)系。Cheng等[58]利用熱重-質(zhì)譜聯(lián)用系統(tǒng)(TG-MS)、裂解原位紅外檢測(cè)系統(tǒng)(in-situ FTIR)和密度泛函理論計(jì)算進(jìn)一步證實(shí)了愈創(chuàng)木酚可以形成鄰亞甲基醌,是愈創(chuàng)木酚熱解形成焦炭的重要中間體。Liu等[59]也通過(guò)密度泛函理論計(jì)算揭示了鄰亞甲基苯醌的形成機(jī)理,并明確了甲氧基在愈創(chuàng)木酚熱解過(guò)程中形成鄰亞甲基苯醌的必要性。圖2總結(jié)了愈創(chuàng)木酚直接熱解生成焦炭的可能反應(yīng)途經(jīng),愈創(chuàng)木酚結(jié)構(gòu)中的甲氧基與焦炭形成具有直接關(guān)系,且其熱解產(chǎn)生的初產(chǎn)物鄰苯二酚及其衍生物鄰亞甲基醌是焦炭形成的重要中間體。
圖2 愈創(chuàng)木酚熱解結(jié)焦機(jī)理[55-59]
3.1.2 液體產(chǎn)物形成機(jī)理
1987年Vuori等[60]發(fā)現(xiàn)400 ℃愈創(chuàng)木酚熱解液體產(chǎn)物主要是鄰苯二酚和苯酚,并提出愈創(chuàng)木酚熱解過(guò)程主要是自由基反應(yīng)。Dorrestijn等[61]通過(guò)引入異丙苯作為自由基清除劑的愈創(chuàng)木酚熱解試驗(yàn)研究和動(dòng)力學(xué)計(jì)算進(jìn)一步證明愈創(chuàng)木酚熱解主要是自由基反應(yīng),且他們還提出愈創(chuàng)木酚熱解的主要反應(yīng)途徑是通過(guò)O-CH3裂解生成甲烷和鄰苯二酚。Liu等[26]通過(guò)PI-TOF-MS對(duì)愈創(chuàng)木酚熱解過(guò)程中產(chǎn)生的自由基進(jìn)行實(shí)時(shí)監(jiān)測(cè)同樣證明愈創(chuàng)木酚熱解主要是自由基反應(yīng),熱解過(guò)程中O-CH3鍵均裂是形成鄰苯二酚的主要反應(yīng)途徑。Nowakowska等[62]還通過(guò)對(duì)愈創(chuàng)木酚熱解動(dòng)力學(xué)模擬提出鄰苯二酚生成機(jī)制:在熱力學(xué)作用下愈創(chuàng)木酚容易發(fā)生O-CH3鍵斷裂成羥基苯氧基和甲基,隨后生成鄰苯二酚。
除了鄰苯二酚,苯酚和鄰甲基苯酚等酚類化合物也是愈創(chuàng)木酚熱解的重要產(chǎn)物。與產(chǎn)生鄰苯二酚的愈創(chuàng)木酚O-CH3基均裂途徑不同,苯酚和鄰甲基苯酚主要通過(guò)愈創(chuàng)木酚異裂脫甲氧基途徑產(chǎn)生[63-64]。Liu等[26]通過(guò)對(duì)愈創(chuàng)木酚裂解自由基定量監(jiān)測(cè),提出苯酚可能通過(guò)氫自由基或甲基自由基輔助的愈創(chuàng)木酚異裂脫甲氧基途徑產(chǎn)生。Liu等[59]通過(guò)密度泛函理論計(jì)算發(fā)現(xiàn)在氫自由基存在的條件能有效降低愈創(chuàng)木酚脫甲氧基化反應(yīng)的能壘,使得愈創(chuàng)木酚脫甲氧基產(chǎn)生苯酚;Huang等[65]通過(guò)理論計(jì)算也得出相同的結(jié)論。此外,Liu等[26]還發(fā)現(xiàn)苯酚還可能通過(guò)甲基自由基介入的愈創(chuàng)木酚異裂路徑產(chǎn)生,愈創(chuàng)木酚和甲基自由基發(fā)生異裂產(chǎn)生芐樣自由基和甲烷,芐氧自由基隨后發(fā)生脫氫生成鄰羥基苯甲醛,進(jìn)而羥基苯甲醛脫羰產(chǎn)生苯酚。Nowakowska等[62]通過(guò)熱解動(dòng)力學(xué)模擬得到了類似的氫自由基輔助的苯酚生成路徑。此外,鄰甲基苯酚也是通過(guò)氫自由基裂解反應(yīng)途徑產(chǎn)生的。Dorrestijn等[61]還發(fā)現(xiàn)愈創(chuàng)木酚熱解過(guò)程中發(fā)生氫自由基的分子內(nèi)遷移的一系列反應(yīng)除了產(chǎn)生苯酚,還可以產(chǎn)生2-羥基苯甲醛和2-羥基苯甲醛,2-羥基苯甲醛,進(jìn)而可以分解產(chǎn)生2-亞甲基苯醌中間體并通過(guò)還原生成鄰甲基苯酚。Yerrayya等[27]發(fā)現(xiàn)脫甲氧基后產(chǎn)生的鄰酚自由基與甲基自由基結(jié)合也可能產(chǎn)生鄰甲基苯酚。圖3總結(jié)了愈創(chuàng)木基結(jié)構(gòu)單元直接熱解生成酚類液體產(chǎn)物可能反應(yīng)途經(jīng),熱解過(guò)程中發(fā)生的主要是是自由基反應(yīng),通過(guò)均裂反應(yīng)途徑主要產(chǎn)生鄰苯二酚,異裂反應(yīng)途徑主要產(chǎn)生苯酚和鄰甲基苯酚。熱解過(guò)程中形成的亞甲基等類似氫自由基可以促進(jìn)生成苯酚等化合物。
3.1.3 氣體產(chǎn)物形成機(jī)理
氣體產(chǎn)物是熱解轉(zhuǎn)化過(guò)程中重要的副產(chǎn)物,愈創(chuàng)木酚熱解產(chǎn)生的主要?dú)怏w有CH4、CO和C1-C5烴類化合物。 Liu等[26]通過(guò)PI-TOF-MS對(duì)愈創(chuàng)木酚熱解發(fā)現(xiàn)鄰苯二酚是重要中間體,其通過(guò)分子內(nèi)氫插入、開(kāi)環(huán)和脫羰等反應(yīng)可以產(chǎn)生C4氣體化合物。Furutani等[66]通過(guò)對(duì)愈創(chuàng)木酚和鄰苯二酚的熱解動(dòng)力學(xué)分析也得到了類似的結(jié)果,可能是由鄰苯二酚通過(guò)加氫和產(chǎn)生的2-羥基-2,4-環(huán)己二烯-1-酮,進(jìn)而發(fā)生裂解生成C4H4、C2H2和CO等氣體。陳志寒等[67]發(fā)現(xiàn)愈創(chuàng)木酚在750 ℃條件下先發(fā)生O-C鍵斷裂脫出甲基形成鄰羥基苯醌,然后脫除CO生成環(huán)戊二烯酮中間體,進(jìn)而發(fā)生脫羰和裂解反應(yīng)生成CO、環(huán)戊二烯或1,4丁二烯等氣體產(chǎn)物。Ormond等[68]通過(guò)Pyrolysis-PIMS聯(lián)用同樣證明環(huán)戊二烯酮是木質(zhì)素模型化合物單分子熱解機(jī)制中普遍存在的中間體,同時(shí)也是CO、C2和C4小分子化合物的重要前體。因此,愈創(chuàng)木基結(jié)構(gòu)單元熱解過(guò)程初步熱解產(chǎn)物鄰苯二酚及其衍生的鄰羥基苯醌和環(huán)戊二烯酮等中間產(chǎn)物可能是氣體產(chǎn)物形成的重要中間體(如圖3所示)。
相較于愈創(chuàng)木酚基化合物直接熱解機(jī)理研究,當(dāng)前其催化熱解的機(jī)理研究還較少,主要是根據(jù)試驗(yàn)結(jié)果對(duì)可能反應(yīng)路徑進(jìn)行推測(cè)。Cheah 等[43]通過(guò)核磁(NMR),氣相色譜質(zhì)譜聯(lián)用儀(GC-MS)和熱重-紅外聯(lián)用分析儀(TG-FTIR)等證明了鄰苯二酚是HZSM-5催化愈創(chuàng)木酚熱解反應(yīng)中重要的熱解產(chǎn)物中間體。Hemberger 等[69]利用同步輻射光電子光電離子復(fù)合技術(shù)(py-iPEPICO)對(duì)愈創(chuàng)木酚催化熱解實(shí)時(shí)監(jiān)測(cè),進(jìn)一步發(fā)現(xiàn)鄰苯二酚和環(huán)戊二烯-烯酮(fulvenone ketene)是愈創(chuàng)木酚到苯酚和芳烴的重要中間體。王蕓等[38]通過(guò)對(duì)裂解反應(yīng)時(shí)間的影響進(jìn)行研究提出愈創(chuàng)木酚HZSM-5催化熱解的“烴池反應(yīng)”機(jī)理:愈創(chuàng)木酚首先熱解生成苯酚、水楊醛、鄰苯二酚等,這些酚類物質(zhì)在催化劑內(nèi)部形成烴池,烴池的活性中心將反應(yīng)物進(jìn)一步轉(zhuǎn)化生成烯烴、芳香烴,同時(shí)也生成焦炭(圖4所示)。
圖3 愈創(chuàng)木基木質(zhì)素單體模型化合物熱解制備酚類化合物和氣體產(chǎn)物的機(jī)制[26, 63-68]
圖4 HZSM-5催化熱解愈創(chuàng)木酚的可能反應(yīng)路徑[38,43,69]
本文通過(guò)對(duì)愈創(chuàng)木酚類化合物的熱解轉(zhuǎn)化過(guò)程、催化熱解影響因素、催化劑失活機(jī)制和產(chǎn)物生成機(jī)理等方面的研究進(jìn)展進(jìn)行系統(tǒng)梳理和總結(jié),得到以下結(jié)論:1)愈創(chuàng)木酚類化合物直接熱解產(chǎn)物以苯酚類和鄰苯二酚類化合物為主,且熱解溫度對(duì)其熱解過(guò)程具有一定影響,提高熱解溫度提高轉(zhuǎn)化率且產(chǎn)生少量芳烴和更多的烯烴。2)分子篩由于具有獨(dú)特結(jié)構(gòu)和酸性位點(diǎn),是催化裂解愈創(chuàng)木酚脫氧制備芳烴和單酚的有效催化劑;催化熱解反應(yīng)條件(如熱解溫度、重時(shí)空速和原料分壓等)對(duì)催化熱解產(chǎn)物具有重要影響;且在熱解過(guò)程中添加氫供體可以顯著提高愈創(chuàng)木酚脫氧率并降低催化劑的積碳。3)熱解機(jī)理方面,愈創(chuàng)木酚基化合物直接熱解的主要反應(yīng)途經(jīng)是自由基反應(yīng),且結(jié)構(gòu)單元中的甲氧基與焦炭形成具有直接關(guān)系。初步熱解產(chǎn)物鄰苯二酚及其衍生的鄰羥基苯醌是形成氣體產(chǎn)物的重要中間體。與直接熱解不同的是,愈創(chuàng)木酚催化熱解的主要反應(yīng)機(jī)理是“烴池機(jī)理”。雖然領(lǐng)域的研究雖然已取得一定研究成果,但仍有一些問(wèn)題有待解決。為了進(jìn)一步加深對(duì)木質(zhì)素?zé)峤膺^(guò)程的理解,未來(lái)需要在以下幾個(gè)方面加強(qiáng)研究:1)木質(zhì)素組成和結(jié)構(gòu)十分復(fù)雜,需要進(jìn)一步對(duì)木質(zhì)素?zé)峤獾臒崃W(xué)過(guò)程進(jìn)行研究,明確熱解過(guò)程的影響因素。2)當(dāng)前熱解產(chǎn)物存在產(chǎn)率或選擇性較低等缺點(diǎn),需要進(jìn)一步加深對(duì)甲氧基、C4位取代基和酚羥基等官能團(tuán)轉(zhuǎn)化調(diào)控體系的研究。3)當(dāng)前催化劑體系仍然存在容易積碳和失活等缺點(diǎn),需要開(kāi)發(fā)更加高效、穩(wěn)定的新型催化體系。4)當(dāng)前對(duì)愈創(chuàng)木基木質(zhì)素催化熱解機(jī)理的理論研究還尚有不足,需要通過(guò)密度泛函理論構(gòu)建催化裂解計(jì)算模型進(jìn)行理論計(jì)算并結(jié)合先進(jìn)在線熱解試驗(yàn)方法進(jìn)行更深入地研究。5)當(dāng)前熱解產(chǎn)物分布非常復(fù)雜,需要開(kāi)發(fā)新的后續(xù)分離工藝實(shí)現(xiàn)產(chǎn)物分離,提高產(chǎn)品附加值。盡管以上的諸多問(wèn)題需要不斷深入探索與研究,但木質(zhì)素?zé)峤廪D(zhuǎn)化制備芳香性化學(xué)品具有獨(dú)特優(yōu)勢(shì),在未來(lái)的生物質(zhì)資源化實(shí)際生產(chǎn)中具有巨大潛力。
[1] Scarlat N, Dallemand J F, Monforti-Ferrario F, et al. The role of biomass and bioenergy in a future bioeconomy: Policies and facts[J]. Environmental Development, 2015, 15: 3-34.
[2] 唐衛(wèi)軍,肖波,楊家寬,等. 生物質(zhì)轉(zhuǎn)化利用技術(shù)研究進(jìn)展[J]. 再生資源研究,2003,4(4):30-32.
Tang Weijun, Xiao Bo, Yang Jiakuan, et al. Research development of biomass conversion technology[J]. Recyclable Resources and Circular Economy, 2003, 4(4): 30-32. (in Chinese with English abstract)
[3] Ragauskas A J, Beckham G T, Biddy M J, et al. Lignin valorization: Improving lignin processing in the biorefinery[J]. Science, 2014, 344: 709.
[4] Sixta H, Potthast A, Krotschek A W. Chemical Pulping Processes: Sections 4.1-4.2. 5. Handbook of Pulp, Weinheim, 2006: 109-229.
[5] Xu C P, Arancon R A D, Labidi J, et al. Lignin depolymerisation strategies: Towards valuable chemicals and fuels[J]. Chemical Society Reviews, 2014, 43: 7485-7500.
[6] Xu L J, Zhang Y, Fu Y. Advances in upgrading lignin pyrolysis vapors by ex?situ catalytic fast pyrolysis[J]. Energy Technology, 2017, 5(1): 30-51.
[7] 岳金方,應(yīng)浩. 工業(yè)木質(zhì)素的熱裂解試驗(yàn)研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2006,22(增刊1):125-128.
Yue Jinfang, Ying Hao. Experimental study on industriallignin pyrolysis[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2006, 22(Supp.1): 125-128. (in Chinese with English abstract)
[8] Pandey M P, Kim C S. Lignin depolymerization and conversion: A review of thermochemical methods[J]. Chemical Engineering Technology, 2011, 34(1): 29-41.
[9] Kim J Y, Heo S, Choi J W. Effects of phenolic hydroxyl functionality on lignin pyrolysis over zeolite catalyst[J]. Fuel, 2018, 232: 81-89.
[10] Lei M, Wu S, Liang J, et al. Comprehensive understanding the chemical structure evolution and crucial intermediate radical in situ observation in enzymatic hydrolysis/mild acidolysis lignin pyrolysis[J]. Journal of Analytical and Applied Pyrolysis, 2019, 138: 249-260.
[11] Hu L H, Pan H, Zhou Y H, et al. Methods to improve lignin’s reactivity as a phenol substitute and as replacement for other phenolic compounds: A brief review[J]. Bioresources, 2011, 6: 3515-3525.
[12] Li J, Bai X, Fang Y, et al. Comprehensive mechanism of initial stage for lignin pyrolysis[J]. Combustion and Flame, 2020, 215: 1-9.
[13] 馬中青,王浚浩,黃明,等. 木質(zhì)素種類和催化劑添加量對(duì)熱解產(chǎn)物的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(1):274-282.
Ma Zhongqing, Wang Junhao, Huang Ming, et al. Effects of lignin species and catalyst addition on pyrolysis products[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(1): 274-282. (in Chinese with English abstract)
[14] 王荀,呂永康. 愈創(chuàng)木酚催化氫解制取苯酚研究進(jìn)展[J]. 現(xiàn)代化工,2019,39(4):36-41.
Wang Xun, Lv Yongkang. Advances in phenol production through catalytic hydrogenolysis of guaiacol[J]. Modern Chemical Industry, 2019, 39(4): 36-41. (in Chinese with English abstract)
[15] 譚雪松,莊新姝,呂雙亮,等. 鈀炭催化木質(zhì)素模型化合物愈創(chuàng)木酚加氫脫氧制備烷烴[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(21):193-199.
Tan Xuesong, Zhuang Xinshu, Lü Shuangliang, et al. Hydrodeoxygenation of guaiacol as lignin model compound for alkanes preparation with palladium-carbon catalysts[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(21): 193-199. (in Chinese with English abstract)
[16] 楊宇,李妞,王爽. 愈創(chuàng)木酚的制備研究進(jìn)展[J]. 工業(yè)催化,2017,25(4):1-5.
Yang Yu, Li Niu, Wang Shuang. Research progress in guaiacol preparation[J]. Industrial Catalysis. 2017, 25(4): 1-5. (in Chinese with English abstract)
[17] 李光明,劉有智,張巧玲,等. 愈創(chuàng)木酚制備方法與進(jìn)展[J]. 化工中間體,2010,5:20-25.
Li Guangming, Liu Youzhi, Zhang Qiaoling, et al. Research progress of the preparation method of guaiacol[J]. Chemical Intermediate, 2010, 5: 20-25. (in Chinese with English abstract)
[18] Feng P, Wang H, Lin H F, et al. Selective production of guaiacol from black liquor: Effect of solvents[J]. Carbon Resources Conversion, 2019, 2: 1-12.
[19] 劉軍利,蔣建春,黃海濤. 木質(zhì)素CP-GC-MS法裂解行為研究[J]. 林產(chǎn)化學(xué)與工業(yè),2009,10:1-6.
Liu Junli, Jiang Jianchun, Huang Haitao. Study on thermal transformations of lignin unfer curie-point pyrolysis-GC-MS conditions[J]. Chemistry and Industry of Forest Products, 2009, 10: 1-6. (in Chinese with English abstract)
[20] 楊曉慧,周永紅,胡麗紅,等. 木質(zhì)素制備香草醛的研究進(jìn)展[J]. 纖維素科學(xué)與技術(shù),2010,18(4):49-54.
Yang Xiaohui, Zhou Yonghong, Hu Lihong, et al. Research advances in preparation of vanillin from lignin[J]. Journal of Cellulose Science and Technology, 2010, 18(4): 49-54. (in Chinese with English abstract)
[21] 李超群,唐修祥,蔣天成. 由丁香油提取99%丁香酚的生產(chǎn)技術(shù)研究[J]. 香料香精化妝品,2013,5:4-5.
Li Chaoqun, Tang Xiuxiang, Jiang Tiancheng. Study on manufacturing process for 99% purity eugenol from clove oil[J]. Flavour Fragrance Cosmetics, 2013, 5: 4-5. (in Chinese with English abstract)
[22] 劉雋涵,孫建奎,肖領(lǐng)平,等. 金屬鉬催化云杉制備松柏醇醚及全組分利用[J]. 林產(chǎn)化學(xué)加工,2019,4(5):78-83.
Liu Junhan, Sun Jiankui, Xiao Lingping, et al. Molybdenum- catalyzed fragmentation of Chinese spruce into coniferyl methyl ether and sequential utilization of total components[J]. Journal of Forestry Engineering, 2019, 4(5): 78-83. (in Chinese with English abstract)
[23] 張欣,高增平. 阿魏酸的研究進(jìn)展[J]. 中國(guó)現(xiàn)代中藥,2020,22(1):138-147.
Zhang Xin, Gao Zengping. Research progress in ferulic acid[J]. Modern Chinese Medicine, 2020, 22(1): 138-147. (in Chinese with English abstract)
[24] Zhao Y, Xu Q, Pan T, et al. Depolymerization of lignin by catalytic oxidation with aqueous polyoxometalates[J]. Applied Catalysis A: General, 2013, 467(10): 504-508.
[25] Wang L, Li J, Chen Y, et al. Investigation of the pyrolysis characteristics of guaiacol lignin using combined Py-GC×GC/TOF-MS and in-situ FTIR[J]. Fuel, 2019, 251: 496-505.
[26] Liu C, Ye L, Yuan W, et al. Investigation on pyrolysis mechanism of guaiacol as lignin model compound at atmospheric pressure[J]. Fuel, 2019, 232: 632-638.
[27] Yerrayya A, Natarajan U, Vinu R. Fast pyrolysis of guaiacol to simple phenols: Experiments, theory and kinetic model[J]. Chemical Engineering Science, 2019, 207: 619-630
[28] Liu C, Deng Y, Wu S, et al. Study on the pyrolysis mechanism of three guaiacyl-type lignin monomeric model compounds[J]. Journal of Analytical and Applied Pyrolysis, 2016, 118: 123-129.
[29] Verma A M, Agrawal K, Kawale H D, et al. Quantum chemical study on gas phase decomposition of ferulic acid[J]. Molecular Physics, 2018, 116(14): 1895-1907.
[30] 呂薇,張琦,王鐵軍,等. 生物油重質(zhì)組分模型物熱解行為及其動(dòng)力學(xué)研究[J]. 燃料化學(xué)學(xué)報(bào),2013,41(2):198-206.
Lü Wei, Zhang Qi, Wang Tiejun, et al. Thermal degradation behaviors and pyrolysis kinetics of model compounds of bio-oil heavy fractions[J]. Journal of Fuel Chemistry and Technology, 2013, 41(2): 198-206. (in Chinese with English abstract)
[31] Harman-Ware A E, Crocker M, Kaur A P, et al. Pyrolysis-GC/MS of sinapyl and coniferyl alcohol[J]. Journal of Analytical and Applied Pyrolysis, 2013, 99(1): 161-169.
[32] Ledesma E B, Mullery A A, Vu J V, et al. Lumped kinetics for biomass tar cracking using 4-propylguaiacol as a model compound[J]. Industrial Engineering Chemistry & Research, 2015, 54: 5613-5623.
[33] Asmadi M, Kawamoto H, Saka S. The effects of combining guaiacol and syringol on their pyrolysis[J]. Holzforschung, 2012, 66: 323-330.
[34] Zhou J, Jin W, Shen D, et al. Formation of aromatic hydrocarbons from co-pyrolysis of lignin-related model compounds with hydrogen-donor reagents[J]. Journal of Analytical and Applied Pyrolysis, 2018, 134(9): 143-149.
[35] Behrens M, Jeffrey S C, Akasaka H, et al. A study of guaiacol, cellulose, and Hinoki wood pyrolysis with silica, ZrO2&TiO2and ZSM-5 catalysts[J]. Journal of Analytical and Applied Pyrolysis, 2017, 125: 178-184.
[36] Ro D, Kim Y M, Lee I G, et al. Bench scale catalytic fast pyrolysis of empty fruit bunches over low cost catalysts and HZSM-5 using a fixed bed reactor[J]. Journal of Cleaner Production, 2018, 176: 298-303.
[37] 馬文超,陳嬌嬌,王鐵軍,等. 生物油模型化合物催化裂解機(jī)理[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(9):207-213.
Ma Wenchao, Chen Jiaojiao, Wang Tiejun, et al. Catalytic cracking mechanism of bio-oil model compounds[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(9): 207-213. (in Chinese with English abstract)
[38] 王蕓,邵珊珊,張會(huì)巖,等. 生物質(zhì)模化物催化熱解制取烯烴和芳香烴[J]. 化工學(xué)報(bào),2015,66(8):3022-3028.
Wang Yun, Shao Shanshan, Zhang Huiyan, et al. Catalytic pyrolysis of biomass model compounds to olefins and aromatic hydrocarbons[J]. CIESC Journal, 2015, 66(8): 3022-3028. (in Chinese with English abstract)
[39] 馮占元,張素平,左成月,等. 不同催化劑催化裂化愈創(chuàng)木酚的性能[J]. 石油化工,2015,44(4):459-465.
Feng Zhanyuan, Zhang Suping, Zuo Chengyue, et al. Performances of different catalysts in catalytic cracking of guaiacol[J]. Petrochemical Technology, 2015, 44(4): 459-465. (in Chinese with English abstract)
[40] Jiang X, Zhou J, Zhao J, et al. Catalytic conversion of guaiacol as a model compound for aromatic hydrocarbon production[J]. Biomass and Bioenergy, 2018, 111: 343-351.
[41] 宋鏘,于鳳文,王佳,等. La/P/Ni 改性分子篩催化裂解生物油模型化合物[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(1):284-289.
Song Qiang, Yu Fengwen, Wang Jia, et al. Catalytic pyrolysis of bio-oil model compounds over La/P/Ni modified ZSM-5[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(1): 284-289. (in Chinese with English abstract)
[42] Graca I, Lopes J M, Ribeiro M F, et al. Catalytic cracking in the presence of guaiacol [J]. Applied Catalysis B: Environmental, 2011, 101: 613-621.
[43] Cheah S, Starace A K, Gjersing E, et al. Reactions of mixture of oxygenates found in pyrolysis vapors: deoxygenation of hydroxyacetaldehyde and guaiacol catalyzed by HZSM-5[J]. Topics in Catalysis, 2016, 59: 109-123.
[44] Si Z, Lv W, Tian Z, et al. Conversion of bio-derived phenolic compounds into aromatic hydrocarbons by co-feeding methanol over-A12O3[J]. Fuel, 2018, 233(12): 113-122.
[45] 毛陳,于鳳文,聶勇,等. 生物油模型化合物催化共裂解制烴的研究[J]. 石油化工,2016,45(5):536-541.
Mao Chen, Yu Fengwen, Nie Yong, et al. Experimental study on bio-oil model compound copyrolysis to hydrocarbons[J]. Petrochemical Technology, 2016, 45(5): 536-541. (in Chinese with English abstract)
[46] Li S, Zhang S, Feng Z, et al. Coke formation in the catalytic cracking of bio-oil model compounds[J]. Environmental Progress & Sustainable Energy, 2015, 34(1): 240-247.
[47] Zhang H, Wang Y, Shao S, et al. Catalytic conversion of lignin pyrolysis model compound-guaiacol and its kinetic model including coke formation[J]. Scientific Reports, 2016, 6: 37513.
[48] Chen G, Zhang R, Ma W, et al. Catalytic cracking of model compounds of bio-oil over HZSM-5 and the catalyst deactivation[J]. Science of the Total Environment, 2018, 631-632(8): 1611-1622.
[49] Zhang Z, Hu X, Zhang L, et al. Steam reforming of guaiacol over Ni/Al2O3and Ni/SBA-15: Impacts of support on catalytic behaviors of nickel and properties of coke[J]. Fuel Processing Technology, 2019, 191: 138-151.
[50] 劉玉環(huán),涂春明,王允圃,等. 木質(zhì)素模型化合物的裂解工藝及機(jī)理的研究進(jìn)展[J]. 高分子通報(bào),2016,28(6):78-83.
Liu Yuhuan, Tu Chunming, Wang Yunpu, et al. Progress of research on the pyrolysis process and mechanism of lignin model compounds[J]. Chinese Polymer Bulletin, 2016, 28(6): 78-83. (in Chinese with English abstract)
[51] Wang M, Liu C, Xu X, et al. Theoretical study of the pyrolysis of vanillin as a model of secondary lignin pyrolysis[J]. Chemical Physics Letters, 2016, 654: 41-45.
[52] 武書(shū)彬,鄧裕斌,劉超. 木質(zhì)素單體?;餆峤膺^(guò)程的理論分析[J]. 華南理工大學(xué)學(xué)報(bào):自然科學(xué)版,2014,42(10):70-74.
Wu Shubin, Deng Yubin, Liu Chao. Theoretical analysis on pyrolysis processes of monomeric model compounds of lignin[J]. Journal of South China University of Technology: Natural Science Edition, 2014, 42(10): 70-74. (in Chinese with English abstract)
[53] Hao C, Wu S, Liu C. Study on the mechanism of the pyrolysis of a lignin monomeric model compound by in situ FTIR[J]. BioResources, 2014, 9(3): 4441-4448.
[54] Kotake T, Kawamoto H, Saka S. Pyrolysis reactions of coniferyl alcohol as a model of the primary structure formed during lignin pyrolysis[J]. Journal of Analytical and Applied Pyrolysis, 2013, 104(11): 573-584.
[55] Hosoya T, Kawamoto H, Saka S. Role of methoxyl group in char formation from lignin-r elated compounds[J]. Journal of Analytical and Applied Pyrolysis, 2009, 84: 79-83.
[56] Hosoya T, Kawamoto H, Saka S. Pyrolysis gasi?cation reactivities of primary tar and char fractions from cellulose and lignin as studied with a closed ampoule reactor[J]. Journal of Analytical and Applied Pyrolysis, 2008, 83: 71-77.
[57] Asmadi M, Kawamoto H, Saka S. Thermal reactions of guaiacol and syringol as lignin model aromatic nucle[J]. Journal of Analytical and Applied Pyrolysis, 2011, 92: 88-98.
[58] Cheng H, Wu S, Huang J, et al. Direct evidence from in situ FTIR spectroscopy that o-quinonemethide is a key intermediate during the pyrolysis of guaiacol[J]. Analytical and Bioanalytical Chemistry, 2017, 409: 2531-2537.
[59] Liu C, Zhang, Y, Huang X. Study of guaiacol pyrolysis mechanism based on density function theory[J]. Fuel Processing Technology, 2014, 123: 159-165.
[60] Vuori A I, Bredenberg J B. Thermal chemistry pathways of substituted anisoles[J]. Industrial Engineering Chemistry & Engineering, 1987, 26: 359-365
[61] Dorrestijn E, Peter M. The radical-induced decomposition of 2-methoxyphenol[J]. Journal of Chemical Society, Perkin Trans. 1999, 2: 777-780.
[62] Nowakowska M, Herbinet O, Dufour A, et al. Kinetic study of the pyrolysis and oxidation of guaiacol[J]. The Journal of Physical Chemistry A, 2018, 122: 7894-7909.
[63] Nguyen T T P, Mai V T, Huynh L K. Detailed kinetic modeling of thermal decomposition of guaiacol-A model compound for biomass lignin[J]. Biomass & Bioenergy, 2018, 112(5): 45-60.
[64] Scheer A M, Mukarakate C, Robichaud D J, et al. Thermal decomposition mechanisms of the methoxyphenols: Formation of phenol, cyclopentadienone, vinylacetylene, and acetylene[J]. The Journal of Physical Chemistry A, 2011, 115(46): 13381-13389.
[65] Huang J, Li Xi, Wu D, et al. Theoretical studies on pyrolysis mechanism of guaiacol as lignin model compound[J]. Journal of Renewable & Sustainable Energy, 2013, 5(4): 6136-6146.
[66] Furutani Y, Dohara Y, Kudo S, et al. Theoretical study on the kinetics of thermal decomposition of guaiacol and catechol[J]. The Journal of Physical Chemistry A, 2017, 121(44): 8495-8503.
[67] 陳志寒,崔耀,楊華美,等. 木質(zhì)素模型化合物熱解芳環(huán)轉(zhuǎn)化機(jī)理研究[J]. 化工技術(shù)與開(kāi)發(fā),2018,47(5):8-10.
Chen Zhihan, Cui Yao, Yang Huamei, et al. Conversion mechanism of aromatic structure during pyrolysis of lignin model compounds[J]. Technology & Development of Chemical Industry, 2018, 47(5): 8-10. (in Chinese with English abstract)
[68] Ormond T K, Scheer A M, Nimlos M R, et al. Polarized matrix infrared spectra of cyclopentadienone: observations, calculations, and assignment for an important intermediate in vombustion and biomass pyrolysis[J]. The Journal of Physical Chemistry A, 2014, 118: 708-718.
[69] Hemberger P, Custodis V B F, Bodi A, et al. Understanding the mechanism of catalytic fast pyrolysis by unveiling reactive intermediates in heterogeneous catalysis[J]. Nature Communications, 2017, 8:15946.
Research advances in pyrolysis of softwood lignin-based monomers
Xu Lujiang, Shi Chenchen, He Zijian, Liu Yang, Wu Shenghong, Fang Zhen※
(,,210031,)
Lignin is the second largest natural polymer material in lignocellulose-based biomass components, just behind cellulose and the only sustainable source to produce renewable aromatic compounds. However, lignin is always treated as the cause of serious environmental problems, as it was burned under low temperature and discharged arbitrarily without effectively utilization. Pyrolysis technology offers an effective way for fast conversion of lignin into biochar, biooil and biogas products, to realize its high-value utilization and valorization. In recent years, Guaiacyl structural units, the main component structures of softwood lignin and gramineous lignin, are widely used as model compounds for the understanding of decomposition and coking mechanisms in lignin pyrolysis, not to mention their functional groups, such as methoxy and phenolic hydroxyl groups in their structures widely exist in lignin. This review summarized the pyrolysis process, impact factors, product distribution, and catalyst deactivation mechanism, during guaiacol-based model compounds pyrolysis process. During the direct pyrolysis process of guaiacol compounds, the main products mainly including phenols and catechol compounds, and pyrolysis temperature showed a certain influence on the guaiacol compounds conversion and products distributions. Increasing the pyrolysis temperature can increase the conversion rate, while lead to produce more olefins and a small number of aromatics. Moreover, the C4 substituent functional group of guaiacol-type compounds (e.g. vanillin, vanillic acid and vanillyl alcohol) also affects the pyrolysis product distributions. In catalytic pyrolysis, most previous studies focused on the catalytic pyrolysis of guaiacol, in which aromatic hydrocarbons and phenols compounds served as the main products, Zeolites, especially HZSM-5 based catalysts dominated. The unique structure and acidic sites of zeolite-based catalysts are the main active sites for guaiacol conversion and products formation during catalytic pyrolysis process. The addition of hydrogen donors can significantly increase the deoxygenation rate of guaiacol, while, reduce the carbon deposition of the catalyst. The impact factors, such as pyrolysis temperature, Weight Hourly Space Velocity (WHSV), and guaiacol partial pressure, strongly affect the catalytic pyrolysis of guaiacol. Increasing the pyrolysis temperature can enhance the coke formation on the catalyst, and promote the production of aromatic hydrocarbons and olefins, whereas, increasing the WHSV and guaiacol partial pressure can inhibit the coke formation on the catalyst, and reduce the efficiency of deoxygenation, leading to more phenolic compounds production, and guaiacol partial pressure. The deactivation of the catalyst is mainly resulted from the loss of active sites, and the blockage of the channel caused by carbon deposition of its surface area. In the pyrolysis mechanism, the pyrolysis of guaiacol-based compounds is mainly a free radical reaction. Catechol is mainly generated through the homolytic cleavage of O-CH3bond, when phenol is mainly produced through the demethoxylation pathways, which was promoted by the H-atom and CH3-radical. Catechol and its derivatived o-hydroxybenzoquinone are the key intermediates during the production of gas. The aromatic hydrocarbons formation during the catalytic pyrolysis is mainly through the hydrocarbon pools pathways. At first, Guaiacol participates in the pyrolysis reaction to form the intermediates, such as phenol, catechol, then exists as the intermediates to form a hydrocarbon pool inside the catalyst, and finally converts into aromatics and olefins. This critical review can be necessary to further deepen the understanding of the lignin pyrolysis process, and thereby to provide some theoretical guidance for the regulation of lignin pyrolysis products.
lignin; catalytic pyrolysis; biomass; guaiacol-type monomer; reaction mechanism; research advances
徐祿江,史陳晨,何子健,等. 針葉木木質(zhì)素單體模型化合物熱解研究進(jìn)展[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(18):213-221.doi:10.11975/j.issn.1002-6819.2020.18.026 http://www.tcsae.org
Xu Lujiang, Shi Chenchen, He Zijian, et al. Research advances in pyrolysis of softwood lignin-based monomers[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(18): 213-221. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.18.026 http://www.tcsae.org
2020-04-17
2020-09-16
國(guó)家自然科學(xué)基金青年基金(51906112);江蘇省自然科學(xué)基金青年基金(BK20180548);國(guó)家博士后基金面上項(xiàng)目(2019M651852)聯(lián)合資助
徐祿江,副教授,博士,主要從事生物質(zhì)熱化學(xué)轉(zhuǎn)化。Email:lujiangxu@njau.edu.cn;
方真,教授,博士,博士生導(dǎo)師,主要從事生物質(zhì)能源相關(guān)研究。Email:zhenfang@njau.edu.cn
10.11975/j.issn.1002-6819.2020.18.026
S225.7
A
1002-6819(2020)-18-0213-09