国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

液泡膜Na+/H+逆向轉(zhuǎn)運蛋白研究進展

2020-08-04 20:41馬紅萍包愛科
安徽農(nóng)業(yè)科學 2020年14期
關鍵詞:液泡區(qū)域化耐鹽性

馬紅萍 包愛科

摘要?土壤鹽漬化是造成全世界農(nóng)作物減產(chǎn)的主要非生物脅迫因素之一,鹽漬化土壤中過多的Na+是使植物生長受到抑制的主要陽離子。植物細胞中的液泡膜Na+/H+逆向轉(zhuǎn)運蛋白(NHX)是應對鹽脅迫的一種重要離子轉(zhuǎn)運蛋白,鹽脅迫下NHX可以調(diào)控植物體內(nèi)的離子穩(wěn)態(tài)平衡及細胞內(nèi)的pH,對提高植物耐鹽性具有非常重要的作用。簡要概述了近年來液泡膜Na+/H+逆向轉(zhuǎn)運蛋白的亞細胞定位與結(jié)構(gòu)特點、主要生理功能及其與植物耐鹽性關系等方面的研究進展,以期為相關研究提供參考。

關鍵詞?液泡膜Na+/H+逆向轉(zhuǎn)運蛋白;離子穩(wěn)態(tài);亞細胞定位;結(jié)構(gòu)特點;生理功能;耐鹽性

中圖分類號?Q943?文獻標識碼?A

文章編號?0517-6611(2020)14-0004-05

doi:10.3969/j.issn.0517-6611.2020.14.002

Abstract?Soil salinization is one of the main abiotic stress factors that cause crop yield reduction in the world.Excessive Na+ in salinized soil is the main cation that inhibits plant growth.The vacuolar membrane Na+/H+ antiporter (NHX) in plant cells is an important ion transporter in response to salt stress.Under salt stress,NHX can regulate the homeostasis balance of ions in plants and the pH in cells,which plays a very important role in improving plant salt tolerance.This paper briefly summarized the research about the subcellular localization and structural characteristics,main physiological functions and relationship with plant salt tolerance of the vacuolar membrane Na+/H+ antiporter in recent years,which may provide a reference for related research.

Key words?Vacuolar membrane Na+/H+ antiporter;Ionic homeostasis;Subcellular localization;Structural characteristics;Physiological functions;Salt resistance

目前,全球鹽堿化土地面積約3.97億hm2,約占土地總面積的3.1%[1],土壤鹽堿化逐步增加可能會導致未來25年內(nèi)約30%的耕地流失[2]。大多數(shù)作物不能在鹽漬化土壤中正常生長,其主要原因是高濃度的Na+進入植物細胞會對植物產(chǎn)生毒害作用,使植物的生長發(fā)育受到嚴重抑制[3]。此外,土壤鹽堿化導致全球各種農(nóng)作物大面積減產(chǎn),給農(nóng)業(yè)生產(chǎn)造成巨大損失[4]。植物細胞適應高鹽環(huán)境的重要手段是維持胞質(zhì)內(nèi)較低的 Na+水平,在漫長的適應過程中,很多植物進化出了一系列策略來實現(xiàn)上述目標,主要有Na+的分泌、Na+的外排以及Na+的區(qū)域化[5]。研究發(fā)現(xiàn),某些鹽生植物可以通過自身特有的結(jié)構(gòu)(如鹽腺、鹽囊泡等)將過多的Na+分泌出體外,避免過量Na+對植物重要代謝器官造成毒害,從而保證植物正常的生長發(fā)育[6]。Na+的外排和Na+的區(qū)域化主要依賴于植物細胞中與離子轉(zhuǎn)運相關的蛋白(如質(zhì)膜Na+/H+逆向轉(zhuǎn)運蛋白、液泡膜Na+/H+逆向轉(zhuǎn)運蛋白等)發(fā)揮功能,進而通過降低胞質(zhì)中過多的Na+,使植物能夠更好地適應鹽漬生境[7-8]。目前,液泡膜Na+/H+逆向轉(zhuǎn)運蛋白家族成員的離子區(qū)域化功能尚存有爭議,因此還需進一步深入研究。筆者將從該類蛋白的亞細胞定位、蛋白結(jié)構(gòu)特點、主要生理功能及其與植物耐鹽性的關系等方面對液泡膜

Na+/H+逆向轉(zhuǎn)運蛋白(NHX)近年來的主要研究結(jié)果進行簡要概述和展望。

1?液泡膜Na+/H+逆向轉(zhuǎn)運蛋白的亞細胞定位

液泡膜NHX屬于陽離子逆向轉(zhuǎn)運蛋白CAP1家族中的NHE/NHX 亞家族成員[9]。通過亞細胞定位發(fā)現(xiàn)植物 NHX 蛋白都定位于細胞內(nèi)部(intra-cellular,IC),進一步通過系統(tǒng)進化樹分析,可以將植物NHX劃分為Class-Ⅰ NHX和Class-Ⅱ NHX。Class-I NHX定位于液泡膜上, Class-Ⅱ NHX則定位于內(nèi)囊體膜上,在動物、真菌內(nèi)膜上也存在相應的同源蛋白[10]。在大多數(shù)植物中,Class-Ⅰ NHX的成員數(shù)目要多于Class-Ⅱ NHX,如大豆?(Glycine max)、蒺藜苜蓿(Medicago truncatula)、玉米(Zea mays)?等(表1)。另有研究發(fā)現(xiàn),NHX蛋白家族成員的同源性不僅在不同植物種類間具有差異,而且在同一植物中也有一定差異。例如在擬南芥NHX家族中,定位于液泡膜上(Class-Ⅰ NHX)的4個成員AtNHX1~AtNHX4間的同源性為56%~87%;定位于內(nèi)囊體膜上(Class-Ⅱ NHX)的2個成員AtNHX5和AtNHX6間的同源性為79%,而兩組成員間的同源性僅為20%~25%[12]。

2?液泡膜Na+/H+逆向轉(zhuǎn)運蛋白的拓撲結(jié)構(gòu)

1999年,Apse等[13]首次從擬南芥中克隆得到液泡膜Na+/H+逆向轉(zhuǎn)運蛋白基因?AtNHX1?,隨后,Yamaguchi等[14]利用酵母中的異源表達,對 AtNHX1 的拓撲結(jié)構(gòu)進行分析,結(jié)果發(fā)現(xiàn)(圖1),AtNHX1的總體結(jié)構(gòu)不同于其他NHX,它包括 12 個疏水跨膜結(jié)構(gòu)域 (transmembrane domains,TM)和1個較長的親水性C-末端“尾巴”,其中第3個疏水區(qū)含有一個高度保守的氨氯吡嗪脒結(jié)合位點(amiloride binding-site),第5、6個疏水區(qū)雖與膜相連,但并沒有跨過液泡膜。目前,已從多種植物中分離得到了編碼該蛋白的同源基因,如水稻?(Oryza sativa?L.)?OsNHX1[15]、小麥(Triticum aestivum)TNHX1[16]、玉米ZmNHX1[17]、霸王(Zygophyllum?xanthoxylum) ZxNHX?[18]等,氨基酸結(jié)構(gòu)分析顯示,這些同源基因編碼的蛋白均具有與AtNHX1類似的分子結(jié)構(gòu)。另外,相比于其他植物NHX,AtNHX1的N-末端朝向胞質(zhì)且高度保守,但其整個C-末端幾乎都位于液泡腔中[14],且與鈣調(diào)素蛋白AtCaM15結(jié)合會降低Na+/H+轉(zhuǎn)運活性[19],表明親水性C-末端的差異會對蛋白質(zhì)活性起到一定的調(diào)節(jié)作用,進而推測C-末端的不同可能是NHX蛋白成員間功能分異的主要原因。

3?液泡膜Na+/H+逆向轉(zhuǎn)運蛋白的生理功能

3.1?介導Na+的區(qū)域化

當植物處于鹽堿環(huán)境時,由于土壤溶液和植物細胞內(nèi)部之間的Na+濃度存在梯度差,因此植物不可避免地會積累Na+[20]。成熟細胞的液泡體積一般占細胞整體積的80%~90%,因此液泡中可以富集很多的陽離子,將Na+區(qū)域化進液泡是減少胞質(zhì)中過多Na+ 的有效方法之一[21]。研究發(fā)現(xiàn),Na+的區(qū)域化主要依靠液泡膜Na+/H+轉(zhuǎn)運蛋白(NHX)發(fā)揮功能[8],它以液泡膜H+~ATPase和H+-PPase產(chǎn)生的跨膜H+電化學勢梯度為主要驅(qū)動力將細胞質(zhì)中過多的Na+區(qū)域化進液泡中(圖2)。Apse等[22]研究發(fā)現(xiàn)擬南芥nhx1突變體植株中Na+/H+轉(zhuǎn)運活性較野生型降低。Ma等[23]研究發(fā)現(xiàn),對多漿旱生植物霸王進行干旱脅迫處理,處理組霸王葉中Na+濃度比對照組高出64%,同時Na+對葉滲透勢貢獻由正常培養(yǎng)條件下的8%提高至干旱脅迫下的13%,K+對葉滲透勢的貢獻則無變化,表明干旱脅迫下,多漿旱生植物霸王可以吸收大量的Na+,并能將Na+有效轉(zhuǎn)運至霸王的葉中。同時,霸王?ZxNHX?的表達與鹽或干旱處理下其葉中的Na+積累量呈顯著正相關關系[18],說明該蛋白可能將霸王葉肉細胞質(zhì)中過多的Na+區(qū)域化至葉的液泡中,從而有助于降低細胞水勢、提高細胞的吸水能力,使植株能夠抵御嚴酷生境。隨后,Yuan等[24]進一步研究發(fā)現(xiàn),50 mmol/L NaCl處理下,?ZxNHX-?RNAi干擾株系葉中Na+濃度顯著低于野生型,可見ZxNHX是霸王在鹽脅迫下維持其積鹽特征的關鍵因子。另有研究發(fā)現(xiàn),鹽脅迫下,過表達?AtNHX1的?擬南芥[14]和番茄[25]轉(zhuǎn)基因株系中Na+/H+轉(zhuǎn)運活性及Na+含量較野生型明顯提高。之后在小麥[26]、棉花?(Gossypium hirsutum)[27]以及高羊茅(Festuca arundinacea?)[28]的?AtNHX?過表達株系中也發(fā)現(xiàn)了類似現(xiàn)象,表明NHX可以介導胞質(zhì)中過多的Na+區(qū)域化至液泡中以減輕Na+毒害,并提高細胞的吸水能力,從而使植物能夠在鹽脅迫下維持正常的生長發(fā)育。

3.2?參與K+的穩(wěn)態(tài)平衡

鉀不僅是植物必需的營養(yǎng)元素,還在平衡細胞內(nèi)電荷的過程中發(fā)揮了重要作用[29]。大部分細胞內(nèi)的K+存在于液泡中,間接驅(qū)動細胞的膨脹[30]。此外,胞質(zhì)K+還是植物細胞內(nèi)許多生化和酶促反應必不可少的催化劑。最新研究發(fā)現(xiàn)NHX可能參與介導液泡中K+的積累,并且是細胞主動吸收K+所必需的離子轉(zhuǎn)運蛋白[31]。Bassil等[32]研究發(fā)現(xiàn),相比于野生型擬南芥?nhx1nhx2雙?突株系的生物量顯著降低;通過測定離子轉(zhuǎn)運活性,發(fā)現(xiàn)?nhx1nhx2雙?突株系液泡膜K+/H+轉(zhuǎn)運活性降低,其液泡中K+含量僅為野生型植株的1/3,并且與野生型相比,雙突株系氣孔關閉延遲。進一步對擬南芥?nhx1nhx2雙突?株系的氣孔特征進行研究,發(fā)現(xiàn)氣孔的閉合依賴于保衛(wèi)細胞通過液泡膜上NHX1和NHX2積累K+來實現(xiàn)[33]。隨后同時對擬南芥?NHX1、NHX2、NHX3、NHX4進行敲除[34],發(fā)現(xiàn)相比于野生型,nhx1nhx2nhx3nhx4幼?苗液泡中K+含量顯著降低;并且在高濃度K+處理下,?nhx1nhx2nhx3nhx4?幼苗的根發(fā)生了明顯的偏斜和卷曲反應,而在同等濃度的Na+處理下并未觀察到此類表型,表明?NHX?對K+高度敏感。另外在苜蓿中過表達小麥?TaNHX2?,發(fā)現(xiàn)鹽脅迫下轉(zhuǎn)基因株系K+/H+轉(zhuǎn)運活性顯著提高,其葉中K+含量也顯著高于野生型[35]。將葡萄?VvNHX1在馬?鈴薯中進行超表達,轉(zhuǎn)基因株系葉中K+含量也顯著增加,Na+含量減少[36]。另外,在煙草中超表達花生?(Arachis hypogaea)AhNHX1?基因,發(fā)現(xiàn)鹽處理后轉(zhuǎn)基因煙草具有更高的K+/H+轉(zhuǎn)運活性,其根、莖、葉中也積累了較多的K+;從生長表型上來看,鹽處理下轉(zhuǎn)基因植株的根長、干鮮重、生長速率都優(yōu)于野生型,表明超表達?AhNHX1可?以促使轉(zhuǎn)基因煙草增強K+/H+轉(zhuǎn)運活性,積累更多的K+,增強煙草對鹽脅迫的耐受性[37]。以上結(jié)果均表明NHX可以通過調(diào)控植物細胞中K+的穩(wěn)態(tài)平衡,提高植物抵御鹽脅迫的能力。

3.3?調(diào)節(jié)細胞內(nèi)pH?適宜的 pH環(huán)境是植物細胞中參與各種代謝途徑的酶功能正常行使的必要條件。細胞內(nèi)酸堿平衡主要通過質(zhì)子泵和產(chǎn)生H+或OH-的代謝過程來調(diào)節(jié)[38]。NHX參與調(diào)控細胞內(nèi) pH的典型例子就是三色牽?;?(Ipomoea tricolor)?的花色變化[39]。當三色牽?;òl(fā)育處于花蕾期時,花瓣細胞液泡內(nèi)pH為6.6,此時花色為紫色,而當三色牽?;òl(fā)育至盛花期時,相應的液泡中pH升高至7.7,此時花色呈現(xiàn)為藍色,而該時期液泡膜H+-ATPase、H+-PPase以及NHX的活性顯著提高。另有研究發(fā)現(xiàn),擬南芥?nhx1nhx2?雙突株系根的成熟細胞和子葉下胚軸細胞中液泡pH相比野生型分別降低了0.50和0.35[31],同樣擬南芥?nhx5nhx6雙?突株系液泡pH相比于野生型也顯著降低[40-41],這可能是因為NHX的缺失導致雙突株系中跨液泡膜Na+/H+交換比率減少,從而使其液泡中的H+含量較野生型高,使液泡酸化??梢奛HX活性的改變對植物細胞內(nèi)pH的變化有著非常重要的影響。

3.4?調(diào)節(jié)細胞中的囊泡運輸

植物細胞內(nèi)的囊泡運輸是維持生命活動的關鍵樞紐[11]。研究發(fā)現(xiàn)AtNHX1參與細胞中的囊泡運輸[42],位于液泡膜上的AtNHX1介導Na+進入囊泡,后者會移動并融合到液泡中。駐留在液泡腔中的AtNHX1的親水性C-末端尾巴與鈣調(diào)素蛋白AtCaM15相互作用,調(diào)節(jié)陽離子的選擇性,而鹽脅迫通常會引起液泡堿化,此時AtCaM15與AtNHX1的結(jié)合能力降低, Na+/H+轉(zhuǎn)運活性增強,AtNHX1可以將更多的Na+區(qū)域化進液泡中,提高植物的耐鹽性[19]。對擬南芥?nhx1?轉(zhuǎn)錄組數(shù)據(jù)進行分析,發(fā)現(xiàn)編碼與囊泡運輸有關蛋白(如動力蛋白、網(wǎng)格蛋白包被蛋白、網(wǎng)格蛋白結(jié)合蛋白等)的編碼基因出現(xiàn)差異表達[43]。另外,對擬南芥?nhx5nhx6雙突?株系分析發(fā)現(xiàn),突變體中高爾基體到液泡前體或液泡膜的囊泡運輸無法順利完成[44]。上述結(jié)果均表明NHX在囊泡運輸過程中發(fā)揮了重要作用。

4?液泡膜Na+/H+逆向轉(zhuǎn)運蛋白編碼基因在提高植物耐鹽性中的應用

植物的耐鹽性是一個復雜的性狀,涉及對細胞滲透壓和離子脅迫及其隨之產(chǎn)生的次級脅迫(如氧化脅迫)在整株水平上協(xié)調(diào)的響應[45]。目前已經(jīng)從60多種植物中鑒定并克隆出?NHX基?因[46],其中大多數(shù)已被證明與植物的耐鹽性相關[47]。大量研究表明, 超表達?AtNHX可以提高植物的耐鹽性。例如, AtNHX5的?過表達能夠提高鹽處理下轉(zhuǎn)基因擬南芥的干鮮重及地上部Na+、K+含量,轉(zhuǎn)基因植株的耐鹽能力明顯提高[48]。同樣將?AtNHX5在?水稻中進行超表達,轉(zhuǎn)基因水稻的干鮮重、葉綠素含量、葉片相對含水量及脯氨酸含量均高于野生型植株,進一步研究發(fā)現(xiàn)轉(zhuǎn)基因水稻種子可以在含有250 mmol/L甘露醇的1/2MS培養(yǎng)基上發(fā)芽,并且轉(zhuǎn)基因水稻幼苗的生長明顯優(yōu)于野生型[49],這與在大豆中超表達?AtNHX5的?研究結(jié)果相類似[50]。表明?AtNHX5的過?表達增強了轉(zhuǎn)基因植株的耐受性。另外Leidi等[51]在番茄中超表達?AtNHX1?,發(fā)現(xiàn)轉(zhuǎn)基因番茄的根長、地上部干重及含水量都顯著高于野生型。Sahoo等[52]在綠豆中超表達?AtNHX1,?轉(zhuǎn)基因綠豆在高鹽脅迫下(200 mmol/L NaCl處理)生長良好,其株高、干鮮重、光合速率等指標都高于野生型植株,表明轉(zhuǎn)基因株系耐鹽性提高。另有研究發(fā)現(xiàn),超表達其他植物?的NHX?基因同樣會改善多數(shù)植物的耐鹽性[53],劉琳等[54]在擬南芥中超表達水稻?OsNHX1,?結(jié)果發(fā)現(xiàn)轉(zhuǎn)基因擬南芥的根長、葉片相對含水量均高于野生型植株,表明轉(zhuǎn)基因植株的脅迫耐受性得到改善。之后將小麥?TaNHX2在?茄子中進行超表達,發(fā)現(xiàn)T2代轉(zhuǎn)基因植株在200 mmol/L NaCl處理下可以維持正常生長,而野生型植株表現(xiàn)出葉片萎黃,生長受到抑制甚至死亡;并且相較于野生型,轉(zhuǎn)基因植株的光合速率、總?cè)~綠素含量及葉片相對含水量都有所提高,表明超表達?TaNHX2可?以明顯改善茄子的耐鹽能力[55]。同樣在馬鈴薯中超表達葡萄?VvNHX1?[35],轉(zhuǎn)基因馬鈴薯在鹽處理后其體內(nèi)可溶性糖含量及抗氧化酶活性都顯著提高,表明轉(zhuǎn)基因植株可以克服鹽脅迫導致的氧化應激反應,從而使其耐鹽性增強。綜上所述,?NHX的?超表達可以顯著提高轉(zhuǎn)基因植株的耐鹽性。另外對?nhx突變?體研究發(fā)現(xiàn),滲透脅迫下擬南芥?nhx1nhx2?雙突株系長勢明顯弱于野生型植株[31],擬南?芥nhx5nhx6?雙突株系對鹽分也極度敏感[56],表明?NHX?的缺失降低了植物的耐受性。

眾所周知,NHX區(qū)域化Na+的動力主要是由液泡膜H+-ATPase和H+-PPase產(chǎn)生的跨膜質(zhì)子驅(qū)動力提供的,據(jù)此推測可以通過超表達為區(qū)域化Na+提供動力的液泡膜質(zhì)子泵基因,這樣可以供給NHX更強的驅(qū)動力來將細胞質(zhì)中更多的 Na+區(qū)域化到液泡內(nèi)腔中,進一步增強植物的耐鹽性[57]。隨后這一理論推測已經(jīng)得到充分驗證,例如在擬南芥[58-59]、紫花苜蓿[60]中超表達H+-PPase基因?(VP)?,均能夠提高轉(zhuǎn)基因植株的耐鹽能力,表明H+-PPase 基因的超表達能夠增強植物的耐鹽性。據(jù)此進一步推測,?NHX和VP的?共表達可以使Na+區(qū)域化進液泡的能力成倍增加,從更大程度上減輕Na+對細胞質(zhì)的毒害,進而賦予植物更強的耐鹽堿能力[61]。目前,這一假說已在水稻[62]、番茄[63]、煙草[64]等植物中通過共表達?NHX和VP得?到了驗證。Bhaskaran等[63]研究發(fā)現(xiàn)在200 mmol/L NaCl處理下,共表達狼尾草?(Pennisetum glaucum)PgNHX1和擬南芥AVP1的轉(zhuǎn)基?因番茄生長良好,而野生型植株的生長受到嚴重抑制,葉片萎蔫甚至在21 d內(nèi)死亡。同樣Liu等[65]在苜蓿中超表達鹽地堿蓬?ScNHX1和ScVP?,發(fā)現(xiàn)轉(zhuǎn)基因植株在鹽處理下仍然可以維持自身的正常生長,而野生型植株則表現(xiàn)出葉片發(fā)黃褪綠,植株整體萎蔫甚至死亡。隨后Bao等[61]將旱生植物霸王?ZxNHX和ZxVP1-1在紫花苜蓿(Medicago sativa?L.)中進行共表達,200 mmol/L NaCl處理下T0代轉(zhuǎn)基因苜蓿生長良好,野生型植株萎蔫甚至死亡;并且相較于野生型植株,T0代轉(zhuǎn)基因紫花苜蓿植株的生物量、光合效率、葉片相對含水量更高,葉和根中也積累了更多的陽離子 (如Na+、K+和Ca2+)。2017年,珠拉太[66]分別用50 mmol/L NaCl和不同濃度的山梨醇進行滲透脅迫處理,發(fā)現(xiàn)共表達?ZxNHX和ZxVP1-1的?T1代轉(zhuǎn)基因紫花苜??梢杂行Хe累Na+和K+以增加自身的滲透調(diào)節(jié)能力,從而維持植株的正常生長。張婧[67]用200 mmol/L NaCl對T2代轉(zhuǎn)基因紫花苜蓿進行脅迫處理,發(fā)現(xiàn)T2代轉(zhuǎn)基因苜蓿的株高、生物量及根系活力均高于野生型。表明?ZxNHX和ZxVP1-1的聚合轉(zhuǎn)化可以獲得穩(wěn)定遺傳,同時也充分表明ZxNHX和ZxVP1-1?的共表達可以通過增加質(zhì)子驅(qū)動力促使更多的Na+區(qū)域化進液泡中,改善轉(zhuǎn)基因株系的滲透調(diào)節(jié)能力,進而提高轉(zhuǎn)基因紫花苜蓿的耐鹽性。綜上所述,共表達?NHX和VP基因?可以顯著增強植物對高鹽環(huán)境的耐受能力。

5?結(jié)論與展望

土壤鹽漬化嚴重制約著全球農(nóng)業(yè)發(fā)展。液泡膜Na+/H+逆向轉(zhuǎn)運蛋白(NHX)在植物抵御鹽脅迫過程中發(fā)揮著重要作用,因此該蛋白在植物抗逆性改良中將具有重要的應用前景。然而目前僅對NHX1和NHX2功能的研究較為廣泛,而其他NHX成員在植物中的抗逆調(diào)控機理仍不清楚,深入揭示它們的功能,不僅可以挖掘更多優(yōu)異的抗逆基因資源,而且可以為培育抗逆性較強的作物品種奠定更加充分的理論依據(jù)。此外,基于目前的研究現(xiàn)狀,NHX的離子區(qū)域化功能在不同植物和不同家族成員間存在差異:早期的研究發(fā)現(xiàn)該類蛋白主要介導Na+的區(qū)域化,但最近的大量研究又表明NHX可能通過介導液泡K+的區(qū)域化來維持胞內(nèi)K+的穩(wěn)態(tài)平衡。因此,深入解析造成這些差異的分子機制將是未來的重要研究方向,這將有助于全面理解NHX蛋白家族在不同類型植物生長發(fā)育和環(huán)境適應中的作用。

參考文獻

[1] TAVAKKOLI E,RENGASAMY P,MCDONALD G K.High concentrations of Na+ and Cl- ions in soil solution have simultaneous detrimental effects on growth of faba bean under salinity stress[J].Journal of experimental botany,2010,61(15):4449-4459.

[2] WANG W X,VINOCUR B,ALTMAN A.Plant responses to drought,salinity and extreme temperatures:Towards genetic engineering for stress tolerance[J].planta,2003,218:1-14.

[3] SHABALA S,CUIN T A.Potassium transport and plant salt tolerance[J]. Physiologia plantarum,2008,133(4):651-669.

[4] TESTER M,DAVENPORT R.Na+ tolerance and Na+ transport inhigher plants[J]. Annals of botany,2003,91(5):503-527.

[5] ZHANG J L,SHI H Z.Physiological and molecular mechanisms of plant salt tolerance[J]. Photosynthesis research,2013,115:1-22.

[6] 張樂,郭歡,包愛科.鹽生植物的獨特泌鹽結(jié)構(gòu)——鹽囊泡[J]. 植物生理學報,2019,55(3): 232-240.

[7] SHI H Z,ISHITANI M,KIM C,et al.The?Arabidopsis thaliana?salt tolerance gene?SOS1?encodes a putative Na+/H+ antiporter[J].Proceedings of the national academy of sciences of the United States of America,2000,97:6896-6901.

[8] BLUMWALD E.Sodium transport and salt tolerance in plants[J].Current opinion in cell biology,2000,12(4):431-434.

[9] BRETT C L,DONOWITZ M,RAO R.Evolutionary origins of eukaryotic sodium/proton exchangers[J].American journal of physiology,2005,288(2):223-239.

[10] PARDO J M,CUBERO B,LEIDI E O,et al.Alkali cation exchangers:Roles in cellular homeostasis and stress tolerance[J].Journal of experimental botany,2006,57(5):1181-1199.

[11] BASSIL E,COKU A,BLUMWALD E.Cellular ion homeostasis:Emerging roles of intracellular NHX Na+/H+ antiporters in plant growth and development[J].Journal of experimental botany,2012,63(16):5727-5740.

[12] YOKOI S,QUINTERO F J,CUBERO B,et al.Differential expression and function of?Arabidopsis thaliana?NHX Na+/H+ antiporters in the salt stress response[J].The plant journal,2002,30(5):529-539.

[13] APSE M P,AHARON G S,SNEDDEN W A,et al.Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in?Arabidopsis?[J].Science,1999,285(5431):1256-1258.

[14] YAMAGUCHI T,APSE M P,SHI H Z,et al.Topological analysis of a plant vacuolar Na+/H+ antiporter reveals a luminal C terminus that regulates antiporter cation selectivity[J].Proceedings of the national academy of science USA,2003,100:12510-12515.

[15] FUKUDA A,NAKAMURA A,TANAKA Y.Molecular cloning and expression of the Na+/H+ exchanger gene in?Oryza sativa?[J].Biochimica et biophysica acta,1999,1446:149-155.

[16] BRINI F,GAXIOLA R A,BERKOWITZ G A,et al.Cloning and characterization of a wheat vacuolar cation/proton antiporter and pyrophosphatase proton pump[J].Plant physiology and biochemistry,2005,43:347-354.

[17] CHRISTIAN Z,NOLL A,KARL S,et al.Molecular characterization of Na+/H+ antiporters(?ZmNHX)?of maize?(Zea mays?L.) and their expression under salt stress[J].Journal of plant physiology,2005,162:55-66.

[18] WU G Q,XI J J,WANG Q L,et al.The?ZxNHX?gene encoding tonoplast Na+/H+ antiporter from the xerophyte?Zygophyllum xanthoxylum?plays important roles in response to salt and drought[J].Journal of plant physiology,2011,168:758-767.

[19] YAMAGUCHI T,GILAD S,AHARON J B,et al.Vacuolar Na+/H+ antiporter cation selectivity isregulated by calmodulin from within the vacuolein a Ca2+-and pH-dependent manner[J].Proceedings of the national academy of science USA,2005,102:16107-16112.

[20] DONG W,LI D L,QIU N W,et al.The functions of plant cation/proton antiporters[J].Biologia plantarum,2018,62(3):421-427.

[21] FRANS J M,MAATHUIS I A,PATISHTAN J.Regulation of Na+ fluxes in plants[J].Plant science,2014,5:467.

[22] APSE M P,SOTTOSANTO J B,BLUMWALD E.Vacuolar cation/H+ exchange,ion homeostasis,and leaf development are altered in a T-DNA insertional mutant of AtNHX1,the?Arabidopsis?vacuolar Na+/H+ antiporter[J].The plant journal,2003,36:229-239.

[23] MA Q,YUE L J,ZHANG J L,et al.Sodium chloride improves photosynthesis and water status in the succulent xerophyte?Zygophyllum xanthoxylum?[J].Tree physiology,2012,32:4-13.

[24] YUAN H J,MA Q,WU G Q,et al.ZxNHX controls Na+ and K+ homeostasis at the whole-plant levelin?Zygophyllum xanthoxylum?through feedback regulation of the expressionof genes involved in their transport[J]. Annals of botany,2015,115:495-507.

[25] ZHANG H X,BLUMWALD E.Transgenic salt-tolerant tomato plantsaccumulate salt in foliage but not in fruit[J].Nature biotechnology,2001,19:765-768.

[26] XUE Z Y,ZHI D Y,XUE G P,et al.Enhanced salt tolerance of transgenic wheat (?Tritivum aestivum?L.) expressing a vacuolar Na+/H+ antiporter gene with improved grain yields in saline soils in the field and a reduced level of leaf Na+[J].Plant science.2004,167(4):849-859.

[27] HE C X,YAN J Q,SHEN G X,et al.Expression of an?Arabidopsis?vacuolar sodium/proton antiporter gene in cotton improves photosynthetic performance under salt conditions and increases fiber yield in the field[J].Plant and cell physiology,2005,46(11):1848-1854.

[28] ZHAO J S,ZHI D Y,XUE Z Y,et al.Enhanced salt tolerance of transgenic progeny of tall fescue (?Festuca arundinacea)?expressing a vacuolar Na+/H+ antiporter gene from?Arabidopsis?[J].Journal of plant physiology,2007,164(10):1377-1383.

[29] KHAN I U,ALI A,YUN D J.?Arabidopsis?NHX transporters: Sodium and potassium antiport mythology and sequestration during ionic stress[J].Journal of plant biology,2018,61:292-300.

[30] ADEM G D,ROY S J,ZHOU M,et al.Evaluating contribution of ionic,osmotic and oxidative stress components towards salinity tolerance in barley[J].BMC Plant Biology,2014,14:113-125.

[31] BARRAGN V,LEIDI E O,ANDRS Z,et al.Ion exchangers NHX1 and NHX2 mediate active potassium uptake into vacuoles to regulate cell turgor and stomatal function in?Arabidopsis?[J].Plant cell,2012,24:1127-1142.

[32] BASSIL E,TAJIMA H,LIANG Y C,et al.The?Arabidopsis?Na+/H+ antiporters NHX1 and NHX2 control vacuolar pH and K+ homeostasis to regulate growth,flower development,and reproduction[J].Plant cell,2011,23:3482-3497.

[33] ANDRS Z,PREZ-HORMAECHE J,LEIDI E O,et al.Control of vacuolar dynamics and regulation of stomatal aperture by tonoplast potassium uptake[J].Proceedings of the national academy of sciences of the United States of America,2014,111:1806-1814.

[34] MCCUBBIN T,BASSIL E,ZHANG S Q,et al.Vacuolar Na+/H+ NHX-type antiporters are required for cellular K+ homeostasis,microtubule organization and directional root growth[J].Plants,2014,3:409-426.

[35] ZHANG Y M,ZHANG H M,LIU Z H,et al.The wheat NHX antiporter gene?TaNHX2?confers salt tolerance in transgenic alfalfa by increasing the retention capacity of intracellular potassium[J].Plant molecular biology,2015,87:317-327.

[36] CHARFEDDINE S,CHARFEDDINE M,HANANA M,et al.Ectopic expression of a grape vine vacuolar NHX antiporter enhances transgenic potato plant tolerance to salinity[J].Journal of plant biochemistry and biotechnology,2019,28(1):50-62.

[37] ZHANG W W,MWNG J J,XING J Y,et al.The K+/H+ antiporter?AhNHX1?improved tobacco tolerance to NaCl stress by enhancing K+ retention[J].Journal of plant biology,2017,60:259-267.

[38] PAROUTIS P,TOURET N,GRINSTEIN S.The pH of the secretory pathway:Measurement,determinants,and regulation[J].Physiology,2004,19:207-215.

[39] YOSHIDA K,KAWACHI M,MORI M,et al.The involvement of tonoplast proton pumps and Na+(K+)/H+ exchangers in the change of petal color during flower opening of morning glory,?Ipomoea tricolor?cv.Heavenly Blue[J].Plant cell physiology,2005,46(3):407-415.

[40] REGUERA M,BASSIL E,TAJIMA H,et al.pH regulation by NHX-type antiporters is required for receptor-mediated protein trafficking to the vacuole in?Arabidopsis?[J].Plant cell,2015,27:1200-1217.

[41] WANG L G,WU X X,LIU Y F,et al.?AtNHX5?and?AtNHX6?control cellular K+ and pH homeostasis in?Arabidopsis:?Three conserved acidic residues are essential for K+ transport[J].PLoS One,2015,10(12):1-19.

[42] HAMAJI K,NAGIRA M,YOSHIDA K,et al.Dynamic aspects of ion accumulation by vesicle traffic under salt stress in?Arabidopsis?[J].Plant and cell physiology,2009,50(12):2023-2033.

[43] SOTTOSANTO J B,GELLI A,BLUMWALD E.DNA array analyses of?Arabidopsis thaliana?lacking a vacuolar Na+/H+ antiporter:Impact of AtNHX1 on gene expression[J].Plant journal,2010,40(5):752-771.

[44] WU X X,EBINE K,UEDA T,et al.AtNHX5 and AtNHX6 are required for the subcellular localization of the SNARE complex that mediates the trafficking of seed storage proteins in?Arabidopsis?[J].PLoS One,2016,11(3):1-25.

[45] ZHU J K.Plant salt tolerance[J].Trends in plant science,2001,6:66-71.

[46] BASSIL E,BLUMWALD E.The ins and outs of intracellular ion homeostasis: NHX-type cation/H+ transporters[J].Current opinion in plant biology,2014,22:1-6.

[47] JIA Q,ZHENG C,SUN S,et al.The role of plant cation/proton antiporter gene family in salt tolerance[J].Biologia plantarum,2018,62(4):617-629.

[48] 安靜,侯蕾,孔祥強,等.?AtNHX5?基因過量表達對擬南芥耐鹽性的影響[J].西北植物學報,2012,32(6):1106-1111.

[49] LI M R,LIN X J,LI H Q,et al.Overexpression of?AtNHX5?improves tolerance to both salt and water stress in rice (?Oryza sativa?L.)[J].Plant cell tissue and organ culture,2011,107:283-293.

[50] WU X X,LI J,WU X D,et al.Ectopic expression of?Arabidopsis thaliana?Na+(K+)/H+ antiporter gene,?AtNHX5,?enhances soybean salt tolerance[J].Genetics and molecular research,2016,15(2):1-12.

[51] LEIDI E O,BARRAGN V,RUBIO L,et al.The AtNHX1 exchanger mediates potassium compartmentation in vacuoles of transgenic tomato[J].The plant journal,2010,61:495-506.

[52] SAHOO D P,KUMAR S,MISHRA S,et al.Enhanced salinity tolerance in transgenic mungbean overexpressing?Arabidopsis?antiporter (NHX1) gene[J].Molecular breeding,2016,36:144.

[53] ROY S J,NEGRO S,TESTER M.Salt resistant crop plants[J].Current opinion in plant biology,2014,26:115-124.

[54] 劉琳,曾幼玲,張富春.水稻NHX1基因啟動子和C末端的調(diào)控功能研究[J].西北植物學報,2012,32(7):1295-1303.

[55] YARRA R,KIRTI P B.Expressing class Ⅰ wheat NHX (?TaNHX2)?gene in eggplant(?Solanum melongena?L.) improves plant performance under salinecondition[J].Functional and integrative genomics,2019,19:541-554.

[56] BASSIL E,BLUMWALD E.The ins and outs of intracellular ion homeostasis: NHX-type cation/H+ transporters[J].Current opinion in plant biology,2014,22:1-6.

[57]包愛科,張金林,郭正剛,等.液泡膜H+-PPase與植物耐鹽性[J].植物生理學通訊,2006,42(4):777-783.

[58] GAXIOLA R A,LI J,UNDURRAGA S,et al.Drought and salt-tolerant plants result from overexpression of the AVP1 H+-pump[J].Proceedings of the national academy of sciences of the United States of America,2001,98:11444-11449.

[59] GUO S L,YIN H B,ZHANG X,et al.Molecular cloning and characterization of a vacuolar H+-pyrophosphatase gene,?SsVP,?from the halo-phyte Suaeda salsa and its overexpression increases salt and drought tolerance of?Arabidopsis?[J].Plant molecular biology,2006,60:41-50.

[60] BAO A K,WANG S M,WU G Q,et al.Overexpression of the?Arabidopsis?H+-PPase enhanced resistance to salt and drought stress in transgenic alfalfa (?Medicago sativa?L.)[J].Plant science,2009,176:232-240.

[61] BAO A K,WANG Y W,XI J J,et al.Co-expression of xerophyte?Zygophyllum xanthoxylum ZxNHX?and?ZxVP1-1?enhances salt and drought tolerancein transgenic?Lotus corniculatus?by increasing cations accumulation[J].Functional plant biology,2015,41:203-214.

[62] LIU S P,ZHENG L Q,XUE Y H,et al.Overexpression of?OsVP1?and?OsNHX1?increases tolerance to drought and salinity in rice[J].Journal of plant biology,2010,53:444-452.

[63] BHASKARAN S,SAVITHRAMMA D L.Co-expression of?Pennisetumglaucum?vacuolar Na+/H+ antiporter and?Arabidopsis?H+-pyrophosphataseenhances salt tolerance in transgenic tomato[J].Journal of experimental botany,2011,62:5561-5570.

[64] GOUIAA S,KHOUDI H,LEIDI E O,et al.Expression of wheat Na+/H+ antiporter?TNHXS1?and H+-pyrophosphatase?TVP1?genes in tobacco from a bicistronic transcriptional unit improves salt tolerance[J].Plant molecular biology,2012,79:137-155.

[65] LIU L,F(xiàn)ANX D,WANG F W,et al.Co-expression of?ScNHX1?and?ScVP?in transgenic hybridsImproves salt and saline-alkali tolerance in alfalfa(?Medicago sativa?L.)[J].Journal of plant growth regulation,2013,32:1-8.

[66] 珠拉太.NaCl在共表達?ZxNHX和ZxVP1-1轉(zhuǎn)?基因紫花苜蓿?(Medicago sativa?L.)響應滲透脅迫中的生理功能分析[D].蘭州:蘭州大學,2017.

[67] 張婧.共表?達ZxNHX-ZxVP1-1轉(zhuǎn)?基因紫花苜??购的望}性評價及ZxNHX和PcCLCg對紫花苜蓿的聚合轉(zhuǎn)化[D].蘭州:蘭州大學,2019.

猜你喜歡
液泡區(qū)域化耐鹽性
強化區(qū)域化管理 聚焦信息化建設
城燃企業(yè)區(qū)域化管理模式下技術創(chuàng)新體系搭建
阿爾金山西部區(qū)域化探數(shù)據(jù)處理方法對比研究
植物液泡膜H+-ATPase和H+-PPase 研究進展
郁金香耐鹽性鑒定方法研究
白念珠菌液泡的致病性作用
源于大麥小孢子突變體的苗期耐鹽性研究
職工代表區(qū)域化協(xié)作管理的實踐探索
三個大豆品種萌發(fā)期和苗期的耐鹽性比較
農(nóng)用紙膜破損試驗
分宜县| 镇平县| 拉孜县| 从江县| 泰安市| 崇明县| 和平县| 汽车| 洮南市| 秭归县| 嵩明县| 武川县| 荣成市| 那曲县| 格尔木市| 崇阳县| 三原县| 皋兰县| 横山县| 云龙县| 高州市| 崇义县| 正蓝旗| 宾川县| 南乐县| 太仓市| 离岛区| 南宁市| 依兰县| 应用必备| 綦江县| 昆山市| 兴仁县| 克什克腾旗| 溧水县| 修文县| 海原县| 来安县| 金山区| 繁峙县| 丹东市|