于佳動,劉新鑫,,趙立欣,馮 晶,陳建坤,郭占斌
·農(nóng)業(yè)資源循環(huán)利用工程·
基于微好氧同步預(yù)升溫的序批式厭氧干發(fā)酵特性
于佳動2,劉新鑫1,2,趙立欣3,馮 晶2,陳建坤2,郭占斌1※
(1. 黑龍江八一農(nóng)墾大學(xué)工程學(xué)院,大慶 163319;2. 農(nóng)業(yè)農(nóng)村部規(guī)劃設(shè)計研究院農(nóng)村能源與環(huán)保研究所,農(nóng)業(yè)農(nóng)村部農(nóng)業(yè)廢棄物能源化利用重點實驗室,北京 100125;3. 中國農(nóng)業(yè)科學(xué)院農(nóng)業(yè)環(huán)境與可持續(xù)發(fā)展研究所,北京 100081)
序批式厭氧干發(fā)酵是規(guī)?;幚磙r(nóng)業(yè)農(nóng)村廢棄物生產(chǎn)清潔能源的重要技術(shù),存在物料分解速率低、運行能耗高、傳質(zhì)傳熱不均勻等突出問題,制約甲烷產(chǎn)率的提高。該研究通過調(diào)節(jié)發(fā)酵初期反應(yīng)器溶氧濃度,建立微好氧同步預(yù)升溫高效序批式厭氧干發(fā)酵體系,進一步研究微好氧狀態(tài)下物料自升溫、分解、中間產(chǎn)物性質(zhì),以及關(guān)鍵微生物群落對促進物料升溫及甲烷生產(chǎn)的作用機制。結(jié)果表明:微好氧環(huán)境使物料升溫速率提高27.12%,產(chǎn)甲烷過程不依靠外源加熱溫度仍可保持在42.48 ℃以上。發(fā)酵初始階段的少量曝氣使厭氧發(fā)酵過程中間產(chǎn)物轉(zhuǎn)化效率顯著提升(<0.05),特別是丙酸積累含量下降了82.63%,累積沼氣和甲烷產(chǎn)量分別提高了56.76%和41.79%。細菌、和古菌、有利于促進微好氧同步預(yù)升溫和甲烷生產(chǎn)效率提升,并與降解率和有機酸濃度具有顯著的相關(guān)性。該研究可為探索序批式厭氧干發(fā)酵實際工程高效調(diào)控工藝提供理論基礎(chǔ)。
發(fā)酵;溫度;農(nóng)業(yè)廢棄物;微好氧
厭氧干發(fā)酵技術(shù)正逐漸成為處理有機固體廢棄物實現(xiàn)清潔能源生產(chǎn)的重要選擇[1],含固率可達到25%~40%,與當(dāng)前沼氣工程普遍使用的濕法厭氧發(fā)酵技術(shù)相比具有物料處理量大、容積產(chǎn)氣率高、沼液產(chǎn)生量少等優(yōu)點。國外新建沼氣工程60%以上選擇厭氧干發(fā)酵技術(shù),已形成產(chǎn)業(yè)化發(fā)展,使用的物料主要為易降解酸化的餐廚垃圾、城市污泥等[1]。中國農(nóng)業(yè)廢棄物木質(zhì)纖維素含量(40%~80%)較高,難降解,直接使用國外技術(shù)工藝導(dǎo)致產(chǎn)氣效率不足國外的50%[2],而且,由于高含固率物料傳質(zhì)傳熱困難,運行能耗較高[3],大多工程不能連續(xù)穩(wěn)定運行,極大限制了該技術(shù)在中國的推廣應(yīng)用。所以,在提高產(chǎn)氣效率的同時,尋找降低能耗,或不依靠外部能耗投入可直接實現(xiàn)物料原位預(yù)升溫是解決上述問題的關(guān)鍵所在。
近年來,給沼氣工程增溫的主要技術(shù)主要有電熱膜、太陽能、生物質(zhì)鍋爐加熱等技術(shù)為主,或通過自耗氣的形式利用沼氣鍋爐可實現(xiàn)30%~40%的能耗節(jié)約[2]。然而,上述增溫方式均需要消耗外部能耗,甲烷產(chǎn)率得不到實質(zhì)性提升,不利于規(guī)?;こ痰拈L期高效運行[4]。另外,序批式厭氧干發(fā)酵自身傳熱效率差,即使采用外源加熱的方式,物料不同區(qū)域的溫度也很難上升均勻,在東北寒冷地區(qū)甚至出現(xiàn)“冷芯”運行的情況,嚴(yán)重影響產(chǎn)甲烷效率[3]。一些研究也證明了序批式厭氧干發(fā)酵反應(yīng)器依靠外部能源增溫,當(dāng)距離加熱盤管近的物料區(qū)域升高到目標(biāo)溫度,距離加熱盤管遠端的物料區(qū)域溫度平均低4~12 ℃,升溫時間滯后約5~7 d[3-4]。
通過向物料曝氣的方式可顯著提升物料溫度,許多好氧堆肥的研究表明,向堆體中通入適量的氧氣,堆肥到達高溫期時間可縮短3 d以上。并且,堆體各點熱量分布均勻[5]。近年來,向厭氧發(fā)酵反應(yīng)器適當(dāng)曝氣來提高物料分解效率和甲烷產(chǎn)率的研究明顯增加,調(diào)節(jié)合適的溶氧濃度加速木質(zhì)纖維素物料的分解,為產(chǎn)甲烷菌群提供合適的中間產(chǎn)物,改善產(chǎn)甲烷效率。Zhou等[6]研究了不同溫度和曝氣時間下預(yù)曝氣對稻草等難降解木質(zhì)纖維素結(jié)構(gòu)的生物降解作用,物料分解率為16.2%、17.7%和11.1%。Khanal等[7-8]研究了微曝氣可以清除硫化氫、促進水解和保持低VFAs濃度,從而提高厭氧發(fā)酵系統(tǒng)的整體穩(wěn)定性。然而,上述研究并未關(guān)注到通過調(diào)節(jié)曝氣量提高反應(yīng)器增溫,以及對厭氧干發(fā)酵特性方面的影響,特別是針對難降解秸稈、牛糞等農(nóng)業(yè)廢棄物,通過曝氣建立微好氧發(fā)酵環(huán)境使更多的物料分解并均勻升溫,有利于序批式厭氧干發(fā)酵體系的高效運行,其協(xié)同作用機制仍需進一步探明。
本文以玉米秸稈-牛糞為混合原料,通過適量曝氣建立微好氧發(fā)酵環(huán)境使干發(fā)酵系統(tǒng)實現(xiàn)微好氧同步預(yù)升溫效果。當(dāng)溫度到達中溫厭氧發(fā)酵目標(biāo)溫度后,停止曝氣,轉(zhuǎn)為厭氧環(huán)境進行甲烷生產(chǎn)。對上述過程系統(tǒng)研究了微好氧預(yù)升溫及厭氧干發(fā)酵分解、中間產(chǎn)物累積及產(chǎn)甲烷特性,探明了關(guān)鍵微生物群落性質(zhì),揭示了厭氧干發(fā)酵過程物質(zhì)轉(zhuǎn)化與微生物群落動態(tài)演替過程的協(xié)同關(guān)系,為該技術(shù)的進一步高效應(yīng)用提供理論支撐。
本試驗所用原料為玉米秸稈和牛糞,玉米秸稈取自河北省張家口市崇禮縣某農(nóng)場,取回后,粉碎成粒徑3~5 cm,試驗室通風(fēng)處保存,混料前,測定秸稈TS(Total Solids)為89.58%。牛糞取自河北省廊坊市三河市某使用干清糞收集工藝的規(guī)模化奶牛養(yǎng)殖場,牛糞取回后放置在常溫下(25 ℃)試驗室保存,取用前,測定牛糞TS為24.29%,揮發(fā)性固體含量(Volatile Solid Content,VS)為16.58%。接種物來自本試驗室其他序批式厭氧干發(fā)酵裝置試驗結(jié)束產(chǎn)出的沼渣,并進一步厭氧培養(yǎng)至不產(chǎn)氣作為本次試驗接種物,測定其TS為18.90%,VS為13.21%。
序批式厭氧干發(fā)酵反應(yīng)器為車庫式反應(yīng)器(如圖1),長方體結(jié)構(gòu),體積為200 L,物料填裝在孔徑為5 mm的滲濾網(wǎng)上,在反應(yīng)器上方設(shè)有雙排噴淋管,在噴淋管上設(shè)有直徑為0.5 mm的小孔;在反應(yīng)器內(nèi)兩側(cè)布有保溫水夾層,保溫材料選用聚氨酯發(fā)泡,厚度約10 cm,保溫性能良好;在反應(yīng)器上方設(shè)有溫度感應(yīng)器;在反應(yīng)器底部設(shè)有滲濾液收集罐,收集的沼液通過回流管道由蠕動泵定時定量控制噴淋;反應(yīng)器的篩網(wǎng)盤下方有微孔曝氣管路;產(chǎn)生的沼氣通過濕式流量計進行計數(shù),然后用氣袋進行收集。
圖1 序批式厭氧干發(fā)酵反應(yīng)器
試驗設(shè)計對比微好氧同步預(yù)升溫厭氧干發(fā)酵體系與厭氧干發(fā)酵體系發(fā)酵性質(zhì)的差異,從而揭示微好氧同步預(yù)升溫厭氧干發(fā)酵機制。在預(yù)試驗基礎(chǔ)上,試驗以玉米秸稈、牛糞為混合原料(秸稈∶牛糞=6∶4),設(shè)計2組試驗,一組為微曝氣組,預(yù)升溫階段曝氣頻率為4次/d,通過曝氣調(diào)節(jié)建立微好氧環(huán)境,溶氧量控制在0.5~2 mg/L之間。當(dāng)物料自升溫溫度達到38 ℃以上停止曝氣,溫度下降超過1 ℃時重啟曝氣,在不影響甲烷含量條件下繼續(xù)維持微曝氣預(yù)升溫;對照組為非曝氣組,發(fā)酵全過程為密閉厭氧發(fā)酵狀態(tài)。2組反應(yīng)器在預(yù)升溫發(fā)酵初始階段的噴淋頻率均為6次/d,在厭氧發(fā)酵階段噴淋頻率調(diào)整為4次/d,單次噴淋量與物料干物質(zhì)比均為0.4。實時測定微好氧預(yù)升溫階段的反應(yīng)器內(nèi)溫度,當(dāng)曝氣組反應(yīng)器溫度達到42 ℃時停止曝氣進行厭氧發(fā)酵。微曝氣組和非曝氣組反應(yīng)器均無外源加熱。
試驗過程中,每天相同時段記錄試驗室環(huán)境濕度和反應(yīng)器內(nèi)溫度,監(jiān)測甲烷含量、沼氣產(chǎn)量,取滲濾液樣品檢測pH和氧化還原電位(Oxidation-reduction Potential, ORP)。滲濾液每隔3 d保存1次,并檢測可溶性物質(zhì)(Soluble Chemical Oxygen Demand, sCOD)、有機酸、氨氮(NH4+-N)含量等指標(biāo);在進料后、曝氣結(jié)束階段和厭氧發(fā)酵結(jié)束階段分別取固體物料進行干物質(zhì)、揮發(fā)性物質(zhì)以及纖維素、半纖維素、木質(zhì)素含量測定。取對應(yīng)固體、液體樣品測試微生物群落多樣性。
原料及分解過程物料TS和VS根據(jù)美國APHA方法測定[9],使用水銀溫度計記錄環(huán)境溫度,用溫度傳感器記錄反應(yīng)器內(nèi)物料溫度,溫度傳感器位置位于物料中心處。使用LMP-1型濕式防腐氣體氣體流量計(阿爾法儀器公司,長春)記錄沼氣產(chǎn)量(L),并用沼氣成分測定儀(Biogas check,Geotech,英國)測定甲烷含量(CH4%),累積產(chǎn)氣量的計算參照文獻[10];微曝氣通過氣泵自帶流量計監(jiān)測流量,在計算產(chǎn)氣量時,微曝氣量不計入沼氣產(chǎn)量。使用便攜式pH計(SX-610,上海三信,中國)和氧化還原電位計(SX-630,上海三信,中國)監(jiān)測發(fā)酵過程的pH值和ORP的變化;纖維素、半纖維素和木質(zhì)素相對含量(%)采用范式洗滌法[11]測定;采用氣相色譜儀(Agilent 7820A)分析發(fā)酵周期結(jié)束時反應(yīng)器內(nèi)物料乙酸、丙酸、丁酸、異丁酸、戊酸、異戊酸共6種有機酸組分,測試前樣品需12 000 r/min 離心30 min,取上清液過0.25m濾膜,過濾后的液體與甲酸1:1混合后上機測試,測定程序及方法參照文獻[12];采用5B-2C型COD快速測定儀(哈希,美國)測定sCOD,方法參照GB1194-89《COD測定重鉻酸鉀法》[13];氨氮濃度測定使用水楊酸紫外分光光度計法測定[7];采用Miseq高通量測序技術(shù),對發(fā)酵周期內(nèi)物料細菌、古菌特征進行高通量測序分析[14]。使用Microsoft Excel 2019、Origin 2018和Adobe Illustrator Artwork 23.0等進行基礎(chǔ)數(shù)據(jù)處理與圖形繪制。
微好氧預(yù)升溫對序批式厭氧干發(fā)酵產(chǎn)氣特性的影響如圖2所示,其中,圖2a為沼氣產(chǎn)量的變化,微曝氣2 d后,累積沼氣產(chǎn)量從第7天開始差距逐漸增大,發(fā)酵60 d,沼氣產(chǎn)量一直呈現(xiàn)上升趨勢,微曝氣組累積沼氣產(chǎn)量比非曝氣的提高了56.76%。甲烷含量如圖2b所示,由于反應(yīng)器前期進行微曝氣,反應(yīng)器內(nèi)還存有一部分空氣,因此,微曝氣組甲烷含量在11 d內(nèi)低于非曝氣組,第6天,微曝氣甲烷體積分?jǐn)?shù)迅速升高到40%以上,2組反應(yīng)器甲烷含量穩(wěn)定在55.53%和54.23%,第45天后,甲烷含量開始逐漸下降。Rocamora等[15]研究表明,序批式厭氧干發(fā)酵發(fā)酵甲烷含量呈現(xiàn)由高到低的趨勢,當(dāng)體系內(nèi)可溶性物質(zhì)消耗殆盡,產(chǎn)甲烷菌得不到有效物料,即停止產(chǎn)氣,可能是甲烷含量快速下降的原因。累積甲烷產(chǎn)量如圖2c所示,微曝氣7 d后,微曝氣組甲烷產(chǎn)量迅速增加,甲烷產(chǎn)量平均提高41.79%,在第5到第15天為產(chǎn)甲烷快速期,整體上累積甲烷含量曝氣組是非曝氣組的1.5倍,并逐漸下降。實際工程中,微曝氣序批式厭氧干發(fā)酵周期不超過20 d,有利于甲烷產(chǎn)量的迅速累積。進一步計算發(fā)酵前20 d微曝氣反應(yīng)器的容積產(chǎn)沼氣率為1.1 m3/(m3·d),與國內(nèi)報道的序批式厭氧干發(fā)酵平均容積產(chǎn)氣率相比增加了約37.5%,與國外使用易降解原料以及使用濕法厭氧發(fā)酵技術(shù)的反應(yīng)器平均容積產(chǎn)氣率2~4 m3/(m3·d)尚存在一定差距[2],仍需進一步圍繞提升難降解底物干發(fā)酵過程物質(zhì)轉(zhuǎn)化效率和傳質(zhì)傳熱水平進行深入研究,并進一步對影響微好氧同步預(yù)升溫產(chǎn)氣效率的關(guān)鍵因素進行優(yōu)化。Capela等[16]指出,適當(dāng)增加曝氣量有利于增加物料中兼性厭氧發(fā)酵細菌的水解活性,在保持產(chǎn)甲烷菌活性的前提下,不僅能促進物料分解速率,還有利于甲烷產(chǎn)量的提升。
圖2 序批式厭氧干發(fā)酵產(chǎn)氣特性
適宜的發(fā)酵溫度可以促進微生物的轉(zhuǎn)化活性。圖3為序批式厭氧干發(fā)酵系統(tǒng)溫度變化特性。
圖3 序批式厭氧干發(fā)酵溫度的變化
微好氧預(yù)升溫第2天即達到42.28 ℃,而非曝氣組溫度雖有上升,但僅有32.97 ℃。厭氧發(fā)酵階段,微曝氣組平均溫度為42.47 ℃,溫度并未因進入?yún)捬鯛顟B(tài)而下降,在產(chǎn)甲烷過程不依靠外源加熱溫度仍可保持在42.48 ℃以上,微好氧環(huán)境使物料升溫速率提高27.12%,除反應(yīng)器具有良好的保溫性能外,發(fā)酵罐內(nèi)的氧氣消耗過程也可提供熱量[3],而非曝氣組平均溫度為35.01 ℃,比非曝氣反應(yīng)器平均溫度高21.29%。López等[17]證明,向反應(yīng)器曝氣可增加厭氧發(fā)酵系統(tǒng)水解酸化細菌生產(chǎn)水解酶的能力,有利于纖維素、半纖維素等大分子物質(zhì)的降解和熱量產(chǎn)出。李蘋等[18]通過向密閉式VTD100堆肥反應(yīng)器大量曝氣,堆體內(nèi)部在缺氧狀態(tài)下溫度迅速升高到60 ℃以上。本研究中,微曝氣可在2 d內(nèi)迅速達到厭氧干發(fā)酵所需要的中溫厭氧發(fā)酵溫度,升溫過程物料分解的特性仍需進一步評價。
有氧條件下,微生物依靠有氧呼吸進行產(chǎn)熱與底物分解,發(fā)酵過程物料分解特性如表1所示,微曝氣后,物料TS、VS降解率達到35.38%和54.61%,而非曝氣組僅有17.61%和39.14%,微曝氣顯著提升了物料干物質(zhì)降解率,也有利于揮發(fā)性成分的降解轉(zhuǎn)化。
表1 玉米秸稈與牛糞混合物中各組分含量的變化
注:A為微曝氣反應(yīng)器,B為非曝氣反應(yīng)器;1為進料階段,2為曝氣結(jié)束階段,3為厭氧發(fā)酵結(jié)束階段,下同。
Note: A is micro aeration reactor, B is non aerated reactor; 1is feeding stage, 2 is end of aeration stage, 3 is end stage of anaerobic fermentation,the same below.
厭氧干發(fā)酵結(jié)束后,物料TS、VS降解率仍然比非曝氣組高1.5倍。進一步探究物料木質(zhì)纖維素組分分解特性顯示,微曝氣組纖維素、半纖維素和木質(zhì)素降解率分別比非曝氣組提高61.39%、28.35%、77.72%,微好氧同步預(yù)升溫過程提高木質(zhì)纖維素降解57.88%~85.53%。纖維素水解是影響厭氧發(fā)酵產(chǎn)甲烷效率的限速步驟,甲烷產(chǎn)量受到木質(zhì)纖維素成分的制約,與木質(zhì)纖維素降解率具有顯著相關(guān)性[19]。在本文中(第2.1節(jié)),微曝氣階段產(chǎn)氣率在發(fā)酵前期(第7天)迅速增加,累積甲烷產(chǎn)量也在第5~15天達到上升高峰,木質(zhì)纖維素成分在產(chǎn)氣高峰期內(nèi)分解率迅速提高,為可溶性物質(zhì)的生成提供潛能。
可溶性物質(zhì)含量(sCOD)變化如圖4a所示,經(jīng)過微曝氣階段,sCOD濃度比非曝氣組提高74.67%,厭氧干發(fā)酵階段平均維持在1 722.98 mg/L,微曝氣顯著增加可溶性物質(zhì)的積累(<0.05),使更多的水解產(chǎn)物被產(chǎn)酸細菌轉(zhuǎn)化為有機酸(乙酸)成為可能[20]。
圖4b為厭氧干發(fā)酵體系有機酸濃度和pH值的變化,微曝氣結(jié)束時總有機酸累積含量由392.51 mg/L上升到465.73 mg/L,微曝氣增加了有機酸的積累。厭氧干發(fā)酵階段有機酸積累含量為丙酸>乙酸>戊酸>丁酸,丙酸濃度平均占總有機酸濃度的53.99%。乙酸和丁酸累積含量較少,其快速轉(zhuǎn)化有利于甲烷產(chǎn)量的迅速增加,而丙酸的累積易導(dǎo)致厭氧干發(fā)酵體系氫分壓的增加,降低丙酸轉(zhuǎn)化效率[21-22]。發(fā)酵初始階段的少量曝氣使厭氧發(fā)酵過程中間產(chǎn)物轉(zhuǎn)化效率顯著提升(<0.05),特別是丙酸積累含量下降了82.63%。厭氧干發(fā)酵階段,微曝氣組丙酸濃度由285 mg/L在第33天消耗殆盡,體系pH值始終保持在6.8~7.5(圖4b),微曝氣加速有機酸的生成與轉(zhuǎn)化是該體系甲烷產(chǎn)量(第3.1節(jié))升高的原因之一。
適宜的氨氮含量可為厭氧干發(fā)酵體系提供緩沖并給微生物增殖提供可溶性氮源[23],其濃度的變化如圖4c所示,曝氣結(jié)束后,微曝氣組與非曝氣組氨氮濃度分別為124.56和218.02 mg/L,厭氧干發(fā)酵階段,平均為296.15和383.22 mg/L,非曝氣組氨氮濃度比微曝氣組提高31.95%,微曝氣增加了氨氮的轉(zhuǎn)化效率,與此同時,氧化還原電位(ORP)始終保持在?370到?270 mV范圍內(nèi)(圖4d),也為產(chǎn)甲烷菌的生長提供適宜的電位環(huán)境[24]。
細菌群落多樣性如圖5所示,優(yōu)勢細菌為、、、和,占總細菌群落的70%~80%。微曝氣結(jié)束時,豐度顯著升高。張蕾等[25]報到,木質(zhì)纖維素原料厭氧干發(fā)酵體系豐度的增加有利于提高物料水解效率、加速有機酸的轉(zhuǎn)化,使pH保持中性,促進甲烷生產(chǎn)。本研究有機酸含量的變化規(guī)律也表明(第2.4節(jié)),微曝氣加速了有機酸生成與轉(zhuǎn)化,而非曝氣組有機酸濃度有積累的現(xiàn)象。當(dāng)厭氧干發(fā)酵結(jié)束,微曝氣組豐度是非曝氣組的1.9倍,同時,含量下降。之前的研究對高含固率條件下農(nóng)業(yè)廢棄物水解酸化及厭氧發(fā)酵過程細菌群落研究也發(fā)現(xiàn),、豐度提高有利于促進體系有機酸的生產(chǎn)并激素乙酸化,為產(chǎn)甲烷菌提供更多的物料[26]。本研究第2.1節(jié)研究表明,微曝氣組厭氧干發(fā)酵階段甲烷產(chǎn)量平均比非曝氣組提了41.79%,和豐度的提高對產(chǎn)甲烷效率的保持起到積極作用。
圖5 目水平細菌多樣性分析
不同干發(fā)酵體系古菌群落特性如圖6所示,優(yōu)勢古菌為,微曝氣導(dǎo)致豐度迅速增加,與非曝氣組相比提高了89.56%。厭氧干發(fā)酵結(jié)束后,微曝氣使重新占據(jù)主導(dǎo)優(yōu)勢,而非曝氣組的豐度顯著提升(<0.01)。Cuzin等[27-29]研究表明,厭氧干發(fā)酵體系原料含固率較高,水解酸化階段形成較高濃度的中間代謝產(chǎn)物,以嗜乙酸代謝為主的產(chǎn)甲烷菌豐度的增加有利于發(fā)酵體系中間產(chǎn)物的轉(zhuǎn)化,是厭氧干發(fā)酵過程的優(yōu)勢古菌。本研究中,微曝氣組提高了有機酸轉(zhuǎn)化及產(chǎn)甲烷效率,增加了嗜乙酸產(chǎn)甲烷菌的豐度,而非曝氣組厭氧干發(fā)酵階段古菌群落的構(gòu)成可能導(dǎo)致中間產(chǎn)物轉(zhuǎn)化效率的下降。
圖6屬水平古菌多樣性分析
圖7a、7b為微曝氣和非曝氣處理的細菌、古菌群落非度量多維標(biāo)度(NMDS)分析圖,Stress為0.002 9和0.002,證明NMDS圖中各物料點間距能夠較好地反映微生物群落的差異。兩點間距離越大證明物料間差異越顯著。微好氧曝氣預(yù)升溫厭氧干發(fā)酵過程,細菌、古菌群落均發(fā)生了極顯著的改變(<0.01),在不同環(huán)境因子的作用下促進了升溫速率及物料分解轉(zhuǎn)化能力,提高了甲烷產(chǎn)量,形成了有利于甲烷生產(chǎn)的厭氧干發(fā)酵菌群,與環(huán)境因子的相互作用關(guān)系仍需要進一步評價。
圖7 細菌和古菌整體分布格局
圖7c為環(huán)境因子與微生物群落相互作用關(guān)系分析圖??梢钥闯?,微曝氣階段溫度的迅速升高有利于厭氧干發(fā)酵甲烷產(chǎn)量的提升。與此同時,物料降解率的提高促進了有機酸的轉(zhuǎn)化效率,從而與甲烷產(chǎn)量呈現(xiàn)顯著正相關(guān)性(<0.05)。以及嗜乙酸型、可顯著促進物料降解與甲烷生產(chǎn),特別是微曝氣導(dǎo)致與體系溫度、甲烷產(chǎn)量呈極顯著正相關(guān)性(<0.01),通過微生物群落的優(yōu)化,加速了物質(zhì)轉(zhuǎn)化效率和甲烷產(chǎn)量。
1)微好氧同步預(yù)升溫對序批式厭氧干發(fā)酵甲烷產(chǎn)量影響顯著,微好氧曝氣的累積產(chǎn)甲烷量是非曝氣的1.5倍,甲烷產(chǎn)量平均提高41.79%,累積產(chǎn)氣量提高了56.76%。在微好氧曝氣條件下,累積產(chǎn)氣量為4 793.92 L。
2)微好氧同步預(yù)升溫加快了反應(yīng)器內(nèi)物料的升溫速率,微曝氣組平均溫度為42.47 ℃,非曝氣組平均溫度為35.01 ℃,比非曝氣反應(yīng)器平均溫度高21.29%,加快厭氧發(fā)酵的水解過程。
3)微好氧同步預(yù)升溫過程提高木質(zhì)纖維素降解率57.88%~85.53%,并加快了有機酸和氨氮的轉(zhuǎn)化效率,丙酸轉(zhuǎn)化率提高了82.63%。
4)受到微好氧同步預(yù)升溫影響,、豐度顯著提高,并與、、具有協(xié)同作用,促進甲烷生產(chǎn)。
[1] 朱圣權(quán),張衍林,張文倩,等. 厭氧干發(fā)酵技術(shù)研究進展[J].可再生能源,2009,27(2):46-51.
Zhu Shengquan, Zhang Yanlin, Zhang Wenqian, et al. Research progress of anaerobic dry fermentation technology[J]. Renewable Energy Resources, 2009, 27(2): 46-51. (in Chinese with English abstract)
[2] 馮晶,劉國華,馬繼濤,等. 規(guī)?;斩捳託夤こ碳杉夹g(shù)及工程運行效果研究[J]. 農(nóng)業(yè)工程學(xué)報,2018,34(增刊1):81-85.
Feng Jing , Liu Guohua, Ma Jitao, et al. Study on the integration technology and operation effect of large-scale straw biogas project[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018 , 34(Supp.1): 81-85. (in Chinese with English abstract)
[3] 公菲. 干法厭氧發(fā)酵反應(yīng)器內(nèi)溫度場變化規(guī)律與模擬仿真研究[D]. ??冢汉D洗髮W(xué),2018.
Gong Fei. Study on Temperature Field Change and Simulation in Dry Process Anaerobic Fermentation Reactor[D]. Haikou: Hainan University, 2018. (in Chinese with English abstract)
[4] 盛力偉,潘亞東,李劍,等. 車庫型干發(fā)酵技術(shù)在我國的實踐[J]. 農(nóng)機化研究,2014,36(2):222-225,240.
Sheng Liwei, Pan Yadong, Li Jian, et al. Practice of garage type dry fermentation technology in China[J]. Agricultural Mechanization Research, 2014, 36(2): 222-225, 240. (in Chinese with English abstract)
[5] 徐鵬翔,王越,楊軍香,等. 好氧堆肥中通風(fēng)工藝與參數(shù)研究進展[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報,2018,37(11):2403-2408.
Xu Pengxiang, Wang Yue, Yang Junxiang, et al. Research progress of ventilation technology and parameters in aerobic composting[J]. Journal of Agricultural Environmental Science, 2018, 37(11): 2403-2408. (in Chinese with English abstract)
[6] Zhou Ying, Li Chao, Ivo Achu Nges, et al. The effects of pre-aeration and inoculation on solid-state anaerobic digestion of rice straw[J]. Bioresource Technology, 2017, 224: 78-86.
[7] Khanal S K, Huang J C. Online oxygen control for sulfide oxidation in anaerobic treatment of high-sulfate wastewater[J]. Water Environ. Res, 2006, 78: 397-408.
[8] Xu S, Selvam A, Wong J W C. Optimization of micro-aeration intensity inacidogenic reactor of a two-phase anaerobic digester treating food waste[J]. Waste Manag, 2014, 34: 363-369.
[9] APHA. Standard Methods for the Examination of Water and Wastewater[M]. Washington D C: American Public Health Association, 2005.
[10] 呂錫武. 厭氧消化產(chǎn)氣量計算方法的評價[J]. 上海環(huán)境科學(xué),1987(4):26-28,7.
Lyu Xiwu. Evaluation of calculation method of anaerobic digestion gas production[J]. Shanghai Environmental Science, 1987(4): 26-28, 7.
[11] Van Soest P J, Robertson J B, Lewis B A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition[J]. Journal of Dairy Science, 1991, 74(10): 3583-3597.
[12] Liang Yu, Mahesh Bule, Jingwei Ma, et al. Enhancing volatile fatty acid(VFA) and bio-methane production from lawn grass with pretreatment[J]. Bioresource Technology, 2014, 16: 243-249.
[13] COD標(biāo)準(zhǔn)測定方法:GB1194-1989[S]. 北京:標(biāo)準(zhǔn)出版社,1989.
[14] Yu J, Zhao L, Feng J, et al. Sequencing batch dry anaerobic digestion of mixed feedstock regulating strategies for methane production: Multi-factor interactions among biotic and abiotic characteristics[J]. Bioresource Technology, 2019, 284: 276-285.
[15] Rocamora Ildefonso, Wagland T Stuart, Raffaella Villa, et al. Dry anaerobic digestion of organic waste: A review of operational parameters and their impact on process performance[J]. Bioresource Technology, 2020: 285-299.
[16] Capela I, Azeiteiro C, Arroja L, et al. Effects of pre-treatment(composting) on the anaerobic digestion of primary sludges from a bleachedkraft pulp mill. In: II Int[J]. Symp. Anaerobic Dig. Solid Waste, 1999, 62: 15-17.
[17] López M J, Elorrieta M A, Vargas-Garc?a M C, et al. The effect of aeration on the biotransformation of lignocellulosic wastes by white-rot fungi. Bioresour[J]. Technol, 2002, 81(2): 123-129.
[18] 李蘋,付弘婷,張發(fā)寶,等. 不同通風(fēng)條件對蠶沙堆肥化效果的影響[J]. 廣東蠶業(yè),2015,49(1):20-24.
Li Ping, Fu Hongting, Zhang Fabao, et al. The influence of different ventilation conditions on the composting effect of silkworm sand[J]. Guangdong Sericulture, 2015, 49(1): 20-24. (in Chinese with English abstract)
[19] Paul S, Dutta A. Challenges and opportunities of lignocellulosic biomass for anaerobic digestion[J]. Resources, Conservation and Recycling, 2018, 130: 164-174.
[20] 李娜. 農(nóng)村混合廢物干式厭氧發(fā)酵工藝優(yōu)化及沼渣的綜合利用[D]. 武漢:武漢理工大學(xué),2018.
Li Na. Optimization of Dry Anaerobic Fermentation Process of Rural Mixed Waste and Comprehensive Utilization of Biogas Residue[D]. Wuhan: Wuhan University of technology, 2018. (in Chinese with English abstract)
[21] Yu J, Zhao Y, Zhang H, et al. Hydrolysis and acidification of agricultural waste in a non-airtight system: Effect of solid content, temperature, and mixing mode[J]. Waste Management, 2016, 59: 487-497.
[22] Capson-Tojo G, Ruiz D, Rouez M, et al. Accumulation of propionic acid during consecutive batch anaerobic digestion of commercial food waste[J]. Bioresource Technology, 2017, 245: 724-733.
[23] Chen X, Yan W, Sheng K C, et al. Comparison of high-solids to liquid anaerobic co-digestion of food waste and green waste[J]. Bioresource Technology, 2014, 154: 215-221.
[24] 王世偉,馬放,王萍,等. 兩段式 CSTR 快速啟動及厭氧發(fā)酵特性研究[J]. 東北農(nóng)業(yè)大學(xué)學(xué)報,2019,50(1):1-9.
Wang Shiwei, Ma Fang, Wang Ping, et al. Study on two-phase CSTR for quick start-up and anaerobic fermentation effectiveness[J]. Journal of Northeast Agricultural University, 2019, 50(1): 1-9. (in Chinese with English abstract)
[25] 張蕾,梁軍鋒,崔文文,等. 規(guī)?;斩捳託獍l(fā)酵反應(yīng)器中微生物群落特征[J]. 農(nóng)業(yè)環(huán)節(jié)科學(xué)學(xué)報,2014,33(3):584-592.
Zhang Lei, Lang Junfeng, Cui Wenwen, et al. Characteristics of microbial communities in full-scale biogas digesters with straw as substrate[J]. Journal of Agro-Environment Science, 2014, 33(3): 584-592. (in Chinesewith English abstract)
[26] Gao D W, Wang X L, Xing M. Dynamic variation of microbial metabolites and community involved in membrane fouling in A/O-MBR[J]. Journal of Membrane Science, 2014, 458(9): 157-163.
[27] Cuzin N, Ouattara A S, Labat M, et al. 2001. Methanobacterium congolense sp. nov., from a methanogenic fermenta-tion of cassava peel[J]. International Journal of System-atic and Evolutionary Microbiology, 51(2): 489-493.
[28] Zhao Y, Yu J, Liu J, et al. Material and microbial changes during corn stalk silage and their effects on methane fermentation[J]. Bioresouroure Technology, 2016, 222: 89-99.
[29] 承磊,鄭珍珍,王聰,等. 產(chǎn)甲烷古菌研究進展[J]. 微生物學(xué)通報,2016,43(5):1143-1164.
Cheng Lei, Zheng Zhenzhen, Wang Cong, et al. Recent advances in methanogens[J]. Microbiology China, 2016, 43(5): 1143-1164. (in Chinesewith English abstract)
Characteristics of sequencing batch dry anaerobic fermentation with microaerobic preheating
Yu Jiadong2, Liu Xinxin1,2, Zhao Lixin3, Feng Jing2, Chen Jiankun2, Guo Zhanbin1※
(1.163319,; 2.,,,100125,; 3100081,)
China is a big agricultural country, which produces a lot of agricultural waste every year. With the improvement of China’s agricultural productivity, agricultural wastes such as straw and livestock manure are relatively concentrated, which creates appropriate conditions for the application of sequencing batch dry anaerobic digestion (SBD-AD) technology to produce methane. Sequential batch anaerobic dry fermentation is an important technology for large-scale processing of agricultural and rural wastes to produce clean energy. It has such outstanding problems as low decomposition rate of materials, high operating energy consumption, and uneven mass and heat transfer, which limit the increase in methane yield.In this study, by adjusting the dissolved oxygen concentration in the initial reactor of the fermentation, a microaerobic simultaneous pre-heating and efficient sequential batch anaerobic dry fermentation system was established to further study the self-heating, decomposition, intermediate product properties and key microbial communities. The mechanism of promoting material heating and methane production.The results show that the micro-aerobic speeds up the heating rate of the materials in the reactor, which is 27.12% higher than the un-aerated temperature; the temperature of methanogenesis can be maintained above 42.48 ℃ without relying on external heating. A small amount of aeration in the initial stage of fermentation significantly improved the conversion efficiency of intermediate products in the anaerobic fermentation process (<0.05). The lignocellulose degradation rate was increased by 57.88% -85.53% compared with the non-aerated group; the sCOD concentration was increased by 74.67% compared with the non-aerated group. The concentration of ammonia nitrogen in the non-aeration group is increased by 31.95% compared with the micro-aeration group, and micro-aeration increases the conversion efficiency of ammonia nitrogen; in particular, the accumulation of propionic acid decreased by 82.63%. The concentration was consumed by 285 mg/L on the 33rd day, and the system pH value was always maintained at 6.8-7.5. After 7 days of micro-aeration, the cumulative biogas production gap gradually increased, and the methane output of the micro-aeration group increased rapidly. On the 5th to 15th days, it was a rapid period of methane production. Overall, the cumulative methane content in the aeration group was 1.5 tines of the non-aeration group after 60 days of fermentation, the cumulative biogas and methane production increased by 56.76% and 41.79%, respectively. Bacteria,and archaeaare conducive to promoting microaerobic simultaneous pre-heating and methane production efficiency, and have a significant correlation with degradation rate and organic acid concentration. This study provides a theoretical basis for exploring the efficient engineering control process of the sequential batch anaerobic dry fermentation.
formentation; temperature; agricultural waste; microaerobic
于佳動,劉新鑫,趙立欣,等. 基于微好氧同步預(yù)升溫的序批式厭氧干發(fā)酵特性[J]. 農(nóng)業(yè)工程學(xué)報,2020,36(10):213-219.doi:10.11975/j.issn.1002-6819.2020.10.026 http://www.tcsae.org
Yu Jiadong, Liu Xinxin, Zhao Lixin, et al. Characteristics of sequencing batch dry anaerobic fermentation with microaerobic preheating[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(10): 213-219. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.10.026 http://www.tcsae.org
2020-03-03
2020-04-30
現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系專項資金資助(CARS-02);農(nóng)業(yè)農(nóng)村部規(guī)劃設(shè)計研究院自主研發(fā)項目(ZZYFCGPY201901)
于佳動,博士,工程師,主要從事農(nóng)業(yè)廢棄物厭氧干發(fā)酵技術(shù)裝備研究。Email:yujiadong010@163.com
郭占斌,博士,教授,主要從事農(nóng)業(yè)機械設(shè)計研究。Email:329984136@qq.com
10.11975/j.issn.1002-6819.2020.10.026
X712
A
1002-6819(2020)-10-0213-07