肖 華,徐 杏,周 昕,朱曉明,周衛(wèi)東
膜技術(shù)在沼氣工程沼液減量化處理中的應(yīng)用
肖 華,徐 杏,周 昕,朱曉明,周衛(wèi)東※
(浙江省農(nóng)業(yè)科學(xué)院畜牧獸醫(yī)研究所,杭州,310021)
厭氧發(fā)酵產(chǎn)沼氣作為主流的能源化技術(shù),在有機(jī)廢棄物的處理中發(fā)揮了重要作用。沼液作為沼氣工程的主要副產(chǎn)物,由于其產(chǎn)量大、含水率高,在資源化利用過程中存在儲(chǔ)存運(yùn)輸困難、難以及時(shí)消納利用等問題,需要進(jìn)行減量化處理。利用膜技術(shù)濃縮沼液可大幅降低沼液體積,產(chǎn)生大量淡水資源,同時(shí)獲得含高濃度營養(yǎng)物質(zhì)的濃縮液,已展現(xiàn)出廣闊的應(yīng)用前景。該研究歸納了厭氧發(fā)酵沼液的水質(zhì)特性,綜述了固液分離預(yù)處理,微濾(Microfiltration,MF)、超濾(Ultrafiltration,UF)、納濾(Nanofiltration,NF)、反滲透(Reverse Osmosis,RO)、膜蒸餾(Membrane Distillation,MD)和減壓膜蒸餾(Vacuum Membrane Distillation,VMD)等沼液膜濃縮技術(shù),總結(jié)了各技術(shù)的處理原理及當(dāng)前國內(nèi)外研究進(jìn)展,重點(diǎn)探討了需解決的關(guān)鍵瓶頸問題,并對(duì)膜技術(shù)應(yīng)用于沼氣工程沼液減量化處理進(jìn)行了展望與建議。
膜;發(fā)酵;廢棄物;沼液;固液分離;膜濃縮;減量化
中國是農(nóng)業(yè)大國,農(nóng)業(yè)生產(chǎn)過程中產(chǎn)生大量有機(jī)廢棄物,其主要來源于種植業(yè)和養(yǎng)殖業(yè),狹義的農(nóng)業(yè)廢棄物主要是指農(nóng)作物秸稈和畜禽糞便。據(jù)行業(yè)統(tǒng)計(jì)[1],全國每年產(chǎn)生約38億t畜禽糞污,綜合利用率不足60%;中國秸稈全年產(chǎn)量超過9億t,仍有約20%未得到有效利用。這些未實(shí)現(xiàn)資源化利用的農(nóng)業(yè)廢棄物,若得不到妥善處理處置,將給生態(tài)環(huán)境造成嚴(yán)重影響。習(xí)近平總書記在中央財(cái)經(jīng)領(lǐng)導(dǎo)小組第十四次會(huì)議上的重要講話明確了能源化和肥料化作為畜禽糞污處理的主要方向。厭氧發(fā)酵產(chǎn)沼氣作為主流的能源化技術(shù),在農(nóng)業(yè)廢棄物處理中發(fā)揮了重要作用。根據(jù)《全國農(nóng)村沼氣發(fā)展“十三五”規(guī)劃》[2],以畜禽糞便、農(nóng)作物秸稈為原料的規(guī)?;笮驼託夤こ虒⒂?015年底的6 972處增至2020年底的10 122處。同樣厭氧發(fā)酵作為一種綠色環(huán)保的處理工藝,近年來也逐漸成為餐廚垃圾處理的主流工藝[3]。據(jù)清華大學(xué)環(huán)境系固體廢物污染控制及資源化研究所估算,中國城市每年餐廚垃圾產(chǎn)生量不低于6 000萬t,目前國內(nèi)建成或在建的餐廚垃圾處理廠,采用厭氧發(fā)酵工藝的達(dá)到60%以上[4]。
畜禽糞污、農(nóng)作物秸稈、餐廚垃圾中的有機(jī)質(zhì)在一定的水分、溫度和厭氧條件下,經(jīng)過各種厭氧菌的降解作用,產(chǎn)生包括甲烷和二氧化碳等在內(nèi)的混合氣體-沼氣,同時(shí)產(chǎn)生固體沼渣與大量液態(tài)副產(chǎn)物-厭氧發(fā)酵液,即沼液。沼液中含有多種營養(yǎng)成分[5],腐熟的沼液是優(yōu)質(zhì)的速效液肥[6],具有刺激作物生長、增強(qiáng)作物抗逆性及改善產(chǎn)品品質(zhì)等功效。將沼液作為資源回收并綜合利用其中的營養(yǎng)物質(zhì),是實(shí)現(xiàn)循環(huán)農(nóng)業(yè)與節(jié)能減排的一種綠色可持續(xù)處理方法。2015年中國農(nóng)村沼氣工程生產(chǎn)沼肥(沼液和沼渣)7 100 t[2],其中沼液產(chǎn)生量遠(yuǎn)大于沼渣,隨著沼氣工程數(shù)量和規(guī)模的不斷擴(kuò)大,產(chǎn)生的沼液資源也日益豐富。中大型沼氣工程沼液產(chǎn)量大、含水量高且具有連續(xù)性,而農(nóng)作物大都具有季節(jié)性的需肥規(guī)律,客觀上沼液的連續(xù)產(chǎn)生與農(nóng)作物的間歇性需肥之間存在矛盾。因此沼液在資源化利用過程中,存在儲(chǔ)存運(yùn)輸困難、難以及時(shí)消納利用等問題,一定程度上限制了沼液消納的可行性,反過來也制約沼氣工程的推廣及長期穩(wěn)定運(yùn)行。為有效解決上述問題,需要對(duì)沼氣工程產(chǎn)生的沼液進(jìn)行減量化處理。
膜技術(shù)作為一種物理分離技術(shù),具有無相變、分離效率高、無二次污染、操作簡便等優(yōu)點(diǎn)。膜技術(shù)濃縮沼液過程中水從膜的一側(cè)滲透至另一側(cè),而高倍濃縮的營養(yǎng)物質(zhì)則被膜截留下來,不僅能產(chǎn)生可回用的淡水資源,同時(shí)能夠大幅減少沼液體積便于儲(chǔ)運(yùn)。利用膜工藝濃縮沼液大幅降低沼液體積并制成有機(jī)液肥,能提高沼液資源的經(jīng)濟(jì)效益,使沼液利用的產(chǎn)業(yè)化和商品化成為可能。隨著沼氣工程的逐步推廣,沼液出路的問題變得日益突出,膜濃縮實(shí)現(xiàn)沼液減量化從技術(shù)上、經(jīng)濟(jì)上均具有較強(qiáng)的競爭力及發(fā)展前景。本文在深入分析沼液水質(zhì)特性基礎(chǔ)上,系統(tǒng)總結(jié)了近年來膜技術(shù)應(yīng)用于沼液處理的研究進(jìn)展,全面梳理了當(dāng)前膜濃縮沼液存在的主要問題,并對(duì)未來沼液減量化工藝的發(fā)展方向進(jìn)行了展望。
厭氧發(fā)酵原料包括各種禽畜糞污、秸稈、餐廚垃圾等,不同發(fā)酵底物養(yǎng)分組成差別較大,厭氧發(fā)酵后產(chǎn)生的沼液水質(zhì)存在一定差異,但也具有諸多共同點(diǎn):成分復(fù)雜、固形物含量高、有機(jī)物濃度高、高氨氮、高堿度、高鹽分等。
從外觀形態(tài)看,沼液是一種色度較深的黏稠液體,膠體含量高。沼液中富含氨基酸、維生素、蛋白質(zhì)、植物生長素、糖類、核酸及抗生素等有機(jī)物[7],氮、磷、鉀等常量營養(yǎng)元素和鐵、鋅、銅等微量元素。沼液內(nèi)有機(jī)物種類繁多,其中所含有機(jī)物大多為腐殖質(zhì)類高分子碳水化合物和蛋白質(zhì)、氨基酸類物質(zhì)[8-11],且內(nèi)含多種烷類、脂類、醇類、酸類、酚類[9,11]等,還包含1~5個(gè)碳原子的短鏈揮發(fā)性脂肪酸(Volatile Fatty Acid,VFA),因而其成分相當(dāng)復(fù)雜。
經(jīng)厭氧發(fā)酵后,一部分原料顆粒沉降形成沼渣,但是沼液中的固形物含量仍然較高,主要是原料中殘留的部分固形物、絮膠狀的不可溶有機(jī)質(zhì)以及新產(chǎn)生的微生物菌體等。Kaparaju等[12]采用篩分法將奶牛場(chǎng)厭氧發(fā)酵液過2.0 mm孔徑的篩,結(jié)果顯示沼液中>2.0 mm的組分占18%~27%,總固體(Total Solids,TS)質(zhì)量分?jǐn)?shù)為10.1%。胡鑫鑫等[13]分別測(cè)定了餐廚垃圾沼液經(jīng)離心脫水前后的懸浮物(Suspended Solids,SS)含量,原液SS濃度為16 100 mg/L,離心后降至5 700 mg/L。張昌愛等[14]測(cè)定山東某大型秸稈沼氣工程沼液的固形物含量達(dá)到4.51%。
畜禽糞污、秸稈等有機(jī)廢棄物經(jīng)過厭氧發(fā)酵后,其中易分解的有機(jī)物被水解酸化菌和產(chǎn)甲烷菌分解轉(zhuǎn)化為沼氣,但沼液中殘留的難降解有機(jī)質(zhì)含量依然較高。葉小梅等[15]對(duì)江蘇省規(guī)模化養(yǎng)豬場(chǎng)和奶牛場(chǎng)內(nèi)大型沼氣工程的沼液樣本分析結(jié)果顯示:發(fā)酵后沼液的化學(xué)需氧量(Chemical Oxygen Demand,COD)均大于1 000 mg/L,其中62%的沼液COD超過5 000 mg/L。劉燁等[16]分析了豬、雞糞和秸稈混合發(fā)酵沼液在厭氧發(fā)酵期間碳元素含量的變化,總有機(jī)碳(Total Organic Carbon,TOC)在第18天達(dá)到最高濃度6 467 mg/L。表1列出了不同發(fā)酵原料沼液的COD,濃度普遍較高,其中餐廚垃圾沼液COD最高,一般可達(dá)到20 000 mg/L以上。根據(jù)厭氧微生物可利用程度不同,有機(jī)廢棄物中的有機(jī)質(zhì)可分為易分解有機(jī)質(zhì)、難分解有機(jī)質(zhì)和惰性有機(jī)質(zhì)。其中易分解有機(jī)質(zhì)主要包括蛋白質(zhì)、氨基酸、糖類等,難分解有機(jī)質(zhì)包括木質(zhì)素、纖維素、脂肪等,惰性有機(jī)質(zhì)主要指腐殖質(zhì)類有機(jī)物。有機(jī)廢棄物經(jīng)厭氧分解后沼液的COD仍然較高,主要是因?yàn)樵现兴y分解有機(jī)質(zhì)含量較高,在厭氧微生物作用下,如木質(zhì)素、纖維素、脂肪、腐殖質(zhì)等難以被有效分解。
表1 不同原料厭氧發(fā)酵沼液的COD
有機(jī)廢棄物厭氧發(fā)酵過程中有機(jī)氮在微生物作用下首先水解為氨基酸,并進(jìn)一步轉(zhuǎn)化為氨氮,因此沼液中氮素濃度較高且主要以氨氮形式存在。劉燁等[16]分析了豬糞、雞糞和秸稈混合發(fā)酵沼液在厭氧發(fā)酵期間氮元素含量的變化,總氮(Total Nitrogen,TN)在第23天達(dá)到最高濃度4 181 mg/L。靳紅梅等[22]研究了豬糞、牛糞厭氧發(fā)酵中氮素形態(tài)轉(zhuǎn)化及其在沼液和沼渣中的分布,經(jīng)過130 d的厭氧消化,豬糞和牛糞出料液中氨氮含量與進(jìn)料液相比分別增加了162.2%和90.0%,其占總氮的比例均顯著增加,占液相總氮的比例均大于70%。李祎雯等[23]測(cè)定了豬糞、餐廚垃圾、秸稈等8 種發(fā)酵原料產(chǎn)生的沼液營養(yǎng)成分含量,其中豬糞沼液中TN濃度最高,達(dá)0.26%;餐廚垃圾沼液TN濃度為0.124%;秸稈沼液TN濃度較低,為0.046%。吳健等[24]測(cè)得上海浦東新區(qū)某餐廚垃圾厭氧發(fā)酵液氨氮濃度在厭氧發(fā)酵工程運(yùn)行后期穩(wěn)定在2 000 mg/L左右。沼液中氮主要由有機(jī)氮、氨氮和硝態(tài)氮組成。隨著沼液貯存時(shí)間的不斷延長,氨氮會(huì)不斷揮發(fā)且部分轉(zhuǎn)化為硝態(tài)氮,導(dǎo)致沼液中氨氮含量逐漸降低。另外,沼液中氨氮含量還與沼液pH值及溫度等有關(guān),高pH值和高溫有利于氨氮的揮發(fā)。
堿度是衡量厭氧發(fā)酵系統(tǒng)緩沖能力的重要指標(biāo),在厭氧發(fā)酵過程的產(chǎn)酸和產(chǎn)甲烷階段,為抑制系統(tǒng)有機(jī)酸的積累,需向厭氧發(fā)酵系統(tǒng)中補(bǔ)充足量的碳酸鹽以維持一定的堿度,因此經(jīng)過充分厭氧發(fā)酵的沼液堿度值一般較高。吳健等[24]測(cè)得上海浦東新區(qū)某餐廚垃圾厭氧發(fā)酵工程運(yùn)行期間,厭氧發(fā)酵液總堿度變化平穩(wěn),平均值為13 422 mg/L。吳樹彪等[25]采用自行設(shè)計(jì)的堿度監(jiān)測(cè)系統(tǒng)測(cè)得雞糞厭氧發(fā)酵液堿度為34 493.29 mg/L,餐廚垃圾厭氧發(fā)酵液堿度為9 630.42 mg/L。楚莉莉等[26]研究不同生物預(yù)處理對(duì)玉米秸稈厭氧發(fā)酵產(chǎn)氣特性的影響,監(jiān)測(cè)發(fā)現(xiàn)6組發(fā)酵原料對(duì)應(yīng)的沼液堿度值在整個(gè)發(fā)酵過程中均高于4 000 mg/L。
沼液中含有豐富的可溶性鹽類,如銨鹽、鉀鹽、鈉鹽等。沼液的電導(dǎo)率表示沼液傳導(dǎo)電流的能力,側(cè)面反映了沼液的含鹽量,電導(dǎo)率與含鹽量之間具有正相關(guān)關(guān)系。張昌愛等[14]測(cè)定山東某大型秸稈沼氣工程沼液的水溶性鹽(Total Dissolved Solids,TDS)含量約0.7%,張智燁等[19]測(cè)定北京某規(guī)模豬場(chǎng)豬糞沼液電導(dǎo)率為12.0~13.1mS/cm,梁康強(qiáng)等[27]測(cè)定北京某大型養(yǎng)雞場(chǎng)雞糞沼液電導(dǎo)率為22.1mS/cm。與畜禽糞污、秸稈等發(fā)酵原料相比,餐廚廢棄物中含鹽量更高,因此餐廚垃圾厭氧沼液中的鹽分含量較高,胡鑫鑫等[13]測(cè)定餐廚垃圾厭氧沼液中TDS含量約1.1%。
對(duì)于沼液這樣具有復(fù)雜水質(zhì)背景的料液來說,選擇單一膜技術(shù)進(jìn)行濃縮減量效果并不理想,往往需要將幾種膜技術(shù)相結(jié)合,才會(huì)取得較好的處理效果??v觀國內(nèi)外關(guān)于沼液膜濃縮技術(shù)的研究,大部分工藝在膜過濾之前先對(duì)沼液進(jìn)行固液分離去除其中的顆粒態(tài)組分;然后采用微濾、超濾作為前處理單元,對(duì)沼液中大分子物質(zhì)及膠體態(tài)組分進(jìn)行截留;最后采用納濾、反滲透對(duì)超濾透過液中小分子有機(jī)物、氮磷鉀等溶解性營養(yǎng)物質(zhì)進(jìn)行濃縮。
沼液含有大量的懸浮顆粒物,因此利用膜濃縮沼液時(shí),為最大程度緩解膜污染并延長膜清洗周期,有必要在膜前先對(duì)沼液原液進(jìn)行固液分離,從而使后續(xù)膜系統(tǒng)的水通量、脫鹽率、濃縮倍數(shù)和運(yùn)行成本達(dá)到最優(yōu)。固液分離是指從固液兩相體系中將二者分開的過程。常用的固液分離技術(shù)包括重力沉淀、混凝沉淀、篩分、帶式壓濾、螺旋擠壓、離心分離等。
重力沉淀是利用沼液中固相和液相物質(zhì)之間的密度差,通過重力作用實(shí)現(xiàn)固液分離的方法。李洋等[28]采用重力沉淀法對(duì)豬場(chǎng)污水進(jìn)行濃稀分離,3 h重力沉淀后,污水SS由初始的17 142降至2 441 mg/L,去除率達(dá)85.8%。重力沉淀由于技術(shù)簡單、運(yùn)行費(fèi)用低廉、良好的經(jīng)濟(jì)實(shí)用性,被廣泛使用。
針對(duì)沼液中難以自然沉淀的大量膠體及小粒徑懸浮物,可通過加入絮凝劑提高固液分離效率[29-35]。從表2中可見,混凝沉淀法能較好去除沼液中大顆粒及膠體態(tài)物質(zhì),同時(shí)能有效去除總磷(Total Phosphorus,TP),COD也得到不同程度去除,去除效果與混凝劑投加量有關(guān);所使用的混凝劑包括Al2(SO4)3、FeCl3、石灰和聚合氯化鋁(Poly Aluminum Chloride,PAC)以及藻類生物絮凝劑等,助凝劑主要是陽離子型聚丙烯酰胺(Polyacrylamide,PAM)。雖然混凝劑的加入可顯著提高固液分離效率,但是混凝劑投加量較大,還存在沉淀污泥再處理的問題。
表2 國內(nèi)混凝預(yù)處理沼液概況
篩分技術(shù)是將畜禽糞污輸送到篩網(wǎng)上,液相和粒徑小于篩孔的固相穿過篩孔被收集,而粒徑大于孔徑的固相則被留在篩網(wǎng)表面,所采用的篩網(wǎng)分為固定篩、滾筒篩和振動(dòng)篩等。Yang等[35]采用孔徑為0.3~0.5 mm的水力篩網(wǎng)對(duì)豬場(chǎng)廢水進(jìn)行固液分離,SS去除率僅為10.2%,Vanotti等[36]也發(fā)現(xiàn)單獨(dú)篩分技術(shù)對(duì)豬糞水的固液分離效果不理想,SS去除率小于20%。篩分技術(shù)分離效率與篩孔大小密切相關(guān),由于沼液中SS多以膠體和細(xì)顆粒形態(tài)存在,受篩網(wǎng)孔徑所限,不能將這些物質(zhì)有效截留。
螺旋擠壓同篩分一樣,也不能有效地將沼液中的細(xì)小顆粒及膠體截留,但若將絮凝劑和螺旋擠壓機(jī)結(jié)合使用則能大幅提高對(duì)SS的分離效果。Hjorth等[37]總結(jié)了多種固液分離技術(shù),對(duì)于去除沼液中固形物來說,分離效率的排序依次為離心>沉淀>非壓力式過濾>壓力式過濾,在分離之前對(duì)沼液進(jìn)行絮凝處理有助于提高固液分離效率,其中Al2(SO4)3和FeCl3是效果較好的無機(jī)混凝劑,中等電荷密度(20%~40%)陽離子PAM是最佳的有機(jī)絮凝劑,混凝后再篩分或帶式壓濾具有較好固液分離效果。Cocolo等[38]研究了酸化處理對(duì)豬糞沼液固液分離的影響,結(jié)果表明經(jīng)酸化處理后沼液小粒徑顆粒物含量、沼液黏度和顆粒物表面電荷密度均有所降低,對(duì)應(yīng)提高了螺旋擠壓、沉降離心、混凝帶式壓濾的固液分離效率。
離心分離主要通過沉降式離心機(jī)完成,同其他技術(shù)相比,離心分離對(duì)SS的去除效率顯著增強(qiáng),有研究表明[39]沉降離心機(jī)在不加任何絮凝劑的條件下可以去除60%的磷,Moller等[40]研究表明沉淀離心法可去除粒徑20m以上的顆粒。沉降離心機(jī)設(shè)備成本較高且耗電量大,極大增加了運(yùn)行費(fèi)用,因此在沼液處理領(lǐng)域推廣十分緩慢。
固液分離是沼液處理利用的重要環(huán)節(jié),也是沼液膜濃縮的必要預(yù)處理步驟,能減輕后續(xù)膜處理負(fù)荷。沼液固液分離效率受分離方法和設(shè)備的影響,同時(shí)也與沼液水質(zhì)特性相關(guān)。針對(duì)沼液SS含量高、粒徑小、難以自然沉淀等特點(diǎn),以提高固液分離效率為目標(biāo),應(yīng)針對(duì)性研發(fā)經(jīng)濟(jì)高效的混凝劑,降低使用成本;開發(fā)沼液專用的經(jīng)濟(jì)高效碟式離心分離機(jī),降低離心機(jī)能耗;以削減膜污染因子、降低營養(yǎng)成分損失為目標(biāo),研發(fā)多種固液分離技術(shù)的聯(lián)用或耦合工藝。
沼液中除含有大顆粒的懸浮物外,還含有大量膠體、細(xì)菌、蛋白質(zhì)等,這些物質(zhì)采用上述常規(guī)固液分離技術(shù)很難將其從沼液中去除。微濾(Microfiltration,MF)和超濾(Ultrafiltration,UF)均是利用多孔膜材料的攔截能力,以物理截留的方式去除水中一定大小的雜質(zhì)顆粒。在壓力驅(qū)動(dòng)下,溶液中水、有機(jī)小分子、無機(jī)離子等尺寸小的物質(zhì)可通過微孔到達(dá)膜的另一側(cè),溶液中細(xì)菌、膠體、顆粒物、有機(jī)大分子等大尺寸物質(zhì)則不能透過而被截留,從而達(dá)到篩分溶液中不同組分的目的。MF和UF作為較成熟的膜處理技術(shù),以膜兩側(cè)的壓力差作為推動(dòng)力,膜孔徑分別在0.1~1.0和0.002~0.1m范圍,其中UF膜的截留性能可以用切割分子量(Molecular Weight Cut Off,MWCO)表示。MF和UF作為沼液反滲透膜濃縮的前處理,可減緩后續(xù)反滲透濃縮的膜污染。表3列舉了部分國內(nèi)外采用有機(jī)微濾和超濾膜處理沼液的情況,可見經(jīng)MF或UF處理后SS去除率較高,COD也得到不同程度截留。
表3 國內(nèi)外有機(jī)微濾、超濾膜技術(shù)預(yù)處理沼液概況
相較于傳統(tǒng)有機(jī)聚合物膜材料,無機(jī)陶瓷膜[47-48]具有化學(xué)穩(wěn)定性好、能耐酸堿和有機(jī)溶劑、機(jī)械強(qiáng)度大、可反向沖洗、抗微生物污染能力強(qiáng)、耐高溫、孔徑分布窄、分離效率高等優(yōu)點(diǎn)。Waeger等[49]采用陶瓷微濾膜(200 nm)、陶瓷超濾膜(50 nm)處理沼液,發(fā)現(xiàn)盡管超濾膜孔徑較小,但微濾相較于超濾更易發(fā)生膜孔堵塞,微濾膜通量比超濾低30%,因此建議選用超濾進(jìn)行處理;在出水水質(zhì)方面,陶瓷超濾膜對(duì)COD的去除率為85%左右,對(duì)氨氮的去除率小于20%。岳彩德等[50]選擇50和200 nm 兩種孔徑陶瓷膜進(jìn)行了運(yùn)行條件和沼液處理效果的試驗(yàn),結(jié)果顯示:在0.3 MPa 的運(yùn)行壓力下,50、200 nm兩種孔徑陶瓷膜對(duì)濁度的去除率均達(dá)到99%以上,對(duì)COD的去除率分別為36.2%±0.6%和32.6%±1.5%,無明顯差異。經(jīng)固液分離后,沼液中SS被大幅去除,因此顯著提升了后續(xù)膜處理的通量,減緩了膜污染的速率[29]。Meixner等[51]采用50 nm陶瓷膜處理酒糟厭氧發(fā)酵液,發(fā)現(xiàn)沉淀劑FeCl3和CaCO3的加入將陶瓷膜對(duì)SS的去除率由46%顯著提高至75%,膜通量也由45~50 L/(m2·h)提升至79 L/(m2·h)。經(jīng)固液分離后,沼液中顆粒態(tài)有機(jī)質(zhì)及被顆粒物吸附的有機(jī)質(zhì)從液相中得到去除,使得分離后液相的COD小于分離前原液,因此提升了后續(xù)膜濾透過液的水質(zhì)[51]。
MF和UF在沼液預(yù)處理中存在的主要問題就是膜污染,膜污染是指在膜過濾過程中,污水中懸浮物、膠體粒子、大分子有機(jī)物、無機(jī)鹽類等物質(zhì)在膜表面或膜孔內(nèi)吸附、沉積,造成膜孔徑變小或堵塞,導(dǎo)致膜通量下降或跨膜壓差升高的現(xiàn)象[52]。實(shí)際應(yīng)用中需要采取措施盡量減緩膜污染,延長膜清洗周期。1)通過固液分離技術(shù)降低沼液中膠體、蛋白質(zhì)、小顆粒、細(xì)菌等可能造成膜污染的組分濃度;2)針對(duì)沼液的水質(zhì)特性,研發(fā)新型專用膜材料,通過改變膜表面親水性、荷電性、孔徑大小及其分布、膜結(jié)構(gòu)、孔隙率及膜表面粗糙度等,提高膜的抗污染性能;3)通過優(yōu)化膜運(yùn)行的工藝參數(shù)如溫度、pH值、膜面流速、壓力等,或采用輔助措施如超聲波、臭氧等減緩膜污染;4)針對(duì)具體的污染膜,需綜合利用多種技術(shù)進(jìn)行分析,在準(zhǔn)確獲得污染信息的基礎(chǔ)上,優(yōu)選和研發(fā)經(jīng)濟(jì)高效的膜清洗劑和清洗方案。
反滲透(Reverse Osmosis,RO)是在半透膜的原水一側(cè)施加比溶液滲透壓高的外界壓力,原水透過半透膜時(shí),只允許水透過,其他物質(zhì)不能透過而被截留在膜表面的過程。理論上,反滲透膜可截留所有分子量大于100 Da的可溶性鹽類及有機(jī)物。由于RO膜具有截留率高、營養(yǎng)物質(zhì)損失極少、分離過程安全、不發(fā)生相變等優(yōu)點(diǎn),該技術(shù)已經(jīng)廣泛應(yīng)用于海水淡化、飲用水凈化、廢水處理等領(lǐng)域,目前國內(nèi)外對(duì)沼液的膜濃縮研究,也大多集中于RO 技術(shù)。表4列舉了部分國內(nèi)外采用RO膜濃縮沼液的情況,可見濃縮倍數(shù)一般為4~5倍,最高不超過6倍,因此沼液的體積可以實(shí)現(xiàn)減量75%~85%。Ruan等[41]采用RO膜對(duì)經(jīng)預(yù)處理后的豬場(chǎng)沼液進(jìn)行濃縮,結(jié)果表明可生產(chǎn)占原液體積80%的膜出水,出水可回用。Zhou等[56]采用兩級(jí)RO膜對(duì)雞糞沼液進(jìn)行濃縮處理,可產(chǎn)出約占原液體積85%的出水,出水水質(zhì)符合中國城市污水排放標(biāo)準(zhǔn)(GB18918—2002)一級(jí)A標(biāo)準(zhǔn)。
表4 國內(nèi)外反滲透膜技術(shù)濃縮沼液概況
納濾(Nanofiltration,NF)又稱為低壓反滲透,是膜分離技術(shù)的一個(gè)新興領(lǐng)域,納濾膜的孔徑范圍介于反滲透膜和超濾膜之間,其對(duì)二價(jià)和多價(jià)離子及分子量在200~1 000 Da之間的有機(jī)物有較高的脫除性能,而對(duì)單價(jià)離子和小分子有機(jī)物的脫除效率較低。Zacharof等[58]采用NF技術(shù)從農(nóng)業(yè)廢水(以牛糞、果蔬廢物及青貯為底物的厭氧發(fā)酵液)中分離濃縮乙酸和丁酸,并從5種NF 膜中篩選出最佳的3種,實(shí)現(xiàn)了最高75%的回收率及最高乙酸濃度53.94 mM、丁酸濃度28.38 mM。Han等[59]采用截留分子量200 Da的納濾膜對(duì)電絮凝處理后的豬場(chǎng)沼液進(jìn)行濃縮,納濾濃縮倍數(shù)為7倍時(shí),透過液的COD、濁度、TP分別為59.5 mg/L、1.5 NTU、0.19 mg/L,而氨氮濃度為135.2 mg/L,無法實(shí)現(xiàn)達(dá)標(biāo)排放。Gerardo等[60]研究不同pH值條件下NF270納濾膜對(duì)牛糞發(fā)酵液中氮磷的截留,結(jié)果表明pH 值11、壓力2.0 MPa條件下通量高達(dá)125~150 L/(m2·h),氨氮截留率僅為30%~36%,TP截留率高達(dá)96.4%~97.2%;pH值為3和7時(shí)氨氮截留率更高,pH值對(duì)納濾膜截留TP的影響較小,pH值為3和7時(shí)TP截留率分別為83%和97%。
由于操作過程中需要克服滲透壓及膜的阻力,RO的運(yùn)行壓力往往高于NF,因此能耗及運(yùn)行成本更高;與RO相比,NF具有運(yùn)行壓力低、膜通量高等優(yōu)點(diǎn),但NF存在對(duì)氨氮截留率低的缺點(diǎn)。盡管應(yīng)用膜技術(shù)濃縮沼液的可行性得到了大量試驗(yàn)證明,但仍存在2個(gè)制約其實(shí)際應(yīng)用的關(guān)鍵問題:1)高能耗、高運(yùn)行成本;2)膜污染問題。主要的解決途徑包括:對(duì)沼液進(jìn)行高效的預(yù)處理,如采用固液分離-UF聯(lián)用的預(yù)處理工藝,可以從根本上減輕膜污染;膜濃縮前采取措施有效去除沼液中的銨鹽與碳酸鹽,可降低膜結(jié)垢風(fēng)險(xiǎn)并可降低運(yùn)行能耗;此外,調(diào)節(jié)沼液pH值至酸性或向沼液中加入阻垢劑,可在一定程度上緩解膜污染。
膜蒸餾(Membrane Distillation,MD)和減壓膜蒸餾(Vacuum Membrane Distillation,VMD)是分別將膜分離與蒸發(fā)、減壓蒸發(fā)相結(jié)合的新型、環(huán)境友好的膜分離技術(shù),它們是利用疏水性微孔膜兩側(cè)的溫差所產(chǎn)生的蒸汽壓差作為驅(qū)動(dòng)力,來實(shí)現(xiàn)溶質(zhì)和溶劑分離的膜分離過程。近十年關(guān)于MD和VMD技術(shù)用于廢水中氨氮分離回收的研究逐漸被報(bào)道,而用于沼液脫氨及其濃縮減量的研究相對(duì)較少。Zarebska等[61-62]采用MD技術(shù)研究其對(duì)豬糞沼液氨氮分離回收過程中膜污染的污染特征與機(jī)制,并探討了緩解膜污染的技術(shù)措施:發(fā)現(xiàn)有機(jī)物污染占主要因素,其次為無機(jī)物沉積和微生物污染,連續(xù)運(yùn)行一周后膜污染層平均厚度達(dá)10~15m,污染層反過來導(dǎo)致膜疏水性的損失;與聚丙烯(Polypropylene,PP)材質(zhì)的膜相比,聚四氟乙烯(Poly tetra Fluoro Ethylene,PTFE)膜更易形成顆粒污垢,沼液經(jīng)MF/UF預(yù)處理后,PTFE和PP膜通量分別增長1和3倍,受污染膜經(jīng)NaOH/檸檬酸清洗后,膜通量得以恢復(fù)。近年來華中農(nóng)業(yè)大學(xué)賀清堯博士對(duì)VMD技術(shù)濃縮回收沼液氨氮進(jìn)行了重點(diǎn)研究[63-64],發(fā)現(xiàn)沼液pH值是影響氨氮分離效率的主要因素,pH值的提高有助于同時(shí)增加總氨傳質(zhì)系數(shù)和氨氮分離因子,對(duì)氨氮濃度為0.178 mol/L的沼液進(jìn)行VMD操作后,滲透側(cè)的回收獲得的溶液中氨氮濃度高達(dá)1.0 mol/L,且超過98%的氨氮以游離氨的形式存在;在不調(diào)節(jié)沼液pH值條件下,影響氨氮分離性能的因素按順序依次為系統(tǒng)壓力>沼液溫度>膜孔徑>沼液流速,最佳的氨氮分離因子可達(dá)8.05。MD和VMD的運(yùn)行需要較高能耗,用于沼液濃縮的經(jīng)濟(jì)性較差,因此并未得到廣泛的研究與應(yīng)用。
以上對(duì)以膜分離為核心的沼液減量化處理所需的各項(xiàng)單元技術(shù)進(jìn)行了綜述。在實(shí)際沼液膜濃縮工程中,往往需要上述多項(xiàng)單元技術(shù)的組合與聯(lián)用,才能實(shí)現(xiàn)沼液的減量化。2012年底山東民和生物科技有限公司在國內(nèi)率先建設(shè)每天處理300 t沼液的膜濃縮工程,一期投入資金3 160萬元,利用雞糞發(fā)酵沼液,通過“調(diào)節(jié)池-水解酸化-超濾-納濾-反滲透”[65]工藝的示范應(yīng)用,可年產(chǎn)純有機(jī)液體營養(yǎng)肥料1萬t。近年來膜濃縮工藝用于沼液減量化處理的工程案例逐漸呈上升趨勢(shì),表5對(duì)幾個(gè)典型的膜濃縮工程進(jìn)行了總結(jié)。從表5中4個(gè)工程的實(shí)際運(yùn)行情況可以看出,所采用的膜濃縮工藝基本可歸納為“預(yù)處理+超濾+反滲透”模式,根據(jù)沼液來源及其水質(zhì)條件的區(qū)別分別采取了不同的預(yù)處理技術(shù),膜濃縮倍數(shù)最低2倍、最高5倍,與出水COD相比,氨氮較難達(dá)標(biāo)。膜濃縮工藝的選擇需要在濃縮倍數(shù)、出水水質(zhì)、運(yùn)行成本之間尋找平衡,以優(yōu)選出經(jīng)濟(jì)高效的處理工藝。
表5 沼液膜濃縮工程工藝及運(yùn)行條件
沼液中SS、膠體、鹽分等含量較高,在濃縮過程中會(huì)引起嚴(yán)重的膜污染,導(dǎo)致膜通量的快速下降和膜的頻繁清洗。為保障膜系統(tǒng)連續(xù)穩(wěn)定運(yùn)行,高效的膜前預(yù)處理至關(guān)重要。預(yù)處理主要需解決兩大瓶頸問題:高SS和高鹽分,其中高SS制約超濾膜的運(yùn)行,高鹽分制約反滲透膜的運(yùn)行。超濾膜過濾沼液采用錯(cuò)流過濾方式,造成膜堵塞的原因主要包括膜表面污染和膜孔污染。對(duì)于沼液中與膜孔徑尺寸相近的SS,在膜過濾過程中形成膜孔堵塞,導(dǎo)致膜通量降低;對(duì)于沼液中大于膜孔徑尺寸的SS,在膜過濾過程中在膜表面形成濾餅層,隨著系統(tǒng)運(yùn)行時(shí)間的延長不斷積累在膜表面,導(dǎo)致濾餅層不斷增厚進(jìn)而造成較嚴(yán)重的濃差極化,導(dǎo)致膜通量降低。高鹽分影響反滲透膜運(yùn)行主要有兩個(gè)原因:隨著系統(tǒng)運(yùn)行時(shí)間的延長,一方面鹽分中的碳酸鹽、硫酸鹽、硅酸鹽等陰離子易于其中的鈣、鎂、鋇等陽離子形成沉淀在膜層中結(jié)垢;另一方面隨著濃縮倍數(shù)的不斷提高,原料中鹽分含量成倍增長,使得濃液側(cè)滲透壓逐漸升高,為維持較高的膜通量就需要更高的能耗,導(dǎo)致運(yùn)行成本更高。
沼液鹽分復(fù)雜,其中氨氮濃度高、堿度高,因此銨鹽與(重)碳酸鹽成為沼液高鹽分的重要組成部分。研究證明傳統(tǒng)固液分離和微濾、超濾過程無法有效去除氨氮,即使納濾膜對(duì)氨氮的截留率也非常有限,只能通過反滲透膜進(jìn)行截留。為提高反滲透膜對(duì)氨氮的截留效率從而提高出水水質(zhì),需要向沼液中加酸降低pH值或采用兩級(jí)反滲透,前者增加了運(yùn)行成本,后者則同時(shí)增大了一次性投資和運(yùn)行能耗。沼液堿度主要由碳酸鹽和重碳酸鹽堿度組成,在膜濃縮過程中碳酸鹽易與沼液中的鈣鎂等金屬離子結(jié)合形成沉淀附著在膜表面,降低膜通量。為降低膜結(jié)垢風(fēng)險(xiǎn)、緩解膜污染、延長膜清洗周期和使用壽命、提高膜濃縮倍數(shù)和出水水質(zhì),需要在膜濃縮前實(shí)現(xiàn)對(duì)堿度和氨氮的有效去除。
對(duì)于高氨氮高堿度沼液來說,由于吸附劑吸附容量和離子交換容量有限,所需吸附劑和離子交換樹脂用量大,且二者均需不斷再生,因此吸附法和離子交換法不適合用于沼液預(yù)處理脫鹽。沉淀法和吹脫法適合處理高氨氮廢水,且能回收氨氮資源,但沉淀劑和堿液用量較大致使處理成本較高。石灰純堿沉淀法除堿度效果較好,但由于沼液堿度高,所需石灰和蘇打的投加量較大導(dǎo)致運(yùn)行成本過高。在膜濃縮前可用的除鹽技術(shù)手段并不多,主要是通過添加化學(xué)物質(zhì)與沼液中的陰陽離子反應(yīng)生成沉淀或氣體從水相中去除。
利用膜工藝濃縮沼液,使其成為便于運(yùn)輸和農(nóng)業(yè)利用的優(yōu)質(zhì)有機(jī)肥料,可降低農(nóng)藥和化肥的使用量。膜濃縮減量化成為沼液研究的熱點(diǎn)和將來發(fā)展的新方向,有利于沼液的高值化利用,進(jìn)而推動(dòng)整個(gè)沼氣工程產(chǎn)業(yè)化的發(fā)展。因此,利用膜技術(shù)濃縮沼液具有廣闊的前景,未來應(yīng)圍繞如何減緩膜污染、降低膜運(yùn)行成本以及濃縮液的開發(fā)應(yīng)用等主題開展研究工作。
1)針對(duì)沼液普遍存在大量膠體及小粒徑SS,深入研究不同級(jí)分粒徑SS理化特性與其沉降性能之間的關(guān)系,研發(fā)新型高效固液分離技術(shù)與裝備,提高固液分離效率。
2)針對(duì)沼液高堿度、高氨氮、高鹽分等復(fù)雜的水質(zhì)特性,深入研究各陰陽離子組分與沼液主要水質(zhì)參數(shù)之間的相互關(guān)系,研發(fā)經(jīng)濟(jì)高效除堿度脫氨氮降鹽分的技術(shù)與裝備,顯著提高膜前預(yù)處理的脫鹽效率。
3)除沼液水質(zhì)特性以外,膜材料本身與膜污染的發(fā)生密切相關(guān),為提高膜過濾時(shí)的親水性、機(jī)械強(qiáng)度、滲透通量和抗污染性能,通過共聚、表面接枝、共混等方法對(duì)高分子膜材料進(jìn)行改性,研發(fā)沼液濃縮專用有機(jī)膜。
4)為實(shí)現(xiàn)最高的濃縮倍數(shù)和最佳的出水水質(zhì),集成研發(fā)優(yōu)化的膜濃縮耦合工藝與運(yùn)行參數(shù),如研發(fā)用于反滲透濃縮液二次濃縮減量的膜蒸餾技術(shù)。為降低膜濃縮能耗和運(yùn)行成本,研發(fā)太陽能驅(qū)動(dòng)的膜分離技術(shù)。
5)沼液濃縮液作為膜濃縮減量化處理后的高附加值產(chǎn)品,可用于有機(jī)液肥、葉面肥、植物營養(yǎng)液等,或按國家現(xiàn)行水溶肥料標(biāo)準(zhǔn)復(fù)配其它化學(xué)成分加工成商品液肥出售,但在農(nóng)業(yè)領(lǐng)域肥料制備方面的經(jīng)濟(jì)性仍有待進(jìn)一步評(píng)價(jià)與優(yōu)化。
[1] 中華人民共和國農(nóng)業(yè)部. 關(guān)于印發(fā)《關(guān)于推進(jìn)農(nóng)業(yè)廢棄物資源化利用試點(diǎn)的方案》的通知[Z]. 2016.
[2] 國家發(fā)展和改革委員會(huì),農(nóng)業(yè)部. 全國農(nóng)村沼氣發(fā)展“十三五”規(guī)劃[Z]. 2017.
[3] Muhammad Nasir I, Mohd Ghazi T I, Omar R. Production of biogas from solid organic wastes through anaerobic digestion: A review[J]. Applied Microbiology and Biotechnology, 2012, 95(2): 321-329.
[4] 郝春霞,陳灝,趙玉柱. 餐廚垃圾厭氧發(fā)酵處理工藝及關(guān)鍵設(shè)備[J]. 環(huán)境工程,2016,34(增刊1):691-695. Hao Chunxia, Chen Hao, Zhao Yuzhu. Anaerobic fermentation techniques and key equipments for treatment of kitchen waste[J]. Chinese Journal of Environmental Engineering, 2016, 34(Suppl 1): 691-695. (in Chinese with English abstract)
[5] M?ller K, Müller T. Effects of anaerobic digestion on digestate nutrient availability and crop growth: A review[J]. Engineering in Life Sciences, 2012, 12(3): 242-257.
[6] 吳樹彪,崔暢,張笑千,等. 農(nóng)田施用沼液增產(chǎn)提質(zhì)效應(yīng)及水土環(huán)境影響[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2013,44(8):118-125. Wu Shubiao, Cui Chang, Zhang Xiaoqian, et al. Effect of biogas slurry on yield increase, quality improvement, water and soil environment[J]. Transactions of The Chinese Society of Agricultural Machinery, 2013, 44(8): 118-125. (in Chinese with English abstract)
[7] Qin W, Egolfopoulos F N, Tsotsis T T. Fundamental and environmental aspects of landfill gas utilization for power generation[J]. Chemical Engineering Journal, 2001, 82: 157-172.
[8] M?ller H B, Ahring B K, Sommer S G. Methane productivity of manure, straw and solid fractions of manure[J]. Biomass Bioenergy, 2004(26): 485-495.
[9] Masse L, Massé D I, Beaudette V, et al. Size distribution and composition of particles in raw and anaerobically digested swine manure[J]. Transactions of the ASAE, 2005, 48(5): 1943-1949.
[10] Christensen M L, Hjorth M, Keiding K. Characterization of pig slurry with reference to flocculation and separation[J]. Water Research, 2009(43): 773-783.
[11] 宋成芳,單勝道,張妙仙,等. 畜禽養(yǎng)殖廢棄物沼液的濃縮及其成分[J]. 農(nóng)業(yè)工程學(xué)報(bào),2011,27(12):256-259. Song Chengfang, Shan Shengdao, Zhang Miaoxian, et al. Concentration and determination of composition of biogas slurry[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(12): 256-259. (in Chinese with English abstract)
[12] Kaparaju P L N, Rintala J A. Effects of solid liquid separation on recovering residual methane and nitrogen from digested dairy cow manure[J]. Bioresource Technology, 2008, 99(1): 120-127.
[13] 胡鑫鑫,屈陽. 餐廚垃圾厭氧沼液離心脫水效果分析[J]. 廣東化工,2018,45(6):85-87. Hu Xinxin, Qu Yang. Research on the effects of centrifugal dehydration of biogas slurry from food waste[J]. Guangdong Chemical Industry, 2018, 45(6): 85-87. (in Chinese with English abstract)
[14] 張昌愛,張玉鳳,林海濤,等. 沼液漫灌對(duì)設(shè)施土壤連作障礙因子的影響[J]. 灌溉排水學(xué)報(bào),2014,33(2):117-120. Zhang Changai, Zhang Yufeng, Lin Haitao, et al. The effects of biogas sourry on continuous cropping obstacle factors in green-shed[J]. Journal of Irrigation and Drainage, 2014, 33(2): 117-120. (in Chinese with English abstract)
[15] 葉小梅,常志洲,錢玉婷,等. 江蘇省大中型沼氣工程調(diào)查及沼液生物學(xué)特性研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(6):222-227. Ye Xiaomei, Chang Zhizhou, Qian Yuting, et al. Investigation on large and medium scale biogas plants and biological properties of digestate in Jiangsu province[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(6): 222-227. (in Chinese with English abstract)
[16] 劉燁,孟海波,王健,等. 畜禽糞便與秸稈混合發(fā)酵及貯藏階段沼液中碳氮元素變化[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2018,37(9):2045-2051. Liu Ye, Meng Haibo, Wang Jian, et al. Changes in carbon and nitrogen in biogas slurry during mixed anaerobic fermentation and storage of animal manure and straw[J]. Journal of Agro-Environment Science, 2018, 37(9): 2045-2051. (in Chinese with English abstract)
[17] 黃胡林,付新梅,周正. 秸稈發(fā)酵液作污水反硝化脫氮外加碳源的潛能研究[J]. 工業(yè)水處理,2019,39(5):42-45. Huang Hulin, Fu Xinmei, Zhou Zheng. Potential study on the nitrogen removal by denitrification in wastewater by adding the anaerobic fermentation liquid of the straw as an external carbon source[J]. Industrial Water Treatment, 2019, 39(5): 42-45. (in Chinese with English abstract)
[18] 李鵬,趙同科,張成軍,等. 豬糞污厭氧發(fā)酵沼液SS、COD的混凝預(yù)處理效果研究[J]. 環(huán)境工程,2016,34(1):7-10. Li Peng, Zhao Tongke, Zhang Chengjun, et al. Study on removal effect of SS and COD in biogas slurry from swine manure wastewater by coagulating sedimentation[J]. Environmental Engineering, 2016, 34(1): 7-10. (in Chinese with English abstract)
[19] 張智燁,李國學(xué),袁京,等. 玉米秸稈濾料對(duì)豬糞發(fā)酵沼液過濾效果[J]. 環(huán)境工程學(xué)報(bào),2016,10(4):1985-1992. Zhang Zhiye, Li Guoxue, Yuan Jing, et al. Effect of corn stalk for filtrating biogas slurry fermented from swine manure[J]. Chinese Journal of Environmental Engineering, 2016, 10(4): 1985-1992. (in Chinese with English abstract)
[20] 龔川南,陳玉成,黃磊. 曝氣吹脫法用于牛場(chǎng)沼液污染物的去除[J]. 環(huán)境工程學(xué)報(bào),2016,10(5):2291-2296. Gong Chuannan, Chen Yucheng, Huang Lei. Pollutants removal characteristics by air stripping with aeration treating biogas slurry of cattle manure[J]. Chinese Journal of Environmental Engineering. 2016, 10(5): 2291-2296. (in Chinese with English abstract)
[21] 鄔振江,顏成,楊德坤,等. 大型餐廚垃圾處理廠沼液處理工藝德運(yùn)行效果分析[J]. 南京農(nóng)業(yè)大學(xué)學(xué)報(bào),2020,43(3):485-491. Wu Zhenjiang, Yan Cheng, Yang Dekun, et al. Investigation on purification efficiency of anaerobically digested slurry of restaurant food wastes from a large-scale treatment plant[J]. Journal of Nanjing Agricultural University, 2020, 43(3): 485-491. (in Chinese with English abstract)
[22] 靳紅梅,付廣青,常志州,等. 豬、牛糞厭氧發(fā)酵中氮素形態(tài)轉(zhuǎn)化及其在沼液和沼渣中的分布[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(21):208-214. Jin Hongmei, Fu Guangqing, Chang Zhizhou, et al. Distribution of nitrogen in liquid and solid fraction of pig and dairy manure in anaerobic digestion reactor[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(21): 208-214. (in Chinese with English abstract)
[23] 李祎雯,曲英華,徐奕琳,等. 不同發(fā)酵原料沼液的養(yǎng)分含量及變化[J]. 中國沼氣,2012,30(3):17-20. Li Yiwen, Qu Yinghua, Xu Yilin, et al. Change of nutrition contents of biogas slurry with different fermentation raw materials[J]. China Biogas, 2012, 30(3): 17-20. (in Chinese with English abstract)
[24] 吳健,華銀鋒,張海濤,等. 高含固餐廚垃圾半干法厭氧發(fā)酵系統(tǒng)運(yùn)行分析[J]. 科學(xué)技術(shù)與工程,2018,18(35):94-99. Wu Jian, Hua Yinfeng, Zhang Haitao, et al. Operation analysis of semi-dry anaerobic digestion system of high solid content food waste[J]. Science Technology and Engineering, 2018, 18(35): 94-99. (in Chinese with English abstract)
[25] 吳樹彪,顧雯雯,龐昌樂,等. 厭氧發(fā)酵堿度和有機(jī)酸在線監(jiān)測(cè)系統(tǒng)設(shè)計(jì)與實(shí)驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2013,44(10):172-176. Wu Shubiao, Gu Wenwen, Pang Changle, et al. Design and test of alkalinity and VFA online monitoring system in anaerobic fermentation[J]. Transactions of the Chinese Society of Agricultural Machinery, 2013, 44(10): 172-176. (in Chinese with English abstract)
[26] 楚莉莉,田孝鑫,楊改河. 不同生物預(yù)處理對(duì)玉米秸稈厭氧發(fā)酵產(chǎn)氣特性的影響[J]. 東北農(nóng)業(yè)大學(xué)學(xué)報(bào),2014,45(4):118-122. Chu Lili, Tian Xiaoxin, Yang Gaihe. Effect of biopretreatment on biogas production characteristics of anaerobic fermentation of corn stalk[J]. Journal of Northeast Agricultural University, 2014, 45(4): 118-122. (in Chinese with English abstract)
[27] 梁康強(qiáng),閻中,魏泉源,等. 基于反滲透技術(shù)的沼液濃縮研究[J]. 中國沼氣,2012,30(2):12-14. Liang Kangqiang, Yan Zhong, Wei Quanyuan, et al. Research on concentration of biogas slurry based on reverse osmosis[J]. China Biogas, 2012, 30(2): 12-14. (in Chinese with English abstract)
[28] 李洋,鄧良偉,信欣,等. 重力沉淀對(duì)豬場(chǎng)污水的分離效果及其對(duì)沼氣發(fā)酵的影響[J]. 環(huán)境科學(xué)學(xué)報(bào),2013,33(7):1912-1917. Li Yang, Deng Liangwei, Xin xin, et al. Effects of gravitational sedimentation on separation of swine wastewater and biogas fermentation[J]. Acta Scientiae Circumstantiae, 2013, 33(7): 1912-1917. (in Chinese with English abstract)
[29] 朱洪光,王旦一. 混凝預(yù)處理厭氧發(fā)酵液對(duì)超濾膜通量的影響[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2012,43(4):93-99. Zhu Hongguang, Wang Danyi. Influence of coagulation pretreatment on UF membrane flux of anaerobic fermentation slurry[J]. Transactions of the Chinese Society of Agricultural Machinery, 2012, 43(4): 93-99. (in Chinese with English abstract)
[30] 王峰,嚴(yán)瀟南,楊海真. 雞糞厭氧發(fā)酵沼液達(dá)標(biāo)處理工藝研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2012,43(5):84-90. Wang Feng, Yan Xiaonan, Yang Haizhen. Treatment process of anaerobically digested effluent of chicken manure for meeting the discharging standard[J]. Transactions of the Chinese Society of Agricultural Machinery, 2012, 43(5): 84-90. (in Chinese with English abstract)
[31] 羅國華,張春,鄭利兵,等. 豬糞沼液的磁混凝預(yù)處理工藝優(yōu)化及評(píng)估[J]. 環(huán)境工程學(xué)報(bào),2019,13(2):414-423. Luo Guohua, Zhang Chun, Zheng Libing, et al. Optimization and evaluation of magnetic coagulation process pretreating swine manure biogas slurry[J]. Chinese Journal of Environmental Engineering. 2019, 13(2): 414-423. (in Chinese with English abstract)
[32] 涂特,冉毅,賀清堯,等. CaO/PAC混合絮凝劑的沼液凈化性能[J]. 化工進(jìn)展,2018,37(6):2392-2398. Tu Te, Ran Yi, He Qingyao, et al. Purification performance of biogas slurry by blended CaO/PAC flocculant[J]. Chemical Industry and Engineering Progress, 2018, 37(6): 2392-2398. (in Chinese with English abstract)
[33] 隋倩雯,董紅敏,朱志平,等. 提高豬場(chǎng)沼液凈化處理效果的氨吹脫控制參數(shù)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(11):205-211. Sui Qianwen, Dong Hongmin, Zhu Zhiping, et al. Ammonia stripping control parameters for improving effluent treatment effect in anaerobic digesters of piggery wastewater[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(11): 205-211. (in Chinese with English abstract)
[34] 關(guān)正軍,王新志,楊一盈. 藻類生物絮凝劑對(duì)沼液的絮凝效果研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2017,48(5):290-295. Guan Zhengjun, Wang Xinzhi, Yang Yiying. Effect of algae flocculant applied in biogas slurry[J]. Transactions of the Chinese Society of Agricultural Machinery, 2017, 48(5): 290-295. (in Chinese with English abstract)
[35] Yang D, Deng L W, Zheng D, et al. Separation of swine wastewater into solid fraction, concentrated slurry and dilute liquid and its influence on biogas production[J]. Fuel, 2015, 144: 237-243.
[36] Vanotti M B, Rashash D M C, Hunt P G. Solid-liquid separation of flushed swine manure with PAM: Effect of wastewater strength[J]. Transactions-American society of agricultural engineers, 2002, 45(6): 1959-1970.
[37] Hjorth M, Christensen K V, Christensen M L, et al. Solid-liquid separation of animal slurry in theory and practice: A review[J]. Agronomy for Sustainable Development, 2010, 30(11): 153-180.
[38] Cocolo G, Hjorth M, Zarebska A, et al. Effect of acidification on solid-liquid separation of pig slurry[J]. Biosystems Engineering, 2016, 143: 20-27.
[39] Sneath R W, Shaw M, Williams A G. Centrifugation for separating piggery slurry 1. The performance of a decanting centrifuge[J]. Journal of Agricultural Engineering Research, 1988, 39: 181-190.
[40] Moller H B, Lund I, Sommer S G. Solid-liquid separation of livestock slurry: Efficiency and cost[J]. Bioresource Technology, 2000, 74: 223-229.
[41] Ruan H M, Yang Z R, Lin J Y, et al. Biogas slurry concentration hybrid membrane process: Pilot-testing and RO membrane cleaning[J]. Desalination, 2015, 368: 171-180.
[42] 王團(tuán),薛宏光,王柯,等. 超濾在乙醇厭氧沼液資源化回用中的應(yīng)用[J]. 環(huán)境工程學(xué)報(bào),2018,12(4):1046-1054. Wang Tuan, Xue Hongguang, Wang Ke, et al. Application of ultrafiltration in treatment of ethanol anaerobic digestion effluent for recycling use[J]. Chinese Journal of Environmental Engineering, 2018, 12(4): 1046-1054. (in Chinese with English abstract)
[43] Zhan Y H, Dong H M, Yin F B, et al. The combined process of paper filtration and ultrafiltration for the pretreatment of the biogas slurry from swine manure[J]. International Journal of Environmental Research and Public Health, 2018, 15(9): 1-12.
[44] López-Fernández R, Aristizábal C, Irusta R. Ultrafiltration as an advanced tertiary treatment of anaerobically digested swine manure liquid fraction: A practical and theoretical study[J]. Journal of Membrane Science, 2011, 375: 268-275.
[45] Ledda C, Schievano A, Salati S, et al. Nitrogen and water recovery from animal slurries by a new integrated ultrafiltration, reverse osmosis and cold stripping process: A case study[J]. Water Research, 2013, 47(16): 6157-6166.
[46] Konieczny K, Kwiecińska A, Gworek B. The recovery of water from slurry produced in high density livestock farming with the use of membrane processes[J]. Separation and Purification Technology, 2011, 80(3): 490-498.
[47] Lee S J, Kim J H. Differential natural organic matter fouling of ceramic versus polymeric ultrafiltration membranes[J]. Water Research, 2014, 48: 43-51.
[48] Lee S J, Dilaver M, Park P K, et al. Comparative analysis of fouling characteristics of ceramic and polymeric microfiltration membranes using filtration models[J]. Journal of Membrane Science, 2013, 432: 97-105.
[49] Waeger F, Delhaye T, Fuchs W. The use of ceramic microfiltration and ultrafiltration membranes for particle removal from anaerobic digester effluents[J]. Separation & Purification Technology, 2010, 73(2): 271-278.
[50] 岳彩德,董紅敏,張萬欽,等. 陶瓷膜凈化豬場(chǎng)沼液的效果試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(5):212-218. Yue Caide, Dong Hongmin, Zhang Wanqin, et al. Experiment on purified effect of ceramic membrane for digested slurry[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(5): 212-218. (in Chinese with English abstract)
[51] Meixner K, Fuchs W, Valkova T, et al. Effect of precipitating agents on centrifugation and ultrafiltration performance of thin stillage digestate[J]. Separation & Purification Technology, 2015, 145: 154-160.
[52] 黃霞,文湘華. 膜法水處理工藝膜污染機(jī)理與控制技術(shù)[M]. 北京:科學(xué)出版社,2016.
[53] Zheng T X, Qiu Z L, Dai Q Z, et al. Study of biogas slurry concentrated by reverse osmosis system: Characteristics, optimization, and mechanism[J]. Water Environment Research, 2019, 91: 1447-1454.
[54] Masse L, Massé D I, Pellerin Y. The effect of pH on the separation of manure nutrients with reverse osmosis membranes[J]. Journal of Membrane Science, 2008, 325: 914-919.
[55] Gong H, Yan Z, Liang K Q, et al. Concentrationg process of liquid digestate by disk tube-reverse osmosis system[J]. Desalination, 2013, 326: 30-36.
[56] Zhou Z Z, Chen L H, Wu Q G, et al. The valorization of biogas slurry with a pilot dual stage reverse osmosis membrane process[J]. Chemical Engineering Research and Design, 2019, 142: 133-142.
[57] Guo X J, Jin X. Purification of UF-treated anaerobically digested manure wastewater by two-pass reverse osmosis[J]. Desalination and Water Treatment, 2014, 52(16/17/18): 3027-3034.
[58] Zacharof M P, Mandale S J, Williams P M, et al. Nanofiltration of treated digested agricultural wastewater for recovery of carboxylic acids[J]. Journal of Cleaner Production, 2016, 112(5): 4749-4761.
[59] Han Z Y, Wang L, Duan L, et al. The electrocoagulation pretreatment of biogas digestion slurry from swine farm prior to nanofiltration concentration[J]. Separation & Purification Technology, 2015, 156: 817-826.
[60] Gerardo M L, Aljohani N H M, Oatley-Radcliffe D L, et al. Moving towards sustainable resources: Recovery and fractionation of nutrients from dairy manure digestate using membranes[J]. Water Research, 2015, 80: 80-89.
[61] Zarebska A, RomeroNieto D, Christensen K V, et al. Ammonia recovery from agricultural wastes by membrane distillation: Fouling characterization and mechanism[J]. Water Research, 2014, 56: 1-10.
[62] Zarebska A, ángel C A, Ciurkot K, et al. Fouling mitigation in membrane distillation processes during ammonia stripping from pig manure[J]. Journal of Membrane Science, 2015, 484: 119-132.
[63] He Q Y, Tu T, Yan S P, et al. Relating water vapor transfer to ammonia recovery from biogas slurry by vacuum membrane distillation[J]. Separation and Purification Technology, 2018, 191: 182-191.
[64] Shi M F, He Q Y, Feng L, et al. Techno-economic evaluation of ammonia recovery from biogas slurry by vacuum membrane distillation without pH adjustment[J]. Journal of Cleaner Production, 2020, 265: 1-10.
[65] 董泰麗,李朋,牛希成,等. 一種沼液的工程化膜濃縮系統(tǒng)CN203999406U[P]. 2014-12-10.
[66] 梁康強(qiáng),閆中,朱民,等. 沼氣工程沼液反滲透膜濃縮應(yīng)用研究[J]. 中國礦業(yè)大學(xué)學(xué)報(bào),2011,40(3):470-475. Liang Kangqiang, Yan Zhong, Zhu Min, et al. Application research of reverse osmosis in concent rating biogas slurry f rom biogas projects[J]. Journal of China University of Mining & Technology, 2011, 40(3): 470-475. (in Chinese with English abstract)
[67] 陳祥,潘駿,吳金海,等. 規(guī)?;B(yǎng)雞場(chǎng)沼氣工程沼液膜分離處理效果對(duì)比[J]. 農(nóng)業(yè)工程,2017,7(3):65-69. Chen Xiang, Pan Jun, Wu Jinhai, et al. Comparison of membrane separation effects on treating liquid digestate from large-scale chicken farm biogas engineering[J]. Agricultural Engineering, 2017, 7(3): 65-69. (in Chinese with English abstract)
Application of membrane technology for volume reduction of biogas slurry
Xiao Hua, Xu Xing, Zhou Xin, Zhu Xiaoming, Zhou Weidong※
(310021,)
Membrane technology can be expected to concentrate lots of nutrients in small volumes in biogas slurry, and then transport specific nutrients into other agricultural areas to serve as fertilizer, thereby partially solving the problem of surplus biogas slurry in high-density livestock areas. This article presents a critical review of the state-of-art research on the application of membrane concentration for volume reduction of biogas slurry. There are some common features for the water quality of biogas slurry that produced by anaerobic digestion, including complex composition, high concentrations of suspended solids, organic matter, ammonia nitrogen, and salt. First, a general review was made on the solid-liquid separation technologies that used for biogas slurry pretreatment, together with the physical and chemical processes related to separation. The separation efficiencies of common techniques were ranked in order for the removal of particles: centrifugation > sedimentation > non-pressurized filtration > pressurized filtration. Treatment with flocculants before separation can significantly improve efficiency. Aluminum sulfate (Al2(SO4)3), polymeric aluminum chloride (PAC), ferric chloride (FeCl3), and calcium hydroxide (Ca(OH)2) have been proved to be highly efficient for the remove suspended solids. In the organic-polymers test, cationic polyacrylamide (PAM) was found to be the most efficient flocculants. Second, the liquid products from solid-liquid separation can further be treated by microfiltration or ultrafiltration, which can be used to remove bacterium, colloid components, and macromolecular substance. Compared with organic membrane, ceramic membrane can act as more efficient solid-liquid separator due to its large membrane flux, strong anti-pollution ability, and high chemical stability. Third, the nanofiltration or reverse osmosis can be used to concentrate the nutrients, including dissolved organic compounds, nitrogen, phosphorus, and potassium, particularly that the biogas slurry concentration in 15%–50% of the initial volume has been reported with reverse osmosis systems. The reverse osmosis with proper pretreatment can be technically feasible for nutrient concentration and volume reduction of biogas slurry, but high costs and strong membrane fouling have posed a main obstacle on the application of the system. In further studies, a feasible and economical technology can include the following research fields: (1) Aiming at the removal of colloids and small size particles in biogas slurry, in-depth study can be expected to perform on the relationship between the physicochemical properties of different particles and their sedimentation performance, and thereby to develop a new solid-liquid separation technology. (2) In view of the complex characteristics of water quality in biogas slurry, such as high ammonia nitrogen and salinity, the cost-effective technology and equipment can be expected to reduce ammonia nitrogen and salt before membrane concentration. (3) Membrane modification can be developed by various approaches, such as blending, copolymerization, surface grafting, in order to improve its hydrophilicity, mechanical strength, permeation flux, and anti-pollution performance during filtration. (4) To achieve the maximum volume reduction and the best effluent water quality, it is necessary to optimize membrane filtration process and operating parameters. In reducing the energy consumption and operating cost of membrane concentration, solar energy-driven membrane separation technology may be under view in near future. (5) The concentrate can be used for organic liquid fertilizer, foliar fertilizer, plant nutrient solution, or mixed with other chemical materials to produce commercial fertilizer. The fertilizer value of concentrate still needs further evaluation and optimization based on field studies.
membranes; fermentation; wastes; biogas slurry; solid-liquid separation; membrane concentration; volume reduction
肖華,徐杏,周昕,等. 膜技術(shù)在沼氣工程沼液減量化處理中的應(yīng)用[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(14):226-236.doi:10.11975/j.issn.1002-6819.2020.14.028 http://www.tcsae.org
Xiao Hua, Xu Xing, Zhou Xin, et al. Application of membrane technology for volume reduction of biogas slurry[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(14): 226-236. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.14.028 http://www.tcsae.org
2020-03-15
2020-06-28
國家自然科學(xué)基金青年科學(xué)基金項(xiàng)目(31802110);浙江省農(nóng)業(yè)科學(xué)院2019年度青年人才培養(yǎng)項(xiàng)目(10102000319CC2301G/005/030)
肖華,副研究員,博士,研究方向?yàn)檗r(nóng)業(yè)廢棄物處理和資源化利用。Email:xh022982@163.com
周衛(wèi)東,博士,研究員,主要從事畜牧環(huán)境工程方面研究。Email:zhouwd@mail.zaas.ac.cn
10.11975/j.issn.1002-6819.2020.14.028
X703
A
1002-6819(2020)-14-0226-11