于濤 李傳憲 張杰
摘 ? ? ?要:長輸熱油管道運(yùn)行過程中,油溫的準(zhǔn)確預(yù)測是管道安全優(yōu)化生產(chǎn)的前提。針對以往油溫預(yù)測方法的誤差大,推廣應(yīng)用難等問題,提出利用Back Propagation(BP)神經(jīng)網(wǎng)絡(luò)和思維進(jìn)化算法(Mind Evolutionary Algorithm,MEA)優(yōu)化算法,建立MEA-BP油溫預(yù)測模型。利用相關(guān)性算法獲得模型輸入?yún)?shù),下載處理SCADA系統(tǒng)實際生產(chǎn)數(shù)據(jù),對模型進(jìn)行訓(xùn)練。將MEA-BP預(yù)測模型應(yīng)用于實際生產(chǎn),油溫預(yù)測誤差為0.49 ℃,相比理論公式及其它預(yù)測模型,具有泛化性好、預(yù)測準(zhǔn)確性高等特點。通過研究獲得基于大數(shù)據(jù)分析方法可有效實現(xiàn)長輸管道業(yè)務(wù)需要,為管道大數(shù)據(jù)平臺分析應(yīng)用,未來智能化控制奠定基礎(chǔ)。
關(guān) ?鍵 ?詞:原油管道;BP神經(jīng)網(wǎng)絡(luò);MEA
中圖分類號:TQ 015 ? ? ? 文獻(xiàn)標(biāo)識碼: A ? ? ? 文章編號: 1671-0460(2020)04-0751-06
Abstract: During the operation of long-distance hot oil pipelines, the accurate prediction of oil temperature is the prerequisite for safe and optimized production of pipelines. Aiming at the large error of the oil temperature prediction method and the difficulty of popularization and application, the Back Propagation (BP) neural network and the Mind Evolutionary Algorithm (MEA) optimization algorithm was used to establish the MEA-BP oil temperature prediction model. The correlation algorithm was used to obtain the model input parameters, and the actual production data of the SCADA system were downloaded and processed, and the model was trained. The MEA-BP prediction model was applied to actual production, and the oil temperature prediction error was 0.49 ℃. Compared with the theoretical formula and other prediction models, it has the characteristics of good generalization and high prediction accuracy. The research based on the big data analysis method can effectively meet the long-distance pipeline business needs, and lay the foundation for the analysis and application of the pipeline big data platform and the future intelligent control.
Key words: Crude oil pipeline; BP neural network; MEA
高含蠟原油通過管道輸送時,運(yùn)行過程中管壁易結(jié)蠟,導(dǎo)致管道有效直徑減小,動力費(fèi)用增大,能耗增加[1]。同時管壁結(jié)蠟給管道清管和內(nèi)檢測工作帶來較大風(fēng)險,極易發(fā)生管道蠟堵、初凝等事件。管輸高凝原油加熱輸送是目前最常用的方法,通過提高沿線油品溫度降低黏度,保證進(jìn)站油溫處于安全范圍,同時具備管段清洗,減小摩阻的作用。但過高的管輸油溫,導(dǎo)致熱能損失較大,與節(jié)能降耗相違背。所以根據(jù)運(yùn)行規(guī)程要求合理控制管輸油溫,是保證長輸熱油管道安全運(yùn)行,減少熱能、動能損耗,優(yōu)化節(jié)能的基本出發(fā)點。
熱油管道油溫的有效控制首先需要對油溫進(jìn)行準(zhǔn)確計算預(yù)測,目前對于油溫預(yù)測的方法主要有兩個方向,一是通過理論及熱力學(xué)公式,將管道劃分區(qū)域,建立油溫預(yù)測模型,如王海勤[2]針對管輸含蠟原油在不同溫度區(qū)間比熱不同,利用能量平衡建立沿程溫度分布公式,提升沿線溫降預(yù)測準(zhǔn)確性。二是解析法,將數(shù)值計算與熱力學(xué)公式結(jié)合,建立油溫預(yù)測模型,如Yu B等[3-5]采用非結(jié)構(gòu)化網(wǎng)絡(luò)和有限元容積法對不同月份、不同流量和不同出站油溫下的工況進(jìn)行較為準(zhǔn)確的模擬。以上學(xué)者對于熱油管道油溫預(yù)測取得一定的成果,但建立的計算公式和預(yù)測模型,需要管道準(zhǔn)確的設(shè)計參數(shù)、沿線溫度場、土壤導(dǎo)熱系數(shù)等參數(shù),實際應(yīng)用時,因熱油管道站間距較長,參數(shù)獲取難度大,推廣應(yīng)用的準(zhǔn)確性和適應(yīng)性較差。
近年來,隨著計算機(jī)應(yīng)用技術(shù)的發(fā)展,數(shù)據(jù)挖掘算法因能解決大規(guī)模非線性、復(fù)雜問題,被廣泛應(yīng)用于參數(shù)預(yù)測、人工智能等領(lǐng)域。石油行業(yè)的大數(shù)據(jù)應(yīng)用在化工優(yōu)化[6],測井?dāng)?shù)據(jù)評價[7],鉆井工程智能決策支持[8],管道內(nèi)檢測[9]、泄漏檢測[10]等方面廣泛應(yīng)用?;跀?shù)據(jù)挖掘的熱油管道油溫預(yù)測模型研究較少,其中魏立新等[11]利用相關(guān)向量機(jī)算法(RVM),建立溫降與出站油溫、出站壓力、輸量、地表溫度、埋深、管長、管徑和油品物性之間的關(guān)系,通過現(xiàn)場實際參數(shù)訓(xùn)練預(yù)測,預(yù)測結(jié)果平均相對誤差降低4.43%,具有預(yù)測精度高、泛化性好等優(yōu)點。當(dāng)前長輸管道Supervisory Control And Data Acquisition(SCADA)控制系統(tǒng)的推廣應(yīng)用,存儲了大量歷史運(yùn)行數(shù)據(jù),基于上述數(shù)據(jù)挖掘算法在石油行業(yè)的應(yīng)用經(jīng)驗[12],使用數(shù)據(jù)挖掘算法建立油溫預(yù)測模型,可行性較大。因此本文通過研究熱油管道油溫及與其相關(guān)的影響因素特點,選取BP神經(jīng)網(wǎng)絡(luò)模型,建立非線性參數(shù)的對應(yīng)關(guān)系,并利用MEA優(yōu)化BP神經(jīng)網(wǎng)絡(luò)模型,最終建立MEA-BP油溫預(yù)測模型,實現(xiàn)熱油管道油溫的準(zhǔn)確預(yù)測。