国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

土壤酶及其生態(tài)指示作用研究進(jìn)展

2020-10-09 11:33陸琴李冬琴
安徽農(nóng)業(yè)科學(xué) 2020年18期
關(guān)鍵詞:分布特征

陸琴 李冬琴

摘要 土壤酶催化土壤生物地球化學(xué)反應(yīng),推動(dòng)土壤生態(tài)系統(tǒng)中的物質(zhì)循環(huán)和能量流動(dòng)。從土壤酶的來源、存在狀態(tài)及功能、土壤酶活性的分布特征及時(shí)空動(dòng)態(tài)變化進(jìn)行了概述,強(qiáng)調(diào)了土壤酶活性對(duì)土地利用方式、耕作管理、施肥、農(nóng)藥和地膜的使用及重金屬污染等的生態(tài)指示作用,為更好地利用土壤酶來及時(shí)了解土壤生態(tài)系統(tǒng)功能的運(yùn)行狀況及采取適當(dāng)管理措施提供支持。

關(guān)鍵詞 土壤酶;分布特征;時(shí)空動(dòng)態(tài);生態(tài)指示作用

中圖分類號(hào) S154.2 ?文獻(xiàn)標(biāo)識(shí)碼 A

文章編號(hào) 0517-6611(2020)18-0014-04

Abstract Soil enzymes catalyze biogeochemical reactions in soil and drive material circulation and energy flow in the ecosystem.This paper summarized soil enzyme sources,status,functions,distribution characteristics and spatiotemporal dynamics,emphasizing that soil enzyme activities indicate changes in land use type,tillage and management,fertilization,pesticide application,plastic film use and heavy metal pollution in ecosystem.This paper was expected to provide support for better learning soil ecosystem function changes so that proper management measures can be taken as soon as possible.

Key words Soil enzymes;Distribution characteristics;Spatiotemporal dynamics;Ecosystem indicator

土壤酶催化生物地球化學(xué)反應(yīng)的進(jìn)行,推動(dòng)著土壤中的物質(zhì)轉(zhuǎn)化、元素循環(huán)和能量流動(dòng)[1-2],促進(jìn)有機(jī)質(zhì)的礦化和有機(jī)污染物的降解,與土壤肥力質(zhì)量和土壤健康質(zhì)量緊密聯(lián)系,指示土壤生態(tài)系統(tǒng)功能[3-4]。筆者對(duì)土壤酶的來源、在土壤中的存在狀態(tài)及功能、土壤酶活性的分布特征及時(shí)空動(dòng)態(tài)變化、土壤酶的生態(tài)指示作用等方面進(jìn)行論述,旨在為更好地利用土壤酶來認(rèn)識(shí)土壤生態(tài)系統(tǒng)變化從而及時(shí)采取適當(dāng)?shù)墓芾泶胧┨峁├碚撝С帧?/p>

1 土壤酶的來源、存在狀態(tài)及功能

1.1 來源

土壤酶主要來源于土壤中的微生物、動(dòng)物和植物,其中大部分來源于植物及土壤微生物,少量來源于蚯蚓、螞蟻等土壤動(dòng)物。一方面,這些生物在生命活動(dòng)過程中向環(huán)境(土壤)中不斷分泌各種酶;另一方面,這些生物死后,它們的殘?bào)w在分解過程中不斷向環(huán)境中釋放各種酶[5]。

1.2 存在狀態(tài)

進(jìn)入土壤后的酶以不同的狀態(tài)存在于土壤中,可分為自由態(tài)、吸附態(tài)和結(jié)合態(tài)。自由態(tài)的酶游離在土壤溶液中,活性大,但容易失活。有的酶吸附在土壤有機(jī)質(zhì)和無機(jī)膠體上,這些吸附態(tài)的酶活性較大,不易失活。還有的酶與土壤腐殖質(zhì)的基團(tuán)結(jié)合,活性小,但穩(wěn)定。土壤中自由態(tài)的酶比較少,大部分以酶-腐殖質(zhì)、酶-無機(jī)礦物膠體、酶-有機(jī)無機(jī)復(fù)合體的形式存在[6]。

1.3 功能 土壤酶在土壤有機(jī)質(zhì)礦化及元素循環(huán)中起著重要的作用,有機(jī)質(zhì)礦化過程中的每一步都是在各種酶的催化下進(jìn)行的,如木聚糖酶、轉(zhuǎn)化酶、纖維素酶等催化碳鍵斷裂[7-8]。植物枯枝落葉中復(fù)雜的氮聚合物在蛋白酶、氨肽酶、氨基酸氧化酶及轉(zhuǎn)氨酶等一系列土壤酶的催化作用下,分解為多肽、氨基酸,最后轉(zhuǎn)化為可被植物吸收利用的無機(jī)態(tài)氮(NH4+與NO3-)。表1列舉了一些受到廣泛關(guān)注的土壤酶,這些酶或者與具體某個(gè)元素的循環(huán)緊密相關(guān),如脲酶、酸性磷酸酶等[9-10],或者具有指示微生物整體活性的作用,如脫氫酶、熒光素二乙酸酯水解酶[3,11]。

2 土壤酶活性的分布特征

土壤酶來源于土壤微生物、植物及土壤動(dòng)物,主要吸附在有機(jī)質(zhì)及黏粒表面或與土壤腐殖質(zhì)的基團(tuán)結(jié)合。因此,土壤酶在土壤中的分布與土壤微生物在土壤中的分布、植物根系在土壤中的分布及土壤動(dòng)物在土壤中的活動(dòng)分布密切相關(guān),反映土壤有機(jī)質(zhì)及黏粒分布,也反映根系代謝活性及微生物活性。具體而言,在土壤垂直方向上,土壤酶活性普遍隨著土壤深度的增加而降低,在有機(jī)質(zhì)含量高、根系密集分布、土壤微生物及動(dòng)物活躍的土壤表層(如0~20 cm),土壤酶活性高;而在有機(jī)質(zhì)含量低、根系少、微生物及動(dòng)物少的土壤深層,土壤酶活性低[20]。如在太湖地區(qū)典型水稻土剖面中,15~40 cm土層中的葡糖苷酶活性大約為表層(0~15 cm)土壤中葡糖苷酶活性的25%,剖面60 cm處的葡糖苷酶活性約為表層的10%[22]。這種上下土層間酶活性的差異在森林土壤中更為明顯,農(nóng)田土壤在耕作過程中經(jīng)常翻耕,酶活性在土層間的差異因而減小[17]。在土壤水平方向上,根際土壤酶活性高,距離根際越遠(yuǎn),土壤酶活性越低[23-24]。這種分布特征在植物根系的完全形成期尤為明顯[23]。這一方面是根向土壤中分泌酶的結(jié)果,另一方面也是根分泌物對(duì)酶的誘導(dǎo)作用。酶譜分析法也直觀形象地展示了土壤酶在土壤中的這一分布特征[25-26]。

3 土壤酶活性的時(shí)空動(dòng)態(tài)變化

土壤酶本質(zhì)上是有活性的生物大分子蛋白質(zhì)類物質(zhì),土壤酶活性對(duì)環(huán)境溫度及濕度變化反應(yīng)靈敏。Sardans等[27]研究表明,當(dāng)土壤濕度降低21%,脲酶活性降低10%~67%,而酸性磷酸酶活性降低31%~40%。小范圍內(nèi)(如某一田塊),土壤酶在土壤中的分布主要受土壤有機(jī)質(zhì)和植物生長(zhǎng)影響,反映土壤有機(jī)質(zhì)分布和根系活性;而在大范圍內(nèi),土壤酶活性則主要受環(huán)境溫度和濕度影響,與土壤溫度、濕度顯著相關(guān),反映環(huán)境溫度和濕度變化[28]。具體體現(xiàn)在不同季節(jié)間的差異,山的南、北坡之間的差異、山腳與山頂間的差異以及不同緯度間的差異。如纖維素酶、轉(zhuǎn)化酶、多酚氧化酶、過氧化氫酶、硝酸還原酶、脲酶、酸性及堿性磷酸酶活性都表現(xiàn)為夏季高、冬季低[21]。又如長(zhǎng)江中下游過渡地區(qū)灌木林土壤中的過氧化氫酶、脫氫酶、多酚氧化酶、脲酶及轉(zhuǎn)化酶都表現(xiàn)為7和10月的活性大于4月,12月活性最低。酶活性季節(jié)間的變化在土壤表層尤其明顯。因此,酶活性在不同土層間的差異也在7和10月最為明顯,而在12月最小[20]。北坡磷酸酶、芳基硫酸酯酶和脲酶活性比南坡的高,磷酸酶和芳基硫酸酯酶活性從山腳向山頂逐漸升高[29]。在我國(guó)東北松遼平原,緯度越高的地區(qū),農(nóng)田土壤中的轉(zhuǎn)化酶和酸性磷酸酶活性越高[30]。

4 土壤酶的生態(tài)指示作用

土壤酶活性受到環(huán)境溫度、濕度、pH、底物濃度、抑制劑等眾多因素影響,對(duì)不同土地利用方式、農(nóng)田耕作制度與管理措施、氣候變化、污染等引起的土壤環(huán)境變化非常敏感,能夠做出迅速的反應(yīng),對(duì)于土壤質(zhì)量變化、關(guān)鍵土壤過程的功能多樣性有指示作用[5]。

調(diào)查數(shù)據(jù)表明,農(nóng)田土壤中的α-葡糖苷酶、β-木糖苷酶、芳基硫酸酯酶、磷酸酶等酶活性明顯比同地區(qū)草地和森林中的酶活性低[31-42]。主要原因是農(nóng)田土壤有機(jī)質(zhì)低,酶底物濃度低且種類單一。保護(hù)性耕作能夠降低耕作頻率,提高了底物濃度,有利于土壤酶活性維持在較高水平。如水稻-小麥輪作,兩季作物都采用免耕時(shí)土壤酶活性最高,其次是只有一季作物采用免耕的,兩季作物均采用常規(guī)耕作時(shí)土壤酶活性最低[33]。與少耕及常規(guī)耕作相比,免耕時(shí)酶活性高,尤其在表層[34]。秸稈還田增加了農(nóng)田有機(jī)質(zhì)的輸入,給土壤酶提供了豐富的底物,很多酶會(huì)受到誘導(dǎo)而活性提高。在Hemkemeyer等[35]的研究中,連續(xù)4年的秸稈還田后,0~60 cm 土層中的脲酶、磷酸酶和轉(zhuǎn)化酶活性分別平均提高19.6%、39.4%和44.3%,并且秸稈還田的量越大,酶活性提高越多。與添加有機(jī)物不同,化肥的施用通常對(duì)酶活性產(chǎn)生抑制作用。如幾丁質(zhì)酶活性隨著土壤無機(jī)氮含量的升高而降低[36-37]。同樣,無機(jī)磷肥的施用通常導(dǎo)致磷酸酶活性的降低[37]。施用(NH4)2SO4后,土壤中芳基硫酸酯酶活性降低[38]。農(nóng)藥使用短期內(nèi)即對(duì)土壤酶活性產(chǎn)生強(qiáng)烈的抑制作用。在Sanchez-Hernandez等[15]的研究中,毒死蜱施用14 d后羧酸酯酶活性下降62%~78%,酸性磷酸酶活性下降56%~60%,β-葡糖苷酶活性下降43%~58%,脫氫酶活性下降47%,過氧化氫酶活性下降38%。在很多關(guān)于農(nóng)藥施用的長(zhǎng)期試驗(yàn)中,指示土壤微生物整體活性的脫氫酶活性普遍降低,纖維素酶活性升高,而芳基硫酸酯酶活性變化不明顯[39]。

農(nóng)業(yè)生產(chǎn)中采用的地膜覆蓋以及現(xiàn)在日益嚴(yán)重的白色污染,很多微塑料進(jìn)入土壤,受到微塑料污染的土壤中FDA水解酶活性降低,與細(xì)菌群落豐度和多樣性降低一致[11]。在受到溴化阻燃劑四溴雙酚A污染的土壤中,過氧化氫酶、過氧化物酶和多酚氧化酶的活性都發(fā)生變化,但它們對(duì)污染的敏感程度及它們的變化趨勢(shì)是不同的。過氧化氫酶活性在3.75 mg/kg的四溴雙酚A濃度下即顯著增加,而過氧化氫酶和多酚氧化酶活性只有在75 mg/kg的四溴雙酚A濃度下才出現(xiàn)顯著變化,其中前者顯著降低,后者顯著升高[19]。同樣地,脲酶活性在75 mg/kg的四溴雙酚A濃度下才顯著受到抑制,而磷酸酶活性在低四溴雙酚A濃度時(shí)顯著升高,在四溴雙酚A濃度達(dá)到75 mg/kg時(shí)又顯著降低。

我國(guó)及世界范圍內(nèi)很多農(nóng)田受到工業(yè)廢水污染,又或者是水資源緊張的干旱半干旱區(qū)用含重金屬的污水來進(jìn)行農(nóng)業(yè)灌溉。受重金屬污染的土壤中酶活性顯著降低[40]。其中,脫氫酶和芳基硫酸酯酶活性對(duì)重金屬尤其敏感[41-42]。據(jù)Subrahmanyam等[43]的報(bào)道,經(jīng)過20年工業(yè)廢水的影響,中度污染土壤中脫氫酶、堿性磷酸酶、β-葡糖苷酶和蛋白酶活性分別下降27.5%、23.6%、22.8%和19.5%,而重度污染土壤中分別下降46%、51.8%、44.5%和30.9%。在重金屬復(fù)合污染的采礦區(qū),如鋅、銅、鉻、錳及鎳復(fù)合污染的礦區(qū),轉(zhuǎn)化酶與β-葡糖苷酶活性顯著低于無污染土壤中對(duì)應(yīng)酶活性,并且重金屬污染越嚴(yán)重,這2個(gè)酶活性越低[44]。Fang等[45]研究表明對(duì)農(nóng)田鉛、鎘污染最為敏感的是脲酶,而對(duì)草地及林地鉛、鋅、鎘污染最為敏感的酶是過氧化氫酶和磷酸酶。

酶活性在指示生態(tài)系統(tǒng)惡化的同時(shí)也能指示生態(tài)系統(tǒng)功能的恢復(fù)。據(jù)Feng等[20]報(bào)道,退化林地在恢復(fù)的過程中,過氧化氫酶、脫氫酶、多酚氧化酶、脲酶和轉(zhuǎn)化酶活性也在提高,在11年后達(dá)到高峰,此后穩(wěn)定或稍有下降。在重金屬污染修復(fù)過程中,酶活性的變化不僅反映土壤生態(tài)系統(tǒng)功能的恢復(fù),也反映修復(fù)所用方法及材料在不同土壤的相互作用對(duì)土壤微生物及酶的影響。Jia等[46]研究發(fā)現(xiàn)生物炭修復(fù)重金屬污染土壤中的脲酶與轉(zhuǎn)化酶活性分別提高137.5%與67.9%。Tang等[47]研究表明生物炭抑制土壤酶活性,堆肥促進(jìn)酶活性,兩者結(jié)合則對(duì)不同的酶效果不一樣。重金屬復(fù)合污染土壤用FeCl3淋洗后,脲酶、蔗糖酶和過氧化氫酶活性都顯著降低,添加石灰、生物炭或黑碳后酶活性有所提高,其中石灰效果最好[48]。

綜上,由于土壤理化性質(zhì),如土壤容重、有機(jī)質(zhì)、陽離子交換量等,一般變化比較緩慢,對(duì)土壤短期變化不敏感,等這些性質(zhì)發(fā)生比較明顯的變化時(shí),土壤肥力或質(zhì)量通常已經(jīng)發(fā)生了非常大的或不可逆的變化,因而無法作為土壤生態(tài)系統(tǒng)功能變化的早期預(yù)警指數(shù),尋找能夠快速應(yīng)答環(huán)境脅迫的土壤質(zhì)量指標(biāo)顯得尤其重要。學(xué)者們的目光開始投向能快速響應(yīng)環(huán)境變化、反映土壤質(zhì)量變化趨勢(shì)、可普遍適用于不同土壤生態(tài)系統(tǒng)的生化指標(biāo),如土壤酶[49]。Eivazi等[16]研究表明酸性磷酸酶、堿性磷酸酶、α-葡糖苷酶、芳基硫酸酯酶和脲酶活性可以很好地反映耕作系統(tǒng)、管理歷史及土壤性質(zhì)。Muscolo等[3]研究指出熒光素二乙酸酯水解酶可指示由氣候變化引起的土壤質(zhì)量變化。Sanchez-Hernandez等[15]證明了羧酸酯酶是有機(jī)磷污染的一個(gè)敏感指標(biāo)。Duan等[26]研究則說明過氧化氫酶和蔗糖酶對(duì)鉛、鋅及鎘污染最為敏感。

5 結(jié)語

土壤酶作為土壤質(zhì)量指標(biāo),指示土壤肥力質(zhì)量及土壤健康質(zhì)量已為大家所接受。但不同的酶分子組成、結(jié)構(gòu)不同,催化的反應(yīng)不同,受眾多環(huán)境因素影響,因此,酶活性變化背后所指示的生態(tài)功能或進(jìn)程需要就具體的酶、具體的生態(tài)環(huán)境來討論,并沒有像土壤物理化學(xué)性質(zhì)那樣簡(jiǎn)單普遍適用的結(jié)論。目前大部分土壤酶的研究還是局限于測(cè)定其活性,而酶活性的測(cè)定方法尚無統(tǒng)一標(biāo)準(zhǔn)的方法,用干土還是鮮土,是否要加緩沖劑,是否要振蕩,是否要恒溫,合適的水土比等問題一直存在爭(zhēng)議。而土壤酶的分子生物學(xué)研究也在興起和發(fā)展,借助分子生物學(xué)手段將能更好地利用土壤酶來及時(shí)快速了解生態(tài)系統(tǒng)功能的變化趨勢(shì),從而能更及時(shí)快速采取適宜的管理措施。

參考文獻(xiàn)

[1] TRESEDER K K,VITOUSEK P M.Effects of soil nutrient availability on investment in acquisition of N and P in Hawaiian rain forests[J].Ecology,2001,82(4):946-954.

[2] NANNIPIERI P,GIAGNONI L,RENELLA G,et al.Soil enzymology:Classical and molecular approaches[J].Biology and fertility of soils,2012,48(7):743-762.

[3] MUSCOLO A,SETTINERI G,ATTIN E.Early warning indicators of changes in soil ecosystem functioning[J].Ecological indicators,2015,48:542-549.

[4] TRAP J,RIAH W,AKPAVINCESLAS M,et al.Improved effectiveness and efficiency in measuring soil enzymes as universal soil quality indicators using microplate fluorimetry[J].Soil biology and biochemistry,2012,45:98-101.

[5] CALDWELL B A.Enzyme activities as a component of soil biodiversity:A review[J].Pedobiologia,2005,49(6):637-644.

[6] RAO M A,VIOLANTE A,GIANFREDA L.Interaction of acid phosphatase with clays,organic molecules and organomineral complexes:Kinetics and stability[J].Soil biology and biochemistry,2000,32(7):1007-1014.

[7] STEMMER M,GERZABEK M H,KANDELER E.Invertase and xylanase activity of bulk soil and particlesize fractions during maize straw decomposition[J].Soil biology and biochemistry,1998,31(1):9-18.

[8] DENG S P,TABATABAI M A.Cellulase activity of soils[J].Soil biology and biochemistry,1994,26(10):1347-1354.

[9] KLOSE S,TABATABAI M A.Urease activity of microbial biomass in soils[J].Soil biology and biochemistry,1999,31(2):205-211.

[10] LEMANOWICZ J,KRZY?ANIAK M.Vertical distribution of phosphorus concentrations,phosphatase activity and further soil chemical properties in salt-affected Mollic Gleysols in Poland[J].Environmental earth sciences,2015,74(3):2719-2728.

[11] FEI Y F,HUANG S Y,ZHANG H B,et al.Response of soil enzyme activities and bacterial communities to the accumulation of microplastics in an acid cropped soil[J].Science of the total environment,2019,707:1-9.

[12] HE D Y,CUI J,GAO M,et al.Effects of soil amendments applied on cadmium availability,soil enzyme activity,and plant uptake in contaminated purple soil[J].Science of the total environment,2019,654:1364-1371.

[13] ANANBEH H,STOJANOVIC′ M,POMPEIANO A,et al.Use of soil enzyme activities to assess the recovery of soil functions in abandoned coppice forest systems[J/OL].Science of the total environment,2019,694[2019-12-15].https://doi.org/10.1016/j.scitotenv.2019.133692.

[14] OU Y,ROUSSEAU A N,WANG L X,et al.Identification of the alteration of riparian wetland on soil properties,enzyme activities and microbial communities following extreme flooding[J].Geoderma,2019,337:825-833.

[15] SANCHEZ-HERNANDEZ J C,SANDOVAL M,PIERART A.Shortterm response of soil enzyme activities in a chlorpyrifostreated mesocosm:use of enzymebased indexes[J].Ecological indicators,2017,73:525-535.

[16] EIVAZI F,BAYAN M R,SCHMIDT K.Select soil enzyme activities in the historic Sanborn Field as affected by longterm cropping systems[J].Communications in soil science and plant analysis,2003,34(15/16):2259-2275.

[17] LEBRUN J D,TRINSOUTROTGATTIN I,VINCESLASAKPA M,et al.Assessing impacts of copper on soil enzyme activities in regard to their natural spatiotemporal variation under longterm different land uses[J].Soil biology and biochemistry,2012,49:150-156.

[18] RAIESI F,BEHESHTI A.Soil specific enzyme activity shows more clearly soil responses topaddy rice cultivation than absolute enzyme activity in primaryforests of northwest Iran[J].Applied soil ecology,2014,75:63-70.

[19] WANG Y,ZHANG M,ZHAO L F,et al.Effects of tetrabromobisphenol A on maize (Zea mays L.) physiological indexes,soil enzyme activity,and soil microbial biomass[J].Ecotoxicology,2019,28:1-12.

[20] FENG C,MA Y H,JIN X,et al.Soil enzyme activities increase following restoration of degraded subtropical forests[J].Geoderma,2019,351:180-187.

[21] WANG C Y,L Y M,WANG L,et al.Insights into seasonal variation of litter decomposition and related soil degradative enzyme activities in subtropical forest in China[J].Journal of forestry research,2013,24(4):683-689.

[22] WANG X C,LU Q.BetaGlucosidase activity in paddy soils of the Taihu Lake region,China[J].Pedosphere,2006,16(1):118-124.

[23] DELGADO M,ZUNIGAFEEST A,ALMONACID L,et al.Cluster roots of Embothrium coccineum (Proteaceae) affect enzyme activities and phosphorus lability in rhizosphere soil[J].Plant and soil,2015,395(1/2):189-200.

[24] RAZAVI B S,ZAREBANADKOUKI M,BLAGODATSKAYA E,et al.Rhizosphere shape of lentil and maize:Spatial distribution of enzyme activities[J].Soil biology and biochemistry,2016,96:229-237.

[25] SPOHN M,CARMINATI A,KUZYAKOV Y.Soil zymography—A novel in situ method for mapping distribution of enzyme activity in soil[J].Soil biology and biochemistry,2013,58:275-280.

[26] DUAN C J,F(xiàn)ANG L C,YANG C L,et al.Reveal the response of enzyme activities to heavy metals through in situ zymography[J].Ecotoxicology and environmental safety,2018,156:106-115.

[27] SARDANS J,PEN~UELAS J.Drought decreases soil enzyme activity in a Mediterranean Quercus ilex L.forest[J].Soil biology and biochemistry,2005,37:455-461.

[28] BOWLES T M,ACOSTAMARTNEZ V,CALDERN F,et al.Soil enzyme activities,microbial communities,and carbon and nitrogen availability in organic agroecosystems across an intensivelymanaged agricultural landscape[J].Soil biology and biochemistry,2014,68:252-262.

[29] NAHIDAN S,NOURBAKHSH F,MOSADDEGHI M R.Variation of soil microbial biomass C and hydrolytic enzyme activities in a rangeland ecosystem:Are slope aspect and position effective?[J].Archives of agronomy and soil science,2015,61(6):797-811.

[30] LIU X M,LI Q,LIANG W J,et al.Distribution of soil enzyme activities and microbial biomass along a latitudinal gradient in farmlands of Songliao Plain,Northeast China[J].Pedosphere,2008,18(4):431-440.

[31] SˇTURSOV M,BALDRIAN P.Effects of soil properties and management on the activity of soil organic matter transforming enzymes and the quantification of soilbound and free activity[J].Plant and soil,2011,338(1/2):99-110.

[32] WALLENIUS K,RITA H,MIKKONEN A,et al.Effects of land use on the level,variation and spatial structure of soil enzyme activities and bacterial communities[J].Soil biology and biochemistry,2011,43(7):1464-1473.

[33] PANDEY D,AGRAWAL M,BOHRA J S.Assessment of soil quality under different tillage practices during wheat cultivation:Soil enzymes and microbial biomass[J].Chemistry and ecology,2015,31(6):510-523.

[34] ROLDAN A,SALINASGARCIA J R,ALGUACIL M M,et al.Soil enzyme activities suggest advantages of conservation tillage practices in sorghum cultivation under subtropical conditions[J].Geoderma,2005,129(3/4):178-185.

[35] HEMKEMEYER M,CHRISTENSEN B T,MARTENS R,et al.Soil particle size fractions harbour distinct microbial communities and differ in potential for microbial mineralisation of organic pollutants[J].Soil biology and biochemistry,2015,90:255-265.

[36] ALLISON S D,CZIMCZIK C I,TRESEDER K K.Microbial activity and soil respiration under nitrogen addition in Alaskan boreal forest[J].Global change biology,2008,14:1156-1168.

[37] ANDERSSON M,KJRˇLLER A,STRUWE S.Microbial enzyme activities in leaf litter,humus and mineral soil layers of European forests[J].Soil biology and biochemistry,2004,36:1527-1537.

[38] PRIETZEL J.Arylsulfatase activities in soils of the Black Forest/Germany:Seasonal variation and effect of (NH4)2SO4 fertilization[J].Soil biology and biochemistry,2001,33:1317-1328.

[39] RIAH W,LAVAL K,LAROCHEAJZENBERG E,et al.Effects of pesticides on soil enzymes:A review[J].Environmental chemistry letters,2014,12(2):257-273.

[40] MA S C,ZHANG H B,MA S T,et al.Effects of mine wastewater irrigation on activities of soil enzymes and physiological properties,heavy metal uptake and grain yield in winter wheat[J].Ecotoxicology and environmental safety,2015,113:483-490.

[41] HU X F,JIANG Y,SHU Y,et al.Effects of mining wastewater discharges on heavy metal pollution and soil enzyme activity of the paddy fields[J].Journal of geochemical exploration,2014,147:139-150.

[42] XIAN Y,WANG M E,CHEN W P.Quantitative assessment on soil enzyme activities of heavy metal contaminated soils with various soil properties[J].Chemosphere,2015,139:604-608.

[43] SUBRAHMANYAM G,SHEN J P,LIU Y R,et al.Effect of longterm industrial waste effluent pollution on soil enzyme activities and bacterial community composition[J].Environmental monitoring and assessment,2016,188(2):1-13.

[44] YANG G,DONG F Q,LIU M X,et al.Interactive effect of radioactive and heavymetal contamination on soil enzyme activity in a former uranium mine[J].Polish journal of environmental studies,2018,27(3):1-9.

[45] FANG L C,LIU Y Q,TIAN H X,et al.Proper land use for heavy metalpolluted soil based on enzyme activity analysis around a PbZn mine in Feng County,China[J].Environmental science and pollution research,2017,24:28152-28164.

[46] JIA W L,WANG B L,WANG C P,et al.Tourmaline and biochar for the remediation of acid soil polluted with heavy metals[J].Journal of environmental chemical engineering,2017,5(3):2107-2114.

[47] TANG J Y,ZHANG L H,ZHANG J C,et al.Physicochemical features,metal availability and enzyme activity in heavy metalpolluted soil remediated by biochar and compost[J/OL].Science of the total environment,2020,701[2019-12-15].https://doi.org/10.1016/j.scitotenv.2019.134751.

[48] ZHAI X Q,LI Z W,HUANG B,et al.Remediation of multiple heavy metalcontaminated soil through the combination of soil washing and in situ immobilization[J].Science of the total environment,2018,635:92-99.

[49] PAZFERREIRO J,TRASARCEPEDA C,DEL CARMEN LEIRS M,et al.Intraannual variation in biochemical properties and the biochemical equilibrium of different grassland soils under contrasting management and climate[J].Biology and fertility of soils,2011,47(6):633-645.

猜你喜歡
分布特征
我國(guó)城市污水處理廠污泥中重金屬分布特征及變化規(guī)律
五壘島灣海域石油烴分布特征
池塘淤泥氮營(yíng)養(yǎng)物質(zhì)分布特征研究
安徽省濉溪縣淺層地下高氟水的分布特征及影響因素分析
永康市| 商城县| 大埔区| 贵德县| 和田县| 巴塘县| 武穴市| 荥阳市| 专栏| 长海县| 平邑县| 广河县| 桓仁| 虹口区| 保康县| 盐源县| 双桥区| 澄江县| 萨迦县| 元江| 静宁县| 五峰| 西安市| 珠海市| 辉南县| 循化| 泸西县| 大化| 安陆市| 天镇县| 永靖县| 嘉鱼县| 包头市| 开江县| 报价| 临海市| 望城县| 浏阳市| 卢氏县| 石门县| 乐昌市|