国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

近十年土壤侵蝕與水土保持研究進(jìn)展與展望*

2020-10-22 08:14:28史志華劉前進(jìn)張含玉方怒放岳紫健
土壤學(xué)報(bào) 2020年5期
關(guān)鍵詞:產(chǎn)沙土壤侵蝕泥沙

史志華,劉前進(jìn),張含玉,王 玲,黃 萱,方怒放,岳紫健

近十年土壤侵蝕與水土保持研究進(jìn)展與展望*

史志華1,劉前進(jìn)2,張含玉2,王 玲1,黃 萱3,方怒放4,岳紫健4

(1. 華中農(nóng)業(yè)大學(xué)資源與環(huán)境學(xué)院,武漢 430070;2. 臨沂大學(xué)資源與環(huán)境學(xué)院,山東臨沂 276000;3. 河海大學(xué)農(nóng)業(yè)科學(xué)與工程學(xué)院,南京 210098;4. 中國(guó)科學(xué)院水利部水土保持研究所,陜西楊凌 712100)

在當(dāng)今生態(tài)文明背景下,土壤侵蝕與水土保持研究迎來(lái)了新的發(fā)展機(jī)遇和挑戰(zhàn)。本文首先采用文獻(xiàn)計(jì)量學(xué)方法,定量分析了近10年來(lái)國(guó)內(nèi)外土壤侵蝕與水土保持學(xué)科發(fā)展現(xiàn)狀。在此基礎(chǔ)上,結(jié)合社會(huì)需求的變化,闡明了學(xué)科發(fā)展需求與存在問(wèn)題。最后,提出了本學(xué)科研究的重點(diǎn)領(lǐng)域與方向:水文過(guò)程與侵蝕產(chǎn)沙機(jī)理,土壤侵蝕過(guò)程及其定量模擬,全球變化下土壤侵蝕演變及其災(zāi)變機(jī)理,社會(huì)經(jīng)濟(jì)系統(tǒng)—水土流失的互饋過(guò)程,以生態(tài)功能提升為主的土壤侵蝕防治,以及土壤侵蝕研究新技術(shù)與新方法等。

土壤侵蝕;水土保持;文獻(xiàn)計(jì)量;重點(diǎn)研究領(lǐng)域

土壤侵蝕是土壤及其母質(zhì)在外營(yíng)力作用下,被破壞、分離、搬運(yùn)和沉積的過(guò)程;水土保持指對(duì)外營(yíng)力造成的土壤侵蝕所采取的預(yù)防和治理措施,以保護(hù)水土資源、維持土地生產(chǎn)力,并建立良好生態(tài)環(huán)境的綜合性科學(xué)技術(shù)[1]。土壤侵蝕與水土保持學(xué)科以土壤侵蝕過(guò)程為研究對(duì)象,揭示其發(fā)生發(fā)展規(guī)律,提出水土保持措施及相關(guān)對(duì)策[2]。隨著認(rèn)識(shí)的深入和社會(huì)需求的變化,本學(xué)科從對(duì)土壤侵蝕現(xiàn)象與影響因子的描述,拓展到對(duì)土壤侵蝕過(guò)程、預(yù)報(bào)模型、水保措施防蝕機(jī)理及其適應(yīng)性的研究,并逐步延伸至面源污染、物質(zhì)循環(huán)與全球變化等科學(xué)問(wèn)題[3]。坡面是土壤侵蝕發(fā)生的基本單元,流域是水土保持的基本單元,因此,本學(xué)科目標(biāo)是通過(guò)主控要素識(shí)別和關(guān)鍵過(guò)程剖析,揭示坡面和流域尺度上土壤侵蝕過(guò)程的發(fā)生發(fā)展規(guī)律并建立預(yù)報(bào)模型,闡明水土保持措施的防侵蝕機(jī)理與其適應(yīng)性,提出適用于不同區(qū)域的水土保持范式,為土壤侵蝕評(píng)價(jià)與防治提供科學(xué)依據(jù),服務(wù)于生態(tài)文明建設(shè)和綠色發(fā)展[4]。本文利用文獻(xiàn)計(jì)量法,總結(jié)分析了坡面和流域尺度上土壤侵蝕與水土保持學(xué)科近10年研究的核心方向與熱點(diǎn),明確了我國(guó)取得的主要成就及國(guó)際地位,探討了未來(lái)研究的重點(diǎn)領(lǐng)域與方向,為有針對(duì)性開(kāi)展土壤侵蝕過(guò)程與機(jī)理研究、解決水土保持關(guān)鍵技術(shù)與瓶頸問(wèn)題提供參考。

1 學(xué)科發(fā)展現(xiàn)狀

1.1 文獻(xiàn)計(jì)量研究方法與數(shù)據(jù)來(lái)源

本文以Web of Science(WoS)數(shù)據(jù)庫(kù)核心合集作為數(shù)據(jù)源,分別制定坡面和流域尺度上土壤侵蝕與水土保持研究的檢索式TS=(("soil erosion*" or "soil loss")and("hillslope*" or "field*" or "plot*")和TS=(("soil erosion*" or "soil loss*" or sediment*)and(watershed* or catchment* or basin*))。根據(jù)上述檢索式在WoS數(shù)據(jù)庫(kù)中檢索到近十年(2010—2019年)土壤侵蝕領(lǐng)域分別在坡面和流域尺度上共發(fā)表英文文獻(xiàn)6 981和7 866篇。

利用文獻(xiàn)可視化軟件CiteSpace分析文獻(xiàn)中的關(guān)鍵詞并生成關(guān)鍵詞共現(xiàn)網(wǎng)絡(luò)圖譜,在圖譜的基礎(chǔ)上采用綜合定量分析方法繪制關(guān)鍵詞聚類視圖,展示土壤侵蝕與水土保持領(lǐng)域的研究熱點(diǎn)與前沿。圖譜中每個(gè)節(jié)點(diǎn)大小代表關(guān)鍵詞出現(xiàn)的影響力,節(jié)點(diǎn)越大代表該關(guān)鍵詞出現(xiàn)的次數(shù)越多;節(jié)點(diǎn)的顏色代表關(guān)鍵詞出現(xiàn)的年份,不同顏色的粗細(xì)代表頻率;節(jié)點(diǎn)之間的連線代表兩個(gè)關(guān)鍵詞共現(xiàn)頻率的高低,連線越粗代表共現(xiàn)頻率越高[5]。

1.2 近十年本學(xué)科國(guó)際研究核心方向與熱點(diǎn)

(1)坡面侵蝕過(guò)程與機(jī)理。坡面侵蝕研究關(guān)注的熱點(diǎn)包括土壤侵蝕動(dòng)力機(jī)制與過(guò)程模擬、土壤侵蝕與物質(zhì)遷移、土壤侵蝕與氣候變化以及風(fēng)蝕機(jī)理與防治(圖1)。雨滴打擊可直接分散土壤顆粒,也可通過(guò)改變徑流能量影響土壤分離過(guò)程;土壤分離與輸移過(guò)程存在線性互饋機(jī)制,其中利用水流剪切力、水流功率等表征水動(dòng)力學(xué)特性,土壤抗蝕性與臨界剪切力刻畫土壤抗蝕性,挾沙力描述輸沙能力[6]。降雨能量越大,土壤分離出泥沙中的細(xì)顆粒含量越高,可吸附更多的養(yǎng)分與污染物[7];侵蝕泥沙呈現(xiàn)雙峰分布,懸移-躍移和推移搬運(yùn)機(jī)制在不同粒級(jí)泥沙顆粒上的貢獻(xiàn)率有所差異[8-9],可導(dǎo)致土壤養(yǎng)分、農(nóng)藥、重金屬等物質(zhì)隨徑流泥沙運(yùn)移的形態(tài)與途徑不同。土壤侵蝕驅(qū)動(dòng)下,碳氮元素轉(zhuǎn)化以及溫室氣體排放均可能影響全球氣候變化,但影響程度隨降雨、地形、植被、土壤、人為管理等不同而異[10-11]。氣候變化則可通過(guò)改變降雨徑流、植被覆蓋和人類活動(dòng)直接或間接地影響侵蝕過(guò)程;氣候變化模式與土壤侵蝕模型耦合,可預(yù)測(cè)未來(lái)土壤侵蝕的變化與碳循環(huán)響應(yīng),及其對(duì)氣候變化的反饋[12-13]。風(fēng)沙流中沙粒的水平和垂直速度均服從Gaussian分布,風(fēng)速、顆粒粒徑是影響躍移沙粒平均速度的重要因子[14],而輸沙率主要受到顆粒含水率、范德華力、風(fēng)沙電場(chǎng)等因素的控制[15]。保護(hù)性耕作措施的推廣、地表植被建設(shè)、沙障布設(shè)等措施可在一定程度上抑制風(fēng)蝕危害[16]。借助風(fēng)能示蹤技術(shù),結(jié)合全球氣候變化,有助于風(fēng)蝕模擬預(yù)報(bào)與風(fēng)蝕防治[17]。

(2)流域侵蝕產(chǎn)沙過(guò)程。流域侵蝕產(chǎn)沙關(guān)注的核心方向包括侵蝕產(chǎn)沙與景觀要素、侵蝕與產(chǎn)沙耦合機(jī)制、侵蝕產(chǎn)沙過(guò)程模擬以及現(xiàn)代新技術(shù)應(yīng)用(圖2)。降雨作為侵蝕產(chǎn)沙的驅(qū)動(dòng)因子,其強(qiáng)度、歷時(shí)、時(shí)空分布等特征對(duì)流域侵蝕產(chǎn)沙具有決定性作用[18-19]。流域地形決定了地表徑流的匯流路徑,影響徑流速度、匯水來(lái)源[20];植被影響地表反射率、下墊面粗糙度和水分交換,在多個(gè)層次上改變降雨徑流,導(dǎo)致侵蝕產(chǎn)沙過(guò)程的變化[21]。土地利用通過(guò)改變植被覆蓋、土壤性質(zhì)、徑流速率、地形條件等,引起侵蝕發(fā)生及泥沙攔截能力的變化,進(jìn)而影響侵蝕產(chǎn)沙[22]。景觀異質(zhì)性會(huì)使侵蝕產(chǎn)沙具有復(fù)雜的多尺度變異性,將流域作為一個(gè)完整的生態(tài)系統(tǒng),量化流域侵蝕與產(chǎn)沙量的關(guān)系,可揭示景觀格局對(duì)徑流和泥沙的作用機(jī)制[23]。將侵蝕產(chǎn)沙作為一個(gè)生態(tài)過(guò)程,建立不同尺度上流域景觀與侵蝕產(chǎn)沙過(guò)程的關(guān)系,利用水文連通性、源匯相對(duì)溝口耗費(fèi)距離等方法,揭示降雨—徑流—侵蝕產(chǎn)沙過(guò)程及滯后機(jī)制,初步實(shí)現(xiàn)流域侵蝕產(chǎn)沙系統(tǒng)的綜合集成[24]。采用水流挾沙力公式、泥沙連續(xù)方程等,建立注重水沙匯流的侵蝕產(chǎn)沙模型,可深化土壤侵蝕過(guò)程與機(jī)理的研究,并發(fā)現(xiàn)流域侵蝕-輸移-產(chǎn)沙系統(tǒng)中的泥沙匯集傳遞過(guò)程及其機(jī)制仍有待深入[25]。技術(shù)的發(fā)展將推動(dòng)學(xué)科的進(jìn)步,生物標(biāo)志物、紅外光譜、核素等技術(shù)被廣泛用于泥沙輸移過(guò)程和泥沙來(lái)源辨識(shí)研究,提高了流域侵蝕源區(qū)的解析精度[26];激光雷達(dá)和高時(shí)空分辨率遙感技術(shù),可實(shí)現(xiàn)地表數(shù)據(jù)的精細(xì)化表達(dá),增強(qiáng)土壤侵蝕模擬與可視化[27]。

圖1 坡面侵蝕過(guò)程與機(jī)理相關(guān)論文關(guān)鍵詞共現(xiàn)關(guān)系圖

圖2 流域侵蝕產(chǎn)沙過(guò)程相關(guān)論文關(guān)鍵詞共現(xiàn)關(guān)系圖

1.3 中國(guó)土壤侵蝕與水土保持研究主要成就及國(guó)際地位

(1)坡面侵蝕過(guò)程與機(jī)理。通過(guò)分析近十年國(guó)際SCI發(fā)文情況可知(表1),我國(guó)2010—2019年在坡面侵蝕過(guò)程與機(jī)理研究領(lǐng)域共發(fā)表SCI 論文1 515篇,世界排名第二;SCI論文篇均被引約8次,排名第四十;高被引SCI論文數(shù)量為9篇,排名第八??傮w而言,雖然我國(guó)SCI發(fā)文數(shù)量較多,但高質(zhì)量SCI論文仍然較少,主要研究成果集中在坡面侵蝕形態(tài)演變的臨界條件、陡坡坡面流挾沙力方程、陡坡侵蝕的泥沙分選機(jī)理和坡面水土保持措施分類系統(tǒng)四個(gè)方面。坡面在降雨徑流作用下,發(fā)生濺蝕、片蝕、細(xì)溝侵蝕、淺溝侵蝕、切溝侵蝕等,不同侵蝕過(guò)程交互作用導(dǎo)致侵蝕形態(tài)發(fā)生演變。借助REE示蹤技術(shù)、三維激光掃描技術(shù)、激光雷達(dá)技術(shù)等,揭示了片蝕—細(xì)溝侵蝕—切溝侵蝕演變過(guò)程[28-29],探討了侵蝕形態(tài)間發(fā)生演變的臨界閾值[30],明確了重力作用對(duì)細(xì)溝發(fā)育的重要性[31],發(fā)展了溝蝕發(fā)育過(guò)程模型[32-34]。我國(guó)46%的坡耕地坡度大于15°,陡坡是侵蝕的重要來(lái)源,因此我國(guó)在陡坡侵蝕研究方面成果突出:實(shí)現(xiàn)了坡面流挾沙力與水動(dòng)力學(xué)參數(shù)關(guān)系的定量表征,構(gòu)建了陡坡高含沙條件下的坡面流挾沙力方程[6,35-36];基于侵蝕泥沙顆粒分布特性,發(fā)現(xiàn)了陡坡侵蝕中細(xì)顆粒以懸移/躍移方式搬運(yùn),粗顆粒以滾動(dòng)方式搬運(yùn),明確了滾動(dòng)搬運(yùn)在陡坡泥沙輸移中的重要性,揭示了陡坡侵蝕的泥沙分選機(jī)理[8,37]。同時(shí),我國(guó)水土保持措施多樣,在充分總結(jié)不同措施防蝕機(jī)理及其區(qū)域適宜性的基礎(chǔ)上,提出了中國(guó)水土保持措施分類系統(tǒng)[38],包括生物措施、工程措施和耕作措施3個(gè)一級(jí)類型,以及32個(gè)二級(jí)類型和59個(gè)三級(jí)類型,成為土壤侵蝕普查和防控的重要基礎(chǔ)。

(2)流域侵蝕產(chǎn)沙過(guò)程。近十年我國(guó)在流域侵蝕產(chǎn)沙過(guò)程研究領(lǐng)域發(fā)表SCI論文數(shù)量為1 494篇,居世界第二;SCI論文引用量約為11次/篇,排名世界第三十四;高被引論文數(shù)量為11篇,排名第三(表2)。相比坡面尺度的研究,我國(guó)在流域尺度的研究成果國(guó)際影響力更大,在流域侵蝕產(chǎn)沙主控因子識(shí)別、侵蝕過(guò)程降雨—徑流—泥沙的滯后機(jī)理、水蝕區(qū)水保措施的適宜性和水土流失綜合調(diào)控與治理范式方面取得重要進(jìn)展。地形、土壤、植被、降雨等是影響流域侵蝕產(chǎn)沙的重要環(huán)境因子,鑒于各因子存在非線性復(fù)雜關(guān)系,我國(guó)學(xué)者綜合運(yùn)用非度量多維尺度和偏最小二乘回歸,揭示了土地利用和景觀格局對(duì)侵蝕產(chǎn)沙的重要貢獻(xiàn),辨識(shí)了景觀多樣性指數(shù)、聚集度、連結(jié)度、斑塊密度等影響流域產(chǎn)沙的關(guān)鍵景觀格局指數(shù)[23,39],實(shí)現(xiàn)了流域侵蝕產(chǎn)沙對(duì)環(huán)境因子響應(yīng)的定量表征[40-42];揭示了不同降雨下侵蝕“源匯”功能轉(zhuǎn)化對(duì)降雨—徑流—泥沙滯后的作用機(jī)制[24,43],建立了流域氣候-人類活動(dòng)-水沙過(guò)程復(fù)雜系統(tǒng)的解耦方法[44-45],定量分離了氣候變化和人類活動(dòng)對(duì)土壤侵蝕的影響[46]。在流域土壤侵蝕防控方面,基于我國(guó)主要水蝕區(qū)的土壤侵蝕特點(diǎn),綜合評(píng)估了耕作、生物、工程三大措施的防蝕機(jī)理,提出了東北黑土區(qū)、西北黃土區(qū)、西南紫色土區(qū)等水蝕區(qū)的土壤侵蝕綜合調(diào)控與治理范式,成為全世界小流域綜合治理的典范[47]。

2 土壤侵蝕與水土保持研究的社會(huì)需求與面臨問(wèn)題

2.1 社會(huì)需求

近十年來(lái),全球土地利用變化導(dǎo)致土壤侵蝕總量增加2.5%,土壤流失速率高于成土速率1~2個(gè)數(shù)量級(jí),土壤侵蝕仍是土壤退化的主導(dǎo)因素[48-49]。我國(guó)通過(guò)大規(guī)模實(shí)施生態(tài)工程,土壤侵蝕呈現(xiàn)出面積持續(xù)減少、強(qiáng)度明顯下降等特點(diǎn)。聯(lián)合國(guó)提出的2030年可持續(xù)發(fā)展目標(biāo)(SDGs),強(qiáng)調(diào)嚴(yán)格控制土地退化以保障糧食安全,關(guān)注水土保持生態(tài)系統(tǒng)服務(wù)以促進(jìn)陸地生態(tài)系統(tǒng)可持續(xù)發(fā)展??梢?jiàn),傳統(tǒng)的以保障糧食安全為目標(biāo)的土壤侵蝕防治依舊是研究重點(diǎn),同時(shí)提出了以生態(tài)功能提升為目標(biāo)的土壤侵蝕防治新需求。因此,土壤侵蝕治理重心應(yīng)從綜合治理轉(zhuǎn)向生態(tài)調(diào)控,以提升生態(tài)功能為主,尋求土壤侵蝕防治與農(nóng)業(yè)高效生產(chǎn)、環(huán)境可持續(xù)發(fā)展的協(xié)同途徑,為國(guó)家生態(tài)文明建設(shè)提供科學(xué)依據(jù)[4,33,47]。

2.2 面臨問(wèn)題

在新侵蝕環(huán)境與社會(huì)需求下,本學(xué)科面臨諸多問(wèn)題。侵蝕過(guò)程與機(jī)理方面:試驗(yàn)技術(shù)手段限制導(dǎo)致薄層水流流速、流量等難以準(zhǔn)確測(cè)定,水分入滲、蒸散等難以適時(shí)確定;流域景觀異質(zhì)性引起的坡面侵蝕與流域產(chǎn)沙間非線性變化規(guī)律和作用機(jī)制仍不清楚;針對(duì)我國(guó)復(fù)雜侵蝕環(huán)境下的土壤侵蝕過(guò)程及相應(yīng)機(jī)制尚不明晰[50-52]。水土保持措施配置方面:水土保持防蝕理論滯后于實(shí)踐;規(guī)模化農(nóng)業(yè)開(kāi)發(fā)中生態(tài)、生產(chǎn)與生活功能協(xié)同運(yùn)行機(jī)制不完善;植被地下部分對(duì)侵蝕的調(diào)控機(jī)理仍不明確,植被重建過(guò)程中物種的選擇、配置仍是難點(diǎn);水保措施防蝕效果的變化規(guī)律及其影響因素仍不清楚[4,53]。區(qū)域或全球尺度侵蝕現(xiàn)狀評(píng)估方面:不同尺度下選擇的方法與數(shù)據(jù)及其理論基礎(chǔ)缺少標(biāo)準(zhǔn)與規(guī)范;提高評(píng)價(jià)精度的技術(shù)與方法體系不健全[54-55]。

3 土壤侵蝕與水土保持科學(xué)研究的重點(diǎn)領(lǐng)域

3.1 水文過(guò)程與侵蝕產(chǎn)沙機(jī)理

降雨和徑流為侵蝕產(chǎn)沙過(guò)程提供了能量與載體。因此,對(duì)坡面-流域尺度上的水文過(guò)程及其機(jī)制的深入認(rèn)識(shí),有助于理解侵蝕產(chǎn)沙機(jī)理。降雨產(chǎn)流水文過(guò)程及機(jī)制經(jīng)由產(chǎn)流閾值、可變?cè)磪^(qū)發(fā)展至新近提出的水文連通性,侵蝕產(chǎn)沙過(guò)程相應(yīng)地從泥沙輸移比、侵蝕源與沉積匯提升至坡面與溝道連續(xù)系統(tǒng)等方面予以解析與模擬[56-57],關(guān)注的重點(diǎn)從將坡面或流域作為一個(gè)黑箱、“坡面+溝道”模式發(fā)展至完整的流域系統(tǒng)。基于水文連通性的侵蝕產(chǎn)沙機(jī)理,強(qiáng)調(diào)在土壤顆?;驁F(tuán)聚體尺度上分離出的泥沙,以徑流為載體,跨越土體、坡面、流域等多個(gè)尺度,形成流域產(chǎn)沙的完整過(guò)程[58]。重點(diǎn)研究:不同尺度下水文過(guò)程與侵蝕—搬運(yùn)—沉積的級(jí)聯(lián)效應(yīng);水文連通性對(duì)流域侵蝕產(chǎn)沙影響機(jī)理及其過(guò)程模擬。

3.2 土壤侵蝕過(guò)程及其定量模擬

土壤侵蝕過(guò)程具有獨(dú)特的水/土界面物理化學(xué)相互作用機(jī)制,以及侵蝕地表形態(tài)和環(huán)境要素協(xié)同演化規(guī)律。目前雖然對(duì)植被截留、土壤入滲、地表產(chǎn)匯流、侵蝕輸沙、搬運(yùn)沉積等物理過(guò)程進(jìn)行了表達(dá),但植被截留、土壤入滲過(guò)程表達(dá)的適用范圍受植被類型、土壤環(huán)境等因素的限制;坡面薄層流特性定量表征及動(dòng)力過(guò)程的解析,仍主要沿用明渠水力學(xué)等鄰近學(xué)科的理論與方法;風(fēng)沙兩相流的相互作用機(jī)制及其傳輸過(guò)程,主要依賴經(jīng)典力學(xué)和流體力學(xué)予以解析與模擬,學(xué)科理論體系尚不完善。重點(diǎn)研究:含沙水流的水動(dòng)力學(xué)關(guān)鍵參數(shù)與臨界條件,風(fēng)沙流動(dòng)力學(xué)特征及沙粒運(yùn)動(dòng)過(guò)程與機(jī)制,重力侵蝕與崩崗發(fā)生的力學(xué)機(jī)制與條件;高海拔寒區(qū)融水侵蝕機(jī)理與過(guò)程模擬,多重外力復(fù)合侵蝕過(guò)程與模擬;流域侵蝕—輸移—產(chǎn)沙系統(tǒng)中的泥沙匯集傳遞過(guò)程及其機(jī)制等。

3.3 全球變化下土壤侵蝕演變及其災(zāi)變機(jī)理

氣候變化改變了降水、溫度的時(shí)空格局,并使地表覆被與人類活動(dòng)發(fā)生響應(yīng)[59]。變化的降水特性和地表覆被格局,在時(shí)空耦合過(guò)程中增加了土壤侵蝕過(guò)程的不確定性和災(zāi)變風(fēng)險(xiǎn);土地利用格局優(yōu)化、退化生態(tài)系統(tǒng)恢復(fù)重建等應(yīng)對(duì)氣候變化的人類活動(dòng),則可通過(guò)改變陸面的土壤、地理與生態(tài)過(guò)程作用于土壤侵蝕過(guò)程。同時(shí),侵蝕泥沙搬運(yùn)過(guò)程可使全球生源要素(C、N、P、S)循環(huán)發(fā)生變化,進(jìn)而影響全球氣候變化。土壤侵蝕過(guò)程與全球氣候變化存在互饋機(jī)制。重點(diǎn)研究:極端氣候事件對(duì)侵蝕過(guò)程影響機(jī)制及其不確定性;全球變化情勢(shì)下土壤侵蝕災(zāi)變閾值及調(diào)控對(duì)策;土壤侵蝕對(duì)碳“源”、“匯”時(shí)空格局的影響;氣候變化下土壤侵蝕發(fā)生發(fā)展趨勢(shì)的情景模擬。

3.4 社會(huì)經(jīng)濟(jì)系統(tǒng)——土壤侵蝕的互饋過(guò)程機(jī)理

土壤侵蝕受自然和社會(huì)經(jīng)濟(jì)兩個(gè)方面因素的共同作用,而社會(huì)經(jīng)濟(jì)活動(dòng)及政策對(duì)土壤侵蝕具有加劇與控制的雙重作用。但自然要素構(gòu)成的生態(tài)網(wǎng)絡(luò)與社會(huì)經(jīng)濟(jì)資本、信息等構(gòu)成的社會(huì)網(wǎng)絡(luò)存在空間上的錯(cuò)位[60]。由于社會(huì)—生態(tài)網(wǎng)絡(luò)空間錯(cuò)位,土壤侵蝕驅(qū)動(dòng)因素的非線性作用更為復(fù)雜,水土資源利用和水土流失治理出現(xiàn)市場(chǎng)失靈??陀^上需要政府從全社會(huì)的利益出發(fā),在資源配置和利益分配上起到協(xié)調(diào)作用。重點(diǎn)研究:社會(huì)—生態(tài)網(wǎng)絡(luò)結(jié)構(gòu)與功能;農(nóng)業(yè)與非農(nóng)產(chǎn)業(yè)發(fā)展對(duì)土壤侵蝕的驅(qū)動(dòng)機(jī)制與作用路徑;社會(huì)—生態(tài)網(wǎng)絡(luò)空間錯(cuò)位對(duì)水土流失治理的影響機(jī)理;水土保持成本與效益的空間異置與利益權(quán)衡。

3.5 以生態(tài)功能提升為主的土壤侵蝕防治

在生態(tài)文明建設(shè)背景下,提升生態(tài)功能已成為繼流域綜合治理之后土壤侵蝕防治的新需求。其注重生態(tài)系統(tǒng)的整體性與長(zhǎng)期性,統(tǒng)籌流域及區(qū)域的空間分異與功能分區(qū),基于生態(tài)系統(tǒng)的功能與服務(wù),融合使用包括綜合治理在內(nèi)多種土壤侵蝕防治措施、高效農(nóng)業(yè)技術(shù)與流域及區(qū)域管理策略,對(duì)侵蝕泥沙的物質(zhì)流、能量流與功能流進(jìn)行生態(tài)調(diào)控,實(shí)現(xiàn)農(nóng)業(yè)生產(chǎn)的高效和環(huán)境的可持續(xù)[4]。重點(diǎn)研究:以生態(tài)系統(tǒng)服務(wù)功能提升為核心的多尺度土壤允許流失量閾值確定;水土保持措施布局整體性優(yōu)化;土壤多樣性對(duì)水土保持措施配置的影響機(jī)理;水土保持與生態(tài)系統(tǒng)功能的權(quán)衡與協(xié)同機(jī)制;土壤侵蝕防治過(guò)程中物質(zhì)、能量和信息流演變規(guī)律及模擬。

3.6 土壤侵蝕研究新技術(shù)與新方法

試驗(yàn)技術(shù)與方法的進(jìn)步可為土壤侵蝕過(guò)程與動(dòng)力機(jī)制研究、侵蝕模型建立與驗(yàn)證提供精確數(shù)據(jù)與穩(wěn)健算法。目前試驗(yàn)設(shè)備、觀測(cè)技術(shù)與數(shù)據(jù)處理方法受到諸多限制。人工模擬降雨的雨滴滴譜、終點(diǎn)速度與天然降雨具有一定差異;坡面薄層水流的三維、非均勻與非恒定性,不同于所借鑒的明渠水動(dòng)力學(xué)條件[8-9,35];缺少?gòu)耐寥澜Y(jié)構(gòu)穩(wěn)定性等物理化學(xué)層面表征土壤抗蝕性的參數(shù)與方法;生物標(biāo)志物、氫氧同位素、核素示蹤及紅外光譜等用于識(shí)別徑流與泥沙來(lái)源具有時(shí)效性或非穩(wěn)定性局限[61]。重點(diǎn)研究:薄層水流流速、水深等參數(shù)測(cè)量技術(shù)與設(shè)備的研發(fā);土壤結(jié)構(gòu)力學(xué)性質(zhì)測(cè)量?jī)x器與方法的改進(jìn)及其對(duì)侵蝕過(guò)程量化;徑流泥沙來(lái)源示蹤、低空無(wú)人飛行器遙感監(jiān)測(cè)、人工智能與機(jī)器學(xué)習(xí)等技術(shù)在土壤侵蝕研究中的應(yīng)用;區(qū)域與全球尺度水土流失動(dòng)態(tài)監(jiān)測(cè)的大數(shù)據(jù)分析與云網(wǎng)絡(luò)服務(wù)平臺(tái)建設(shè)。

4 結(jié)論與展望

近10年國(guó)際上對(duì)土壤侵蝕與水土保持研究,重點(diǎn)關(guān)注水蝕與風(fēng)蝕動(dòng)力機(jī)制、坡面侵蝕-流域產(chǎn)沙過(guò)程與物質(zhì)遷移響應(yīng)、氣候變化與土壤侵蝕互饋機(jī)制,以及新方法新技術(shù)的建立與應(yīng)用。我國(guó)針對(duì)陡坡侵蝕與流域景觀破碎的復(fù)雜侵蝕環(huán)境,識(shí)別出了坡面與流域侵蝕產(chǎn)沙主控因子,闡明了土壤分離與輸沙過(guò)程的動(dòng)力機(jī)制與滯后機(jī)理,凝練了主要水蝕區(qū)水土流失綜合調(diào)控與治理范式。目前傳統(tǒng)的以保障糧食安全為目標(biāo)的土壤侵蝕防治依舊是研究重點(diǎn),同時(shí)提出了以生態(tài)功能提升為目標(biāo)的土壤侵蝕防治新熱點(diǎn)。

基于試驗(yàn)技術(shù)手段限制產(chǎn)流產(chǎn)沙過(guò)程準(zhǔn)確測(cè)定、坡面侵蝕與流域產(chǎn)沙間非線性關(guān)系、水保措施防蝕理論研究落后于實(shí)踐、區(qū)域或全球尺度侵蝕評(píng)估缺少數(shù)據(jù)與方法支持等問(wèn)題,提出了本學(xué)科應(yīng)將注重以下研究?jī)?nèi)容:流域侵蝕產(chǎn)沙過(guò)程的級(jí)聯(lián)效應(yīng),及其對(duì)水文連通性的響應(yīng)與模擬;水蝕、風(fēng)蝕、重力侵蝕、融水侵蝕及復(fù)合侵蝕過(guò)程中的動(dòng)力學(xué)機(jī)制,特別是水蝕過(guò)程中徑流攜沙匯集傳遞過(guò)程與機(jī)理;全球變化對(duì)土壤侵蝕過(guò)程與碳“源匯”時(shí)空格局的影響與模擬,以及土壤侵蝕災(zāi)變閾值與調(diào)控對(duì)策;農(nóng)業(yè)與非農(nóng)產(chǎn)業(yè)發(fā)展過(guò)程中土壤侵蝕變化機(jī)制、社會(huì)—生態(tài)網(wǎng)絡(luò)結(jié)構(gòu)空間錯(cuò)位對(duì)水土流失治理成本與效益的影響機(jī)理;基于生態(tài)系統(tǒng)服務(wù)功能提升,確定多尺度土壤允許流失量閾值、優(yōu)化布局水土保持措施配置、明確物質(zhì)、能量和信息流演變規(guī)律及模擬;研發(fā)土壤侵蝕過(guò)程監(jiān)測(cè)設(shè)備、發(fā)展復(fù)合指紋示蹤與機(jī)器學(xué)習(xí)等技術(shù)與方法、注重大數(shù)據(jù)分析與云網(wǎng)絡(luò)服務(wù)平臺(tái)建設(shè)。

[ 1 ] Morgan R P C. Soil erosion & conservation [M]. 3rd ed. Oxford:Blackwell Publishing,2005.

[ 2 ] Leng S Y,F(xiàn)eng R G,Li R,et al. Key research issues of soil erosion and conservation in China[J]. Journal of Soil Water and Conservation,2004,18(1):1—6,26. [冷疏影,馮仁國(guó),李銳,等. 土壤侵蝕與水土保持科學(xué)重點(diǎn)研究領(lǐng)域與問(wèn)題[J]. 水土保持學(xué)報(bào),2004,18(1):1—6,26.]

[ 3 ] Shi Z H,Song C Q. Water erosion processes:A historical review[J]. Journal of Soil and Water Conservation,2016,30(5):1—10. [史志華,宋長(zhǎng)青. 土壤水蝕過(guò)程研究回顧[J]. 水土保持學(xué)報(bào),2016,30(5):1—10.]

[ 4 ] Shi Z H,Wang L,Liu Q J,et al. Soil erosion:From comprehensive control to ecological regulation[J]. Bulletin of Chinese Academy of Sciences,2018,33(2):198—205. [史志華,王玲,劉前進(jìn),等. 土壤侵蝕:從綜合治理到生態(tài)調(diào)控[J]. 中國(guó)科學(xué)院院刊,2018,33(2):198—205.]

[ 5 ] Zhao R Y,Xu L M. The knowledge map of the evolution and research frontiers of the bibliometrics[J]. Journal of Library Science in China,2010,36(5):60—68. [趙蓉英,許麗敏. 文獻(xiàn)計(jì)量學(xué)發(fā)展演進(jìn)與研究前沿的知識(shí)圖譜探析[J]. 中國(guó)圖書館學(xué)報(bào),2010,36(5):60—68.]

[ 6 ] Zhang G H,Shen R C,Luo R T,et al. Effects of sediment load on hydraulics of overland flow on steep slopes[J]. Earth Surface Processes and Landforms,2010,35(15):1811—1819.

[ 7 ] Shi P,Schulin R. Erosion-induced losses of carbon,nitrogen,phosphorus and heavy metals from agricultural soils of contrasting organic matter management[J]. Science of the Total Environment,2018,618:210—218.

[ 8 ] Shi Z H,F(xiàn)ang N F,Wu F Z,et al. Soil erosion processes and sediment sorting associated with transport mechanisms on steep slopes[J]. Journal of Hydrology,2012,454/455:123—130.

[ 9 ] Wang L,Shi Z H,Wang J,et al. Rainfall kinetic energy controlling erosion processes and sediment sorting on steep hillslopes:A case study of clay loam soil from the Loess Plateau,China[J]. Journal of Hydrology,2014,512:168—176.

[ 10 ] Worrall F,Burt T P,Howden N J K. The fluvial flux of particulate organic matter from the UK:The emission factor of soil erosion[J]. Earth Surface Processes and Landforms,2016,41(1):61—71.

[ 11 ] Berhe A A,Harden J W,Torn M S,et al. Linking soil organic matter dynamics and erosion-induced terrestrial carbon sequestration at different landform positions[J]. Journal of Geophysical Research:Biogeosciences,2008,113(G4):https://doi.org/10.1029/2008jg000751.

[ 12 ] Mullan D. Soil erosion under the impacts of future climate change:Assessing the statistical significance of future changes and the potential on-site and off-site problems[J]. Catena,2013,109:234—246.

[ 13 ] Deng L,Liu G B,Shangguan Z P. Land-use conversion and changing soil carbon stocks in China’s‘Grain-for- Green’program:A synthesis[J]. Global Change Biology,2014,20(11):3544—3556.

[ 14 ] Panebianco J E,Buschiazzo D E,Zobeck T M. Comparison of different mass transport calculation methods for wind erosion quantification purposes[J]. Earth Surface Processes and Landforms,2010,35(13):1548—1555.

[ 15 ] Youssef F,Visser S M,Karssenberg D,et al. The effect of vegetation patterns on wind-blown mass transport at the regional scale:A wind tunnel experiment[J]. Geomorphology,2012,159/160:178—188.

[ 16 ] Munson S M,Belnap J,Okin G S. Responses of wind erosion to climate-induced vegetation changes on the Colorado Plateau[J]. Proceedings of the National Academy of Sciences of the United States of America,2011,108(10):3854—3859.

[ 17 ] Wang Z T,Lai Z P,Qu J J. Inverted relief landforms in the Kumtagh Desert of northwestern China:A mechanism to estimate wind erosion rates[J]. Geological Journal,2017,52(1):131—140.

[ 18 ] Bangash R F,Passuello A,Sanchez-Canales M,et al. Ecosystem services in Mediterranean river basin:Climate change impact on water provisioning and erosion control[J]. Science of the Total Environment,2013,458/459/460:246—255.

[ 19 ] Lu X X,Ran L S,Liu S,et al. Sediment loads response to climate change:A preliminary study of eight large Chinese Rivers[J]. International Journal of Sediment Research,2013,28(1):1—14.

[ 20 ] Bracken L J,Wainwright J,Ali G A,et al. Concepts of hydrological connectivity:Research approaches,pathways and future agendas[J]. Earth-Science Reviews,2013,119:17—34.

[ 21 ] Ran L S,Lu X X,Xu J C. Effects of vegetation restoration on soil conservation and sediment loads in China:A critical review[J]. Critical Reviews in Environmental Science and Technology,2013,43(13):1384—1415.

[ 22 ] Fiener P,Auerswald K,van Oost K. Spatio-temporal patterns in land use and management affecting surface runoff response of agricultural catchments—A review[J]. Earth-Science Reviews,2011,106(1/2):92—104.

[ 23 ] Shi Z H,Ai L,Li X,et al. Partial least-squares regression for linking land-cover patterns to soil erosion and sediment yield in watersheds[J]. Journal of Hydrology,2013,498:165—176.

[ 24 ] Fang N F,Shi Z H,Li L,et al. Rainfall,runoff,and suspended sediment delivery relationships in a small agricultural watershed of the Three Gorges area,China[J]. Geomorphology,2011,135(1/2):158—166.

[ 25 ] Chen F X,F(xiàn)ang N F,Wang Y X,et al. Biomarkers in sedimentary sequences:Indicators to track sediment sources over decadal timescales[J]. Geomorphology,2017,278:1—11.

[ 26 ] Vercruysse K,Grabowski R C,Rickson R J. Suspended sediment transport dynamics in Rivers:Multi-scale drivers of temporal variation[J]. Earth-Science Reviews,2017,166:38—52.

[ 27 ] Croke J,Todd P,Thompson C,et al. The use of multi temporal LiDAR to assess basin-scale erosion and deposition following the catastrophic January 2011 Lockyer flood,SE Queensland,Australia[J]. Geomorphology,2013,184:111—126.

[ 28 ] Zhang P,Sun W Y,Tang H W,et al. Advances in morphological evolution and quantitative study of rill on hillslope[J]. Journal of Sediment Research,2017,42(1):68—72. [張攀,孫維營(yíng),唐洪武,等. 坡面細(xì)溝侵蝕形態(tài)演變與量化研究評(píng)述[J]. 泥沙研究,2017,42(1):68—72.]

[ 29 ] He J J,Li X J,Jia L J,et al. Experimental study of rill evolution processes and relationships between runoff and erosion on clay loam and loess[J]. Soil Science Society of America Journal,2014,78(5):1716—1725.

[ 30 ] Zhang Y D,Wu S F,F(xiàn)eng H,et al. Experimental study of rill dynamic development process and its critical dynamic conditions on loess slope[J]. Journal of Sediment Research,2013,38(2):25—32. [張永東,吳淑芳,馮浩,等. 黃土陡坡細(xì)溝侵蝕動(dòng)態(tài)發(fā)育過(guò)程及其發(fā)生臨界動(dòng)力條件試驗(yàn)研究[J]. 泥沙研究,2013,38(2):25—32.]

[ 31 ] Han P,Ni J R,Hou K B,et al. Numerical modeling of gravitational erosion in rill systems[J]. International Journal of Sediment Research,2011,26(4):403—415.

[ 32 ] Zheng F L,Xu X M,Qin C. A review of gully erosion process research[J]. Transactions of the Chinese Society for Agricultural Machinery,2016,47(8):48—59,116. [鄭粉莉,徐錫蒙,覃超. 溝蝕過(guò)程研究進(jìn)展[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2016,47(8):48—59,116.]

[ 33 ] Li R. Research into soil erosion processes and control in major water erosion regions of China[J]. Bulletin of Soil and Water Conservation,2011,31(5):1—6. [李銳. 中國(guó)主要水蝕區(qū)土壤侵蝕過(guò)程與調(diào)控研究[J]. 水土保持通報(bào),2011,31(5):1—6.]

[ 34 ] Ma X L,Zhang K D,Yang F,et al. Influencing factor analysis of rill erosion section morphology development on slope and its dynamic characteristic experiment[J]. Transactions of the Chinese Society of Agricultural Engineering,2017,33(4):209—216. [馬小玲,張寬地,楊帆,等. 坡面細(xì)溝侵蝕斷面形態(tài)發(fā)育影響因素分析及動(dòng)力特性試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(4):209—216.]

[ 35 ] Zhang G H. Several understandings for sediment transport capacity by overland flow[J]. Advances in Water Science,2018,29(2):151—158. [張光輝. 對(duì)坡面徑流挾沙力研究的幾點(diǎn)認(rèn)識(shí)[J]. 水科學(xué)進(jìn)展,2018,29(2):151—158.]

[ 36 ] Zhang G H,Wang L L,Tang K M,et al. Effects of sediment size on transport capacity of overland flow on steep slopes[J]. Hydrological Sciences Journal,2011,56(7):1289—1299.

[ 37 ] Wang L,F(xiàn)ang N F,Yue Z J,et al. Raindrop size and flow depth control sediment sorting in shallow flows on steep slopes[J]. Water Resources Research,2018,54(12):9978—9995.

[ 38 ] Liu B Y,Liu Y N,Zhang K L,et al. Classification for soil conservation practices in China[J]. Journal of Soil and Water Conservation,2013,27(2):80—84. [劉寶元,劉瑛娜,張科利,等. 中國(guó)水土保持措施分類[J]. 水土保持學(xué)報(bào),2013,27(2):80—84.]

[ 39 ] Shi Z H,Huang X D,Ai L,et al. Quantitative analysis of factors controlling sediment yield in mountainous watersheds[J]. Geomorphology,2014,226:193—201.

[ 40 ] Liu Y. Effectiveness of landscape metrics in coupling soil erosion with landscape pattern[J]. Acta Ecologica Sinica,2017,37(15):4923—4935. [劉宇. 景觀指數(shù)耦合景觀格局與土壤侵蝕的有效性[J]. 生態(tài)學(xué)報(bào),2017,37(15):4923—4935.]

[ 41 ] Gao G Y,F(xiàn)u B J,Lü Y H,et al. The effect of land cover pattern on hillslope soil and water loss in the arid and semi-arid region:A review[J]. Acta Ecologica Sinica,2013,33(1):12—22. [高光耀,傅伯杰,呂一河,等. 干旱半干旱區(qū)坡面覆被格局的水土流失效應(yīng)研究進(jìn)展[J]. 生態(tài)學(xué)報(bào),2013,33(1):12—22.]

[ 42 ] Yan B,F(xiàn)ang N F,Zhang P C,et al. Impacts of land use change on watershed streamflow and sediment yield:An assessment using hydrologic modelling and partial least squares regression[J]. Journal of Hydrology,2013,484:26—37.

[ 43 ] Huang X,F(xiàn)ang N F,Zhu T X,et al. Hydrological response of a large-scale mountainous watershed to rainstorm spatial patterns and reforestation in subtropical China[J]. Science of the Total Environment,2018,645:1083—1093.

[ 44 ] Miao C Y,Ni J R,Borthwick A G L,et al. A preliminary estimate of human and natural contributions to the changes in water discharge and sediment load in the Yellow River[J]. Global and Planetary Change,2011,76(3/4):196—205.

[ 45 ] Huang X,F(xiàn)ang N F,Shi Z H,et al. Decoupling the effects of vegetation dynamics and climate variability on watershed hydrological characteristics on a monthly scale from subtropical China[J]. Agriculture,Ecosystems & Environment,2019,279:14—24.

[ 46 ] Wang S,F(xiàn)u B J,Piao S L,et al. Reduced sediment transport in the Yellow River due to anthropogenic changes[J]. Nature Geoscience,2016,9(1):38—41.

[ 47 ] Cai Q G,Zhu A X,Bi H X. Comprehensive regulation and control paradigm of soil and water loss in Chinese main water erosion areas[M]. Beijing:Science Press,2012. [蔡強(qiáng)國(guó),朱阿興,畢華興. 中國(guó)主要水蝕區(qū)水土流失綜合調(diào)控與治理范式[M]. 北京:中國(guó)水利水電出版社,2012.]

[ 48 ] Amundson R,Berhe A A,Hopmans J W,et al. Soil and human security in the 21st century[J]. Science,2015,348(6235):1261071.

[ 49 ] Borrelli P,Robinson D A,F(xiàn)leischer L R,et al. An assessment of the global impact of 21st century land use change on soil erosion[J]. Nature Communications,2017,8(1):1—13.

[ 50 ] Poesen J. Soil erosion in the Anthropocene:Research needs[J]. Earth Surface Processes and Landforms,2018,43(1):64—84.

[ 51 ] Fressard M,Cossart E. A graph theory tool for assessing structural sediment connectivity:Development and application in the Mercurey vineyards(France)[J]. Science of the Total Environment,2019,651:2566—2584.

[ 52 ] Gao G Y,F(xiàn)u B J,Zhang J J,et al. Multiscale temporal variability of flow-sediment relationships during the 1950s-2014 in the Loess Plateau,China[J]. Journal of Hydrology,2018,563:609—619.

[ 53 ] Omidvar E,Hajizadeh Z,Ghasemieh H. Sediment yield,runoff and hydraulic characteristics in straw and rock fragment covers[J]. Soil and Tillage Research,2019,194:104324.

[ 54 ] Batista P V G,Davies J,Silva M L N,et al. On the evaluation of soil erosion models:Are we doing enough?[J]. Earth-Science Reviews,2019,197:102898.

[ 55 ] Xiong M Q,Sun R H,Chen L D. A global comparison of soil erosion associated with land use and climate type[J]. Geoderma,2019,343:31—39.

[ 56 ] de Vente J,Poesen J,Verstraeten G,et al. Predicting soil erosion and sediment yield at regional scales:Where do we stand?[J]. Earth-Science Reviews,2013,127:16—29.

[ 57 ] Liu J T,Han X L,Liu J L,et al. Understanding of critical zone structures and hydrological connectivity:A review[J]. Advances in Water Science,2019,30(1):112—122. [劉金濤,韓小樂(lè),劉建立,等. 山坡表層關(guān)鍵帶結(jié)構(gòu)與水文連通性研究進(jìn)展[J]. 水科學(xué)進(jìn)展,2019,30(1):112—122.]

[ 58 ] Keesstra S,Nunes J P,Saco P,et al. The way forward:Can connectivity be useful to design better measuring and modelling schemes for water and sediment dynamics?[J]. Science of the Total Environment,2018,644:1557—1572.

[ 59 ] Li Z Y,F(xiàn)ang H Y. Impacts of climate change on water erosion:A review[J]. Earth-Science Reviews,2016,163:94—117.

[ 60 ] Sayles J S,Baggio J A. Social–ecological network analysis of scale mismatches in estuary watershed restoration[J]. Proceedings of the National Academy of Sciences of the United States of America,2017,114(10):E1776-E1785. https://doi.org/10.1073/pnas. 1604405114.

[ 61 ] Collins A L,Williams L J,Zhang Y S,et al. Sources of sediment-bound organic matter infiltrating spawning gravels during the incubation and emergence life stages of salmonids[J]. Agriculture,Ecosystems & Environment,2014,196:76—93.

Study on Soil Erosion and Conservation in the Past 10 Years:Progress and Prospects

SHI Zhihua1, LIU Qianjin2, ZHANG Hanyu2, WANG Ling1, HUANG Xuan3, FANG Nufang4, YUE Zijian4

(1.College of Resources & Environment ofHuazhong Agricultural University, Wuhan 430070, China; 2. College of Resources and Environment, Linyi University, Linyi, Shandong 276000, China; 3. College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China; 4. Institute of Soil and Water Conservation, Chinese Academy of Sciences, Yangling, Shaanxi 712100, China)

Under the background of ecological civilization, soil erosion and conservation face new opportunities and challenges nowadays. We employed a bibliometric analysis on the research of soil erosion and conservation in the past ten years. The results summarized the research tendency and hotspots, and presented China’s main achievements and international status in this field. Considering social needs, we pointed out the main existing problems for scientific researches on soil erosion and conservation. Then, we identified the front scientific issues, including the coupling mechanisms of hydrology and soil erosion, the soil erosion process and modeling, the soil erosion evolution and its catastrophic mechanism under global change, the mutual feedback between socio-economy and soil erosion, the soil conservation for ecological function improvement, and the new technologies and methods for soil erosion research.

Soil erosion; Soil conservation; Bibliometric; Key research issues

S157

A

10.11766/trxb202002240070

史志華,劉前進(jìn),張含玉,王玲,黃萱,方怒放,岳紫健. 近十年土壤侵蝕與水土保持研究進(jìn)展與展望[J]. 土壤學(xué)報(bào),2020,57(5):1117–1127.

SHI Zhihua,LIU Qianjin,ZHANG Hanyu,WANG Ling,HUANG Xuan,F(xiàn)ANG Nufang,YUE Zijian. Study on Soil Erosion and Conservation in the Past 10 Years:Progress and Prospects[J]. Acta Pedologica Sinica,2020,57(5):1117–1127.

* 國(guó)家杰出青年科學(xué)基金項(xiàng)目(41525003)資助Supported by the National Science Fund for Distinguished Young Scholars of China(No. 41525003)

史志華,男,博士,教授,主要從事土壤侵蝕與水土保持教學(xué)和研究工作。E-mail:pengshi@mail.hzau.edu.cn

2020–02–24;

2020–04–28;

網(wǎng)絡(luò)首發(fā)日期(www.cnki.net):2020–06–04

(責(zé)任編輯:檀滿枝)

猜你喜歡
產(chǎn)沙土壤侵蝕泥沙
赤水市大石河小流域不同土地利用類型汛期產(chǎn)流產(chǎn)沙特征
泥沙做的父親
西柳溝丘陵區(qū)土壤組成及對(duì)流域產(chǎn)沙的影響
人民黃河(2020年2期)2020-10-12 14:26:14
新疆多泥沙河流水庫(kù)泥沙處理措施
鄉(xiāng)村聚落土壤侵蝕環(huán)境與水土流失研究綜述
土壤團(tuán)聚體對(duì)泥沙沉降速度的影響
海壇島土壤侵蝕問(wèn)題研究
翻耕和覆蓋對(duì)坡耕地產(chǎn)流產(chǎn)沙的影響
大別山區(qū)土壤侵蝕動(dòng)態(tài)變化及趨勢(shì)預(yù)測(cè)
泥沙滅火
兒童繪本(2015年2期)2015-05-25 18:10:15
太仆寺旗| 巴中市| 化州市| 二手房| 扶绥县| 西华县| 寻乌县| 游戏| 盐山县| 黄龙县| 富顺县| 佳木斯市| 陇南市| 柯坪县| 江孜县| 余江县| 大港区| 横山县| 大洼县| 襄樊市| 宽城| 高平市| 浦东新区| 汝城县| 玉屏| 清水河县| 瑞金市| 偏关县| 布拖县| 禄劝| 巴南区| 镇康县| 宁陵县| 巴彦县| 澜沧| 遂平县| 扎兰屯市| 砀山县| 万年县| 本溪| 石景山区|