国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

面向漁業(yè)物聯(lián)網(wǎng)的GPS相對(duì)定位策略

2020-07-10 04:50:14曹守啟
關(guān)鍵詞:網(wǎng)關(guān)漁業(yè)聯(lián)網(wǎng)

曹守啟,禹 松,張 錚

面向漁業(yè)物聯(lián)網(wǎng)的GPS相對(duì)定位策略

曹守啟,禹 松,張 錚※

(上海海洋大學(xué)工程學(xué)院,上海 201306)

現(xiàn)代漁業(yè)養(yǎng)殖朝著精細(xì)化的方向發(fā)展,漁業(yè)物聯(lián)網(wǎng)的應(yīng)用越來越廣泛。對(duì)于部署的終端節(jié)點(diǎn),除了需要獲取環(huán)境感知信息,還必需獲取節(jié)點(diǎn)的位置信息,這樣采集數(shù)據(jù)才有應(yīng)用價(jià)值。該研究提出了一種面向漁業(yè)物聯(lián)網(wǎng)應(yīng)用的基于LoRa(Long Range)網(wǎng)絡(luò)的低成本GPS(Global Positioning System)相對(duì)定位方法。首先通過誤差分析建立相對(duì)定位策略數(shù)據(jù)模型,然后設(shè)計(jì)了基于LoRa網(wǎng)絡(luò)的相對(duì)定位方法和改進(jìn)的時(shí)分多址(Time Division Multiple Access, TDMA)傳輸策略,實(shí)現(xiàn)了高精度定位和高能效數(shù)據(jù)傳輸,最后設(shè)計(jì)了LoRa物聯(lián)網(wǎng)硬件節(jié)點(diǎn)并在近海漁場(chǎng)進(jìn)行了部署測(cè)試,試驗(yàn)數(shù)據(jù)表明了該文提出方法的有效性與可靠性。在采用低成本GPS商用模塊的情況下,距離網(wǎng)關(guān)1 000和499 m的終端節(jié)點(diǎn)的平均定位精度由10 m分別提高到4.8和2.4 m,數(shù)據(jù)投遞率由80%提高到95%以上。

水產(chǎn)養(yǎng)殖;物聯(lián)網(wǎng);GPS;LoRa;時(shí)間同步

0 引 言

現(xiàn)代水產(chǎn)養(yǎng)殖規(guī)?;⒕?xì)化成為趨勢(shì),低成本、高品質(zhì)成為需求。漁業(yè)物聯(lián)網(wǎng)(Internet of Things, IOT)技術(shù)的研究與應(yīng)用越來越廣泛[1-4]。漁業(yè)物聯(lián)網(wǎng)的終端節(jié)點(diǎn)除了靜態(tài)監(jiān)測(cè)點(diǎn)以外,還有大量以浮標(biāo)、魚排、網(wǎng)箱等為載體的處于浮動(dòng)狀態(tài)的節(jié)點(diǎn);因此如何獲取高精度的位置信息已成為目前漁業(yè)物聯(lián)網(wǎng)研究的熱點(diǎn)之一。

物聯(lián)網(wǎng)定位技術(shù)往往是和物聯(lián)網(wǎng)通信技術(shù)結(jié)合在一起的。目前多種無線通信技術(shù)運(yùn)用于漁業(yè)物聯(lián)網(wǎng),如基于ZigBee無線傳輸網(wǎng)絡(luò)的水產(chǎn)養(yǎng)殖環(huán)境監(jiān)測(cè)系統(tǒng)[5-6];采用WiFi網(wǎng)狀組網(wǎng)配置方法設(shè)計(jì)基于物聯(lián)網(wǎng)的自動(dòng)化養(yǎng)魚輔助系統(tǒng)[7];基于全球移動(dòng)通信系統(tǒng)(Global System for Mobile Communications, GSM)的優(yōu)勢(shì)設(shè)計(jì)水質(zhì)監(jiān)控系統(tǒng)等[8]。由于ZigBee技術(shù)傳輸距離短,覆蓋范圍小[9],WiFi技術(shù)功耗高[10],GSM需要按流量計(jì)費(fèi)[11],且有些偏遠(yuǎn)地區(qū)或近海海域的網(wǎng)絡(luò)信號(hào)尚未覆蓋等因素,其都無法完全滿足環(huán)境復(fù)雜、覆蓋面積廣的漁業(yè)物聯(lián)網(wǎng)應(yīng)用需求。

LoRa(Long Range)是一種低功耗長(zhǎng)距離無線通信技術(shù),目前其產(chǎn)業(yè)鏈已經(jīng)非常成熟和完善[12]。LoRa無線通信技術(shù)經(jīng)過Semtech,美國(guó)思科、IBM等組成的LoRa聯(lián)盟全球推廣后,已成為物聯(lián)網(wǎng)應(yīng)用的重要基礎(chǔ)技術(shù)[12]。不同于傳統(tǒng)的無線系統(tǒng)為了實(shí)現(xiàn)低功耗基于頻移鍵控調(diào)制當(dāng)作物理層,LoRa是利用線性調(diào)頻擴(kuò)頻調(diào)制,擁有和頻移鍵控調(diào)制技術(shù)一樣的低功耗特點(diǎn),而且傳輸距離也顯著得到了提高[13]。LoRa的工作頻率是在1 GHz以下,包含109、433、866 MHz等頻率。得益于LoRa使用新型擴(kuò)頻調(diào)制技術(shù),用戶可以自定義不同的擴(kuò)頻因子和帶寬[13]來滿足不同的距離和需求。此外,LoRa通信時(shí)的穿透能力因?yàn)槭褂玫臄U(kuò)頻技術(shù)而得以增強(qiáng),所以能夠在相對(duì)復(fù)雜的環(huán)境中使用。所以LoRa技術(shù)在功耗、無線傳輸距離、穿透能力和組網(wǎng)[14-17]等方面有明顯的優(yōu)勢(shì)。因此,本研究采用低功耗長(zhǎng)距離的LoRa無線通信技術(shù)作為相對(duì)定位系統(tǒng)中數(shù)據(jù)通信鏈路。

物聯(lián)網(wǎng)節(jié)點(diǎn)的定位方法主要有以下3種:

1) 基于接收信號(hào)的強(qiáng)度指示(Received Signal Strength Indicator, RSSI)測(cè)量和路徑損耗模型的定位。此方法要求預(yù)先知道網(wǎng)關(guān)的位置[18]。然后可以粗略計(jì)算區(qū)域內(nèi)的終端設(shè)備的位置。將RSSI數(shù)據(jù)與路徑損耗模型相結(jié)合,可以更準(zhǔn)確地計(jì)算位置。Islam等[19]通過試驗(yàn)測(cè)量RSSI信號(hào)強(qiáng)度,并使用路徑損耗模型研究非視線和視線條件下RSSI值的分布和距離之間的關(guān)系。Lam等[20]研究了室外環(huán)境下基于LoRa信號(hào)的路徑損耗模型的網(wǎng)關(guān)選擇策略。為了減少網(wǎng)關(guān)噪音引起的大量定位誤差,提出了一種基于K-means聚類[21]的最優(yōu)網(wǎng)關(guān)選擇方法。

2)基于到達(dá)時(shí)間差(Time Difference of Arrival, TDOA)的定位?;赥DOA的定位方法需要節(jié)點(diǎn)之間的時(shí)間同步[22]。LoRa終端設(shè)備向LoRa網(wǎng)關(guān)發(fā)送上行分組。每個(gè)網(wǎng)關(guān)分別記錄分組到達(dá)時(shí)間。網(wǎng)絡(luò)中的定位服務(wù)器計(jì)算到達(dá)時(shí)間差,然后確定終端設(shè)備的位置[23]。Kim等[24]使用SX1272芯片,應(yīng)用基于時(shí)差的定位方法證明其可以用于LoRa網(wǎng)絡(luò)定位。此類方法對(duì)硬件設(shè)備時(shí)間同步的精度要求很高。

3)全球定位系統(tǒng)(Global Positioning System, GPS)是通過衛(wèi)星測(cè)距對(duì)節(jié)點(diǎn)進(jìn)行定位的,是目前應(yīng)用最廣的定位系統(tǒng)[25]。在交通物流、市政管理、安全檢測(cè)、精準(zhǔn)農(nóng)業(yè)、自動(dòng)駕駛等行業(yè)發(fā)展迅速。衛(wèi)星定位又分為單點(diǎn)定位和相對(duì)定位,單點(diǎn)定位對(duì)測(cè)量過程中產(chǎn)生的各種誤差調(diào)節(jié)困難,故誤差較大[26]。采用差分技術(shù)可有效提高定位精度。目前常用的GPS差分定位技術(shù)分為偽距差分GPS[27]和載波相位差分GPS[28],其定位精度分別可達(dá)到亞米級(jí)和厘米級(jí)。雖然精度很高,但需要地面基站且差分設(shè)備價(jià)格不菲,無法廣泛應(yīng)用于漁業(yè)養(yǎng)殖。

對(duì)于漁業(yè)養(yǎng)殖,掌握養(yǎng)殖區(qū)域內(nèi)各種漁業(yè)裝備的相互位置關(guān)系對(duì)養(yǎng)殖戶的有效管理和監(jiān)控具有重要意義,尤其是在近海和大面積漁業(yè)養(yǎng)殖的應(yīng)用中。因此,本研究提出了一種基于LoRa網(wǎng)絡(luò)的低成本GPS相對(duì)定位方法,來確定養(yǎng)殖區(qū)域內(nèi)各個(gè)物聯(lián)網(wǎng)節(jié)點(diǎn)的坐標(biāo)。首先通過誤差分析建立相對(duì)定位策略數(shù)據(jù)模型,然后設(shè)計(jì)了利用GPS接收機(jī)秒脈沖信號(hào)與時(shí)間電文進(jìn)行高精度時(shí)間同步的方法,以保證GPS信號(hào)同步采集,在此基礎(chǔ)上設(shè)計(jì)了基于LoRa網(wǎng)絡(luò)的相對(duì)定位方法和改進(jìn)的時(shí)分多址傳輸策略,實(shí)現(xiàn)了高精度定位和高能效數(shù)據(jù)傳輸。

1 基于LoRa網(wǎng)絡(luò)的GPS相對(duì)定位原理

1.1 系統(tǒng)架構(gòu)

本方案的系統(tǒng)架構(gòu)如圖1所示,LoRa網(wǎng)關(guān)與LoRa終端節(jié)點(diǎn)構(gòu)成星形拓?fù)浣Y(jié)構(gòu)。LoRa網(wǎng)關(guān)和終端節(jié)點(diǎn)都集成GPS模塊、STM32L051單片機(jī)和LoRa射頻模塊,GPS模塊用于定位和授時(shí)。終端節(jié)點(diǎn)還集成各種環(huán)境監(jiān)測(cè)傳感器。在漁業(yè)物聯(lián)網(wǎng)應(yīng)用中,網(wǎng)關(guān)固定部署在岸上,終端節(jié)點(diǎn)部署在監(jiān)測(cè)環(huán)境中,如固定監(jiān)測(cè)點(diǎn)、浮標(biāo)、魚排、無人船等浮動(dòng)或移動(dòng)載體。

圖1 系統(tǒng)架構(gòu)示意圖

1.2 高精度GPS相對(duì)定位算法原理

GPS定位過程中,定位精度通常會(huì)受3部分誤差的影響,第一部分是對(duì)每一個(gè)用戶接收機(jī)所公有的,如衛(wèi)星鐘誤差、星歷誤差等;第二部分為不能由用戶測(cè)量或校正模型來計(jì)算的傳播延遲誤差,如電離層折射和對(duì)流層延遲等;第三部分為各用戶接收機(jī)所固有的誤差,如內(nèi)部噪聲、通道延遲、多徑效應(yīng)等。GPS定位各誤差分量顯示誤差主要來源于衛(wèi)星星歷誤差和衛(wèi)星鐘差[26],漁業(yè)物聯(lián)網(wǎng)的網(wǎng)關(guān)和終端處在同一區(qū)域范圍內(nèi),因此在求取相對(duì)位置時(shí)各種影響精度的共有因素是近似的。本研究提出的相對(duì)定位策略是根據(jù)網(wǎng)關(guān)和終端的觀測(cè)位置來求取它們的相對(duì)定位坐標(biāo)。

圖2為網(wǎng)關(guān)節(jié)點(diǎn)、終端節(jié)點(diǎn)和衛(wèi)星定位示意圖,網(wǎng)絡(luò)中的所有節(jié)點(diǎn)都帶有GPS接收模塊,任意節(jié)點(diǎn)通過跟蹤至少4顆GPS衛(wèi)星進(jìn)行自身位置的定位。假設(shè)網(wǎng)絡(luò)中的網(wǎng)關(guān)節(jié)點(diǎn)可以跟蹤到的衛(wèi)星組合為S={S(=1,2,…,5)},在t時(shí)刻得到其在地心坐標(biāo)系(Earth-Centered, Earth-Fixed, ECEF)下的觀測(cè)位置(坐標(biāo))誤差,可以表示為式(1)。

P(t)=G(EΔS(t)?Δρ(t))(1)

式中GE為網(wǎng)關(guān)節(jié)點(diǎn)與各衛(wèi)星的方位特征矩陣;P(t)為t時(shí)刻由于衛(wèi)星時(shí)鐘差、大氣層延遲、多徑偏差和接收機(jī)硬件偏差等引起的衛(wèi)星位置偏差;Δρ(t)為t時(shí)刻網(wǎng)關(guān)節(jié)點(diǎn)到各衛(wèi)星的偽距誤差向量。

對(duì)于終端節(jié)點(diǎn),可以得到t時(shí)刻在ECEF坐標(biāo)系下的觀測(cè)位置(坐標(biāo))誤差如式(2)所示。

P(t)=G(EΔS(t)?Δρ(t))(2)

網(wǎng)關(guān)節(jié)點(diǎn)和終端節(jié)點(diǎn)在時(shí)間同步后,按約定的同一時(shí)刻獲取GPS位置信息,即t=t=,在同一區(qū)域范圍內(nèi),網(wǎng)關(guān)節(jié)點(diǎn)和監(jiān)測(cè)水域中終端節(jié)點(diǎn)幾乎可以觀測(cè)到一樣的衛(wèi)星組合,即S=S=。這樣在相同的時(shí)刻采用幾乎相同的衛(wèi)星組合進(jìn)行定位計(jì)算時(shí),由衛(wèi)星時(shí)鐘差、大氣層延遲等引起的衛(wèi)星位置偏差幾乎相同,即:ΔS()=ΔS()。由于網(wǎng)關(guān)節(jié)點(diǎn)固定,終端節(jié)點(diǎn)在養(yǎng)殖水域中,網(wǎng)關(guān)節(jié)點(diǎn)和終端節(jié)點(diǎn)間的位置差異相對(duì)于節(jié)點(diǎn)到衛(wèi)星的距離來講可以忽略,2點(diǎn)與衛(wèi)星之間的方向角相差很小,因此其方向矢量之間的差異可以忽略不計(jì),即GEGE。則將式(2)和(3)代入式(4)可以得到式(5):

ΔD=GΔ()?GΔ()(5)

Δ=GB?GB+GV?GV(6)

令Δ=N?N、Δ=G?G分別表示網(wǎng)關(guān)節(jié)點(diǎn)、終端節(jié)點(diǎn)系統(tǒng)誤差和方位矩陣的差分,代入式(5)和式(6),并忽略三階小量,可以得到網(wǎng)關(guān)節(jié)點(diǎn)、終端節(jié)點(diǎn)的位置誤差的數(shù)學(xué)期望由式(7)所示。

由式(7)可以看出,節(jié)點(diǎn)的相對(duì)位置誤差主要與系統(tǒng)誤差和方位矩陣差分的二階小量有關(guān)系,而通常硬件隨機(jī)誤差引起的距離誤差相對(duì)于系統(tǒng)誤差是很小的,因此采用相對(duì)定位可以將大多數(shù)系統(tǒng)誤差消除,從而降低節(jié)點(diǎn)之間的相對(duì)定位誤差。

2 相對(duì)定位算法實(shí)現(xiàn)

由上述原理可知,為了實(shí)現(xiàn)GPS相對(duì)定位,網(wǎng)關(guān)和終端必須在同一時(shí)刻獲取GPS信息。本研究首先利用GPS接收機(jī)秒脈沖信號(hào)與時(shí)間電文設(shè)計(jì)了高精度時(shí)間同步的方法。

2.1 時(shí)間同步方法

GPS接收機(jī)可以提供精確的授時(shí)服務(wù),因此在節(jié)點(diǎn)開始定位之前,網(wǎng)絡(luò)中所有節(jié)點(diǎn)都通過GPS模塊進(jìn)行授時(shí)同步,并且每隔固定周期進(jìn)行一次同步操作,保證所有節(jié)點(diǎn)都具有相同的時(shí)間基準(zhǔn)。

GPS接收機(jī)在接收衛(wèi)星信息的同時(shí),輸出時(shí)間信號(hào)間隔為1 s的脈沖信號(hào),并且經(jīng)RS-232串口輸出的包含世界標(biāo)準(zhǔn)時(shí)間(Coordinated UniversalTime, UTC)的GPS電文信息。GPS接收機(jī)的秒脈沖(Pulse Per Second, PPS)信號(hào)的脈沖時(shí)間精度為1s,可用于進(jìn)行高精度的時(shí)間同步。如圖3所示,GPS接收機(jī)同時(shí)通過串口輸出包含世界標(biāo)準(zhǔn)時(shí)間(UTC)的GPS電文信息,其輸出時(shí)刻與PPS脈沖的上升沿對(duì)應(yīng)。每臺(tái)GPS接收機(jī)的PPS信號(hào)都是精確同步的。

注:UTC是世界標(biāo)準(zhǔn)時(shí)間,s;PPS是每秒的脈沖數(shù)。

利用接收機(jī)串口輸出的時(shí)間電文來解算當(dāng)前的UTC時(shí)間,但是串口數(shù)據(jù)的輸出和接收都需要消耗一定的時(shí)間,STM32單片機(jī)也需要時(shí)間進(jìn)行時(shí)間電文的解算,而且由于程序的任務(wù)調(diào)度和中斷處理,使得電文的解算時(shí)間變得不確定。所有這些因素可能會(huì)導(dǎo)致UTC時(shí)間解算的延遲,最終影響網(wǎng)絡(luò)中節(jié)點(diǎn)之間的同步精度。

因此為了提高整個(gè)網(wǎng)絡(luò)的同步精度,避免節(jié)點(diǎn)之間的時(shí)間相差整數(shù)個(gè)脈沖時(shí)間間隔,在設(shè)計(jì)中利用了GPS接收機(jī)的2種時(shí)間信號(hào),即PPS信號(hào)和時(shí)間電文相結(jié)合的方式來進(jìn)行時(shí)間同步。將GPS接收機(jī)的PPS信號(hào)引腳連接到STM32L051單片機(jī)的外部中斷引腳,利用其脈沖信號(hào)來觸發(fā)中斷;將GPS接收機(jī)和STM32L051單片機(jī)的串口相連接。當(dāng)GPS接收機(jī)的PPS信號(hào)觸發(fā)STM32單片機(jī)中斷時(shí),進(jìn)入中斷處理程序,中斷處理程序打開串口接收時(shí)間電文,并解算出當(dāng)前的時(shí)間值。

由于從串口接收時(shí)間電文和解算時(shí)間值所耗費(fèi)的時(shí)間是不確定的,在中斷處理程序中,首先判斷當(dāng)前是否是第一次中斷并解算時(shí)間電文,如果是則將此次解算的時(shí)間值暫存,然后在下一次中斷到來時(shí)將前一次得到的時(shí)間值加上兩次中斷的間隔秒數(shù),作為當(dāng)前時(shí)刻的時(shí)間值設(shè)置到節(jié)點(diǎn)中。本方法進(jìn)行網(wǎng)絡(luò)節(jié)點(diǎn)時(shí)間同步,可以有效地消除單片機(jī)程序處理時(shí)間、串口數(shù)據(jù)收發(fā)等延遲誤差,系統(tǒng)的時(shí)間同步誤差可以控制在微秒級(jí),充分滿足漁業(yè)物聯(lián)網(wǎng)相對(duì)定位的應(yīng)用需求。

2.2 LoRa通信策略

LoRa網(wǎng)絡(luò)中終端數(shù)量較多且傳輸?shù)臄?shù)據(jù)量較大的情況下,無線信道碰撞概率會(huì)增加。本研究在全網(wǎng)時(shí)間同步的基礎(chǔ)上,采用時(shí)分多址(TDMA)技術(shù),為不同的終端分配不同的時(shí)隙,以降低信道碰撞概率。

如圖4所示,終端節(jié)點(diǎn)的數(shù)據(jù)上傳周期為T,終端節(jié)點(diǎn)的GPS或傳感器采樣時(shí)間段為T,之后是網(wǎng)關(guān)廣播時(shí)間段T,網(wǎng)關(guān)廣播的命令請(qǐng)求包分為定位請(qǐng)求和傳感器數(shù)據(jù)采集請(qǐng)求兩種。每個(gè)終端分配時(shí)隙T,在T時(shí)間內(nèi)終端完成采樣數(shù)據(jù)包P的上報(bào)。

注:TP為數(shù)據(jù)上傳周期,s;TS為采樣時(shí)間段,s;Tb是網(wǎng)關(guān)廣播時(shí)間段,s;Td為每個(gè)終端分配的時(shí)隙,s;tS為采樣/定位時(shí)刻,s;B是網(wǎng)關(guān)的命令請(qǐng)求包;P1~Pn是各個(gè)終端采樣數(shù)據(jù)包。

網(wǎng)關(guān)廣播的命令請(qǐng)求包格式如圖5a所示,廣播地址為00。圖5a中的下一包類型ID(Identity),表示下一周期終端節(jié)點(diǎn)要執(zhí)行的命令類型,定位請(qǐng)求設(shè)置為1,傳感器采集請(qǐng)求設(shè)置為2。分組號(hào)為終端節(jié)點(diǎn)按照布設(shè)位置、傳感器類型等因素預(yù)先進(jìn)行分組的編號(hào),每組一個(gè)分組號(hào)。采樣/定位時(shí)刻t和分組號(hào)表示網(wǎng)關(guān)與終端節(jié)點(diǎn)預(yù)約的下一周期同步獲取GPS定位信息或進(jìn)行傳感器采樣的時(shí)刻和對(duì)應(yīng)的終端節(jié)點(diǎn)組。該時(shí)刻要保證在該時(shí)刻之前所有需要參與定位或采樣的節(jié)點(diǎn)已進(jìn)入定位或采樣就緒狀態(tài)。如果上一周期接收到的類型ID為1,則本周期在采樣時(shí)段T內(nèi),在預(yù)約的定位時(shí)刻t,網(wǎng)關(guān)獲取參與定位的衛(wèi)星的顆數(shù)和衛(wèi)星編號(hào),入選衛(wèi)星的信噪比(Signal Noise Ratio, SNR)需大于設(shè)定的閾值,衛(wèi)星顆數(shù)和衛(wèi)星編號(hào)添加到命令請(qǐng)求包的數(shù)據(jù)域;如果上一周期接收到的類型ID為2,則當(dāng)前終端節(jié)點(diǎn)進(jìn)行傳感器采樣,網(wǎng)關(guān)不進(jìn)行GPS采樣,命令請(qǐng)求包的數(shù)據(jù)域不包含衛(wèi)星顆數(shù)和衛(wèi)星編號(hào)信息。圖5b為終端節(jié)點(diǎn)返回的數(shù)據(jù)包格式,其中數(shù)據(jù)包類型ID為上一周期接收到的命令請(qǐng)求中的類型ID,值為1則數(shù)據(jù)域?yàn)榻K端節(jié)點(diǎn)的經(jīng)緯度信息,值為2則數(shù)據(jù)域?yàn)榻K端節(jié)點(diǎn)的傳感器采樣信息。

圖5 命令請(qǐng)求和終端數(shù)據(jù)包格式

2.3 相對(duì)定位

相對(duì)定位策略如圖4和圖5所示。LoRa網(wǎng)絡(luò)系統(tǒng)的第一個(gè)T周期為初始化周期,網(wǎng)關(guān)在T時(shí)段廣播命令請(qǐng)求包,終端節(jié)點(diǎn)接收到命令請(qǐng)求包后并不回傳數(shù)據(jù),而是僅完成自身的初始化工作。第二個(gè)T周期開始,各終端節(jié)點(diǎn)根據(jù)上一周期接收的請(qǐng)求數(shù)據(jù)類型ID在采樣時(shí)間段T內(nèi)完成采集任務(wù),如果是定位請(qǐng)求,網(wǎng)關(guān)和終端按約定時(shí)刻t獲取GPS定位信息;如果是傳感器采樣請(qǐng)求,則同樣在T內(nèi)按約定的時(shí)刻t進(jìn)行水質(zhì)或氣象感知數(shù)據(jù)采集。如果當(dāng)前為定位采集,則網(wǎng)關(guān)廣播的命令請(qǐng)求包的數(shù)據(jù)域含當(dāng)前t時(shí)刻獲取的衛(wèi)星顆數(shù)和衛(wèi)星編號(hào)集。

終端節(jié)點(diǎn)根據(jù)上一周期接收的類型ID和分組號(hào),判斷是否在本周期的T時(shí)段內(nèi)采樣,如果分組號(hào)非本節(jié)點(diǎn)所在分組,則終端節(jié)點(diǎn)在接收完命令請(qǐng)求包后進(jìn)入休眠狀態(tài)節(jié)省能量,直到下一周期再根據(jù)當(dāng)前接收的類型ID進(jìn)行相應(yīng)的操作。如果分組號(hào)為本節(jié)點(diǎn)所在分組,則終端節(jié)點(diǎn)根據(jù)類型ID進(jìn)行相應(yīng)的采樣操作,類型ID為1時(shí),進(jìn)行相對(duì)定位;終端節(jié)點(diǎn)按約定時(shí)刻t獲取GPS定位信息,包括參與定位的衛(wèi)星顆數(shù)和衛(wèi)星編號(hào),在接收完當(dāng)前周期的廣播命令包后,終端節(jié)點(diǎn)將自己獲取的參與定位的衛(wèi)星集與廣播包內(nèi)的網(wǎng)關(guān)獲取的衛(wèi)星集進(jìn)行比較,如果重復(fù)的衛(wèi)星顆數(shù)大于預(yù)設(shè)的閾值,則滿足相對(duì)定位條件,終端節(jié)點(diǎn)在自己分配的時(shí)隙向網(wǎng)關(guān)上傳經(jīng)緯度信息和重復(fù)衛(wèi)星的顆數(shù);否則不滿足條件,放棄本次相對(duì)定位,進(jìn)入休眠狀態(tài)。網(wǎng)關(guān)接收終端上傳的數(shù)據(jù)包,根據(jù)重復(fù)的衛(wèi)星顆數(shù)和終端節(jié)點(diǎn)的經(jīng)緯度信息計(jì)算終端節(jié)點(diǎn)的相對(duì)坐標(biāo)。如果沒有收到終端節(jié)點(diǎn)返回的數(shù)據(jù)包或重復(fù)衛(wèi)星顆數(shù)不滿足要求,則網(wǎng)關(guān)會(huì)在后續(xù)周期繼續(xù)對(duì)該節(jié)點(diǎn)發(fā)出定位請(qǐng)求命令。

終端節(jié)點(diǎn)的坐標(biāo)計(jì)算方法如下,以網(wǎng)關(guān)為原點(diǎn),以正東方向?yàn)檩S,以正北方向?yàn)檩S,構(gòu)建漁業(yè)物聯(lián)網(wǎng)坐標(biāo)系;坐標(biāo)系內(nèi)終端節(jié)點(diǎn)的坐標(biāo)計(jì)算采用Veness[29]的方法;該方法在已知2點(diǎn)的經(jīng)緯度信息的情況下,利用橢球模型計(jì)算2點(diǎn)間的距離和方位角。該方法轉(zhuǎn)換的距離精度達(dá)到0.5 mm,方位角精度達(dá)0.000 015",滿足漁業(yè)物聯(lián)網(wǎng)定位的應(yīng)用需求。采用該方法就可將網(wǎng)關(guān)和終端節(jié)點(diǎn)同時(shí)采樣的經(jīng)緯度信息,轉(zhuǎn)化計(jì)算為終端節(jié)點(diǎn)在該坐標(biāo)系中的坐標(biāo),從而實(shí)現(xiàn)相對(duì)定位。

舉例說明,圖6分別為網(wǎng)關(guān)和一個(gè)終端節(jié)點(diǎn)的GPS接收機(jī)觀測(cè)到的衛(wèi)星序列及信號(hào)強(qiáng)度,2臺(tái)接收機(jī)都可以觀測(cè)到12顆衛(wèi)星,設(shè)定觀測(cè)衛(wèi)星信號(hào)強(qiáng)度閾值為30 dB,圖6a節(jié)點(diǎn)的衛(wèi)星序列由信號(hào)強(qiáng)度大于30 dB的7顆衛(wèi)星組成,并由這7顆衛(wèi)星組成定位衛(wèi)星序列進(jìn)行定位。網(wǎng)關(guān)將這7顆衛(wèi)星的編號(hào)加入命令包的數(shù)據(jù)域,并廣播給終端節(jié)點(diǎn),終端節(jié)點(diǎn)將接收到的衛(wèi)星序列編號(hào)與自己觀測(cè)到的衛(wèi)星序列編號(hào)進(jìn)行比較,如圖6b所示。

圖6 GPS接收機(jī)觀測(cè)衛(wèi)星信號(hào)強(qiáng)度圖

如衛(wèi)星重復(fù)編號(hào)大于預(yù)設(shè)值6,則相對(duì)定位有效,終端節(jié)點(diǎn)在自己分配的時(shí)隙將自己的經(jīng)緯度信息和定位衛(wèi)星重復(fù)數(shù)發(fā)給網(wǎng)關(guān),網(wǎng)關(guān)計(jì)算出終端節(jié)點(diǎn)的相對(duì)坐標(biāo)。通常衛(wèi)星重復(fù)編號(hào)數(shù)預(yù)設(shè)閾值越高,相對(duì)定位精度越高,但該值設(shè)置過高,會(huì)導(dǎo)致相對(duì)定位成功率降低。

網(wǎng)關(guān)與終端節(jié)點(diǎn)相對(duì)定位的流程如圖7所示。

圖7 網(wǎng)關(guān)與終端節(jié)點(diǎn)流程圖

3 試驗(yàn)驗(yàn)證

3.1 試驗(yàn)硬件

本研究自主研發(fā)了1個(gè)LoRa物聯(lián)網(wǎng)網(wǎng)關(guān)與5個(gè)終端節(jié)點(diǎn),用于GPS相對(duì)定位算法的試驗(yàn)驗(yàn)證。網(wǎng)關(guān)和終端節(jié)點(diǎn)都集成STM32L051單片機(jī),GPS模塊采用U-blox公司的NEO-6M型GPS模塊,LoRa射頻單元采用SX1278芯片。終端節(jié)點(diǎn)配備了溶氧(RDO-206型)、pH值(PHG-202型)水質(zhì)傳感器和溫度、濕度、氣壓、光照四合一氣象傳感器(JXBS-3001型)。相對(duì)定位算法和通信協(xié)議采用C語言,利用Semtech公司提供的SX1278驅(qū)動(dòng)程序Firmware Drivers V2.1.0,在STM32L051平臺(tái)上編程實(shí)現(xiàn)。

3.2 試驗(yàn)與結(jié)果分析

試驗(yàn)在福州近海漁場(chǎng)進(jìn)行,LoRa網(wǎng)關(guān)部署在岸邊,作為整個(gè)系統(tǒng)的坐標(biāo)原點(diǎn),近海漁場(chǎng)中部署5個(gè)終端節(jié)點(diǎn),為了便于測(cè)量定位精度和試驗(yàn)驗(yàn)證,將其部署在固定測(cè)試點(diǎn),分別為終端1、2、3、4、5,距離網(wǎng)關(guān)實(shí)際距離分別為100、499、501、1 000和1 001 m,節(jié)點(diǎn)位置分布如圖8所示。試驗(yàn)數(shù)據(jù)周期T為1 min。

相對(duì)定位策略的定位精度分析測(cè)量是根據(jù)上述方法建立漁業(yè)物聯(lián)網(wǎng)坐標(biāo)系,根據(jù)各節(jié)點(diǎn)的實(shí)際位置得出各節(jié)點(diǎn)在坐標(biāo)系中的實(shí)際坐標(biāo),再分別通過本研究提出的相對(duì)定位方法和單點(diǎn)定位方法得出各終端節(jié)點(diǎn)在坐標(biāo)系中的坐標(biāo),然后計(jì)算各坐標(biāo)與實(shí)際位置坐標(biāo)的誤差。

注:T1、T2、T3、T4、T5分別為5個(gè)終端節(jié)點(diǎn),網(wǎng)關(guān)為網(wǎng)關(guān)節(jié)點(diǎn)。

網(wǎng)關(guān)周期性廣播類型ID為1的定位命令請(qǐng)求包B,約定的GPS采樣時(shí)刻為t為10 s,終端節(jié)點(diǎn)分配的時(shí)槽為3 s。LoRa模塊的擴(kuò)頻因子設(shè)置為11。采集5個(gè)終端節(jié)點(diǎn)100個(gè)周期的數(shù)據(jù)。由節(jié)點(diǎn)的實(shí)際部署位置和試驗(yàn)采集數(shù)據(jù)進(jìn)行比較得到結(jié)果,如圖9所示。

圖9a為終端節(jié)點(diǎn)1與岸邊網(wǎng)關(guān)進(jìn)行相對(duì)定位的誤差分布,終端節(jié)點(diǎn)1距離網(wǎng)關(guān)100 m,最大相對(duì)定位誤差為2 m,最小相對(duì)定位誤差為1.1 m,平均定位誤差為1.5 m。圖9b為終端節(jié)點(diǎn)1單點(diǎn)定位的誤差分布,最大單點(diǎn)定位誤差為13.4 m,最小單點(diǎn)定位誤差為7.6 m,平均定位誤差為8.9 m。由試驗(yàn)結(jié)果可知采用本研究提出的相對(duì)定位算法可以有效提高定位精度。

圖9 終端T1的相對(duì)定位與單點(diǎn)定位誤差分布

圖10a~圖10d分別為終端節(jié)點(diǎn)2、3、4、5與網(wǎng)關(guān)相對(duì)定位100次的距離誤差分布。終端節(jié)點(diǎn)2距離網(wǎng)關(guān)499 m,最大定位誤差為2.9 m,最小定位誤差為1.5 m,平均定位誤差為2.4 m。終端節(jié)點(diǎn)3距離網(wǎng)關(guān)501 m,最大定位誤差為3 m,最小定位誤差為1.3 m,平均定位誤差為2.6 m。終端節(jié)點(diǎn)4距離網(wǎng)關(guān)1 000 m,最大定位誤差為5.6 m,最小定位誤差為4 m,平均定位誤差為4.8 m。終端節(jié)點(diǎn)5距離網(wǎng)關(guān)1 001 m,最大定位誤差為5.4 m,最小定位誤差為4.2 m,平均定位誤差為4.9 m。通過對(duì)試驗(yàn)結(jié)果進(jìn)行分析,可以得出,隨著終端節(jié)點(diǎn)與網(wǎng)關(guān)之間實(shí)際距離的增加,相對(duì)定位的誤差也略有增加;但定位精度都高于單點(diǎn)定位,定位誤差幾乎比單點(diǎn)定位小1倍。

圖10 各終端的相對(duì)定位誤差分布

隨后驗(yàn)證了本策略對(duì)于傳感器信息采集的有效性。網(wǎng)關(guān)周期性廣播類型ID為2的定位命令請(qǐng)求包,氣象傳感器分組號(hào)為1,氣象傳感器包括溫度、濕度、氣壓和光照值,采集數(shù)據(jù)隨時(shí)刻的變化如圖11所示。水質(zhì)傳感器分組號(hào)為2,包括溶解氧、溫度、pH值,采集數(shù)據(jù)隨時(shí)間的變化如圖12所示。

圖11 氣象傳感器采樣變化

圖12 水質(zhì)傳感器采樣變化

為了進(jìn)一步驗(yàn)證本策略的可靠性和有效性,試驗(yàn)測(cè)試了5個(gè)終端節(jié)點(diǎn)1~5的數(shù)據(jù)投遞率,并同LoRa網(wǎng)絡(luò)的ALOHA機(jī)制進(jìn)行了比較。網(wǎng)關(guān)不進(jìn)行ACK應(yīng)答,終端節(jié)點(diǎn)不進(jìn)行數(shù)據(jù)重傳。試驗(yàn)數(shù)據(jù)如圖13所示,由于試驗(yàn)數(shù)據(jù)周期T為1 min,且只有5個(gè)終端節(jié)點(diǎn),所以ALOHA機(jī)制下數(shù)據(jù)包碰撞的概率并不高,5個(gè)終端節(jié)點(diǎn)的投遞率在80%左右。采用本策略的改進(jìn)TDMA機(jī)制后,數(shù)據(jù)投遞率大大提高,5個(gè)終端節(jié)點(diǎn)的投遞率都在95%以上。所以距離網(wǎng)關(guān)1 000和499 m的終端節(jié)點(diǎn)的數(shù)據(jù)投遞率由80%提高到95%以上??傮w來看,隨著終端節(jié)點(diǎn)與網(wǎng)關(guān)距離的增加,數(shù)據(jù)包的投遞率略有下降,這和信號(hào)強(qiáng)度的衰減以及信號(hào)的水面反射有關(guān)。

圖13 投遞率隨節(jié)點(diǎn)位置的變化

4 結(jié) 論

本研究針對(duì)漁業(yè)物聯(lián)網(wǎng)中的定位及水產(chǎn)養(yǎng)殖監(jiān)測(cè)應(yīng)用需求,針對(duì)現(xiàn)有的單點(diǎn)定位和差分定位的劣勢(shì),在不增加養(yǎng)殖戶設(shè)備成本的前提下,提出了基于LoRa(Long Range)網(wǎng)絡(luò)的全球定位系統(tǒng)(Global Positioning System, GPS)相對(duì)定位策略。首先提出了GPS相對(duì)定位算法原理,然后設(shè)計(jì)了時(shí)間同步方案,并且針對(duì)漁業(yè)物聯(lián)網(wǎng)中多終端通信的特點(diǎn)設(shè)計(jì)了改進(jìn)的時(shí)分多址(Time Division Multiple Access, TDMA)通信策略,在此基礎(chǔ)上實(shí)現(xiàn)了基于LoRa網(wǎng)絡(luò)的相對(duì)定位算法,最后通過近海漁場(chǎng)現(xiàn)場(chǎng)試驗(yàn)驗(yàn)證了本方案的有效性與可靠性。試驗(yàn)部署的5個(gè)終端節(jié)點(diǎn),在采用低成本GPS商用模塊的情況下,距離網(wǎng)關(guān)1 000和499 m的終端節(jié)點(diǎn)的平均定位精度由10 m分別提高到4.8和2.4 m,數(shù)據(jù)投遞率由80%提高到95%以上。本研究的方案在保證LoRa網(wǎng)絡(luò)大面積覆蓋的同時(shí),實(shí)現(xiàn)了低成本高精度的漁業(yè)物聯(lián)網(wǎng)節(jié)點(diǎn)定位,適宜于在大面積漁業(yè)養(yǎng)殖中推廣使用。由于漁業(yè)和水產(chǎn)養(yǎng)殖應(yīng)用環(huán)境較復(fù)雜,下一步需要進(jìn)行更多的長(zhǎng)期的現(xiàn)場(chǎng)試驗(yàn),對(duì)于無人投飼船等移動(dòng)節(jié)點(diǎn)的定位精度和能效性進(jìn)行深入評(píng)估。

[1]李道亮,楊昊. 農(nóng)業(yè)物聯(lián)網(wǎng)技術(shù)研究進(jìn)展與發(fā)展趨勢(shì)分析[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2018,49(1):1-20.

Li Daoliang, Yang Hao. State-of-the-art review for internet of things in agriculture[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(1): 1-20. (in Chinese with English abstract)

[2]尹寶全,曹閃閃,傅澤田,等. 水產(chǎn)養(yǎng)殖水質(zhì)檢測(cè)與控制技術(shù)研究進(jìn)展分析[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2019,50(2):1-13.

Yin Baoquan, Cao Shanshan, Fu Zetian, et al. Review and trend analysis of water quality monitoring and control technology in aquaculture[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(2): 1-13. (in Chinese with English abstract)

[3]Xu Guobao, Shen Weiming, Wang Xianbin. Applications of wireless sensor networks in marine environment monitoring: A survey[J]. Sensors, 2014, 14(9): 16932-16954.

[4]張錚,曹守啟,朱建平,等. 面向大面積漁業(yè)環(huán)境監(jiān)測(cè)的長(zhǎng)距離低功耗LoRa傳感器網(wǎng)絡(luò)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(1):164-171.

Zhang Zheng, Cao Shouqi, Zhu Jianping, et al. Long-range low power sensor networks with LoRa sensor for large area fishery environment monitoring[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(1): 164-171. (in Chinese with English abstract)

[5]李卓然. 基于嵌入式Linux的水產(chǎn)養(yǎng)殖物聯(lián)網(wǎng)監(jiān)測(cè)系統(tǒng)設(shè)計(jì)[J]. 農(nóng)機(jī)化研究,2019,41(11):229-233.

Li Zhuoran. Design of aquaculture network monitoring system based on embedded Linux[J]. Journal of Agricultural Mechanization Research, 2019, 41(11): 229-233. (in Chinese with English abstract)

[6]高偉,高磊,周勇,等. 基于Zig Bee的水產(chǎn)養(yǎng)殖水質(zhì)控制管理系統(tǒng)設(shè)計(jì)[J]. 中國(guó)農(nóng)業(yè)科技導(dǎo)報(bào),2018,20(7):74-82.

Gao Wei, Gao Lei, Zhou Yong, et al. Design of aquaculture water quality control management system based on ZigBee[J]. Journal of Agricultural Science and Technology, 2018, 20(7): 74-82. (in Chinese with English abstract)

[7]Rohit M H, TarannumHoque Z, Karim M M. Cost efficient automated pisciculture assistance system using Internet of Things (IoT)[C]//2019 IEEE/ACM 1stInternational Workshop on Software Engineering Research & Practices for the Internet of Things (SERP4IoT). Montreal, Canada, 2019: 49-52.

[8]姚新和. 基于STM32的水質(zhì)監(jiān)控系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)[D].廣州:華南理工大學(xué),2019.

Yao Xinhe. Design and Implementation of Water Quality Monitoring System Based on STM32[D]. Guangzhou: South China University of Technology, 2019.

[9]Pule M, Yahya A, Chuma J. Wireless sensor networks: A survey on monitoring water quality[J]. Journal of Applied Research and Technology, 2017, 15(6): 562-570.

[10]吳寶忠,任振輝,王娟. 基于手機(jī) APP 的溫室大棚溫濕度自動(dòng)控制系統(tǒng)設(shè)計(jì)[J] .中國(guó)農(nóng)機(jī)化學(xué)報(bào),2018,39(4):68-71.

Wu Baozhong, Ren Zhenhui, Wang Juan. Design of automatic control system for temperature and humidity in greenhouse based on mobile phone APP[J] . Journal of Chinese Agricultural Mechanization, 2018, 39(4): 68-71. (in Chinese with English abstract)

[11]陳磊,許燕,李建軍,等. 基于WSN和GSM的智能灌溉控制系統(tǒng)設(shè)計(jì)與實(shí)現(xiàn)[J]. 農(nóng)機(jī)化研究,2017,39(3):175-180,185.

Chen Lei, Xu Yan, Li Jianjun, et al. Intelligent irrigate control system design and implementation based on WSN and GSM[J]. Journal of Agricultural Mechanization Research, 2017, 39(3): 175-180, 185. (in Chinese with English abstract)

[12]Gu Fei, Niu Jianwei, Jiang Landu, et al. Survey of the low power wide area network technologies[J].Journal of Network and Computer Applications, 2020, 149(1): 24-28.

[13]Nolan K E, Guibene W, Kelly M Y. An evaluation of low power wide area network technologies for the internet of things[C]//IWCMC 2016: International Wireless Communications & Mobile Computing Conference, Paphos, Cyprus, 2016: 439-444.

[14]劉朋. LoRa通信技術(shù)在差分GPS中的應(yīng)用研究[D]. 成都:電子科技大學(xué),2018.

Liu Peng. Research on Application of LoRa Communication Technologies in Differential Global Positioning System[D]. Chengdu: University of Electronic Science and Technology of China, 2018. (in Chinese with English abstract)

[15]宋曉霞,陳明,池濤. 基于LoRa的小龍蝦生態(tài)養(yǎng)殖監(jiān)控系統(tǒng)設(shè)計(jì)與實(shí)現(xiàn)[J]. 漁業(yè)現(xiàn)代化,2019,46(5):22-28,81.

Song Xiaoxia, Chen Ming, Chi Tao. Design and implementation of LoRa-based monitoring system for crayfish ecological aquaculture[J]. Fishery Modernization, 2019, 46(5): 22-28, 81. (in Chinese with English abstract)

[16]Aref M, Sikora A. Free space range measurements with Semtech Lora? technology[C]//2014 2ndInternational Symposium on Wireless Systems within the Conferences on Intelligent Data Acquisition and Advanced Computing Systems. Offenburg, Germany, 2014: 19-23.

[17]Lewark U J, Antes J, Walheim J, et al. Link budget analysis for future E-band gigabit satellite communication links[J]. CEAS Space Journal, 2013, 4(1): 41-46.

[18]Laoudias C, Moreira A, Kim S, et al. A survey of enabling technologies for network localization, tracking, and navigation[J]. IEEE Communications Surveys & Tutorials, 2018, 20(4): 3607-3644.

[19]Islam B, Islam M T, Nirjon S. Feasibility of LoRa for indoor localization[EB/OL]. [2019-05-31]. https://pdfs.semanticscholar.org/ ab00/c1eacbdd76732b7438ec8e5653f7c875def4.pdf.

[20]Lam K H, Cheung C C, Lee W C. LoRa-based localization systems for noisy outdoor environment.[C]//2017 IEEE 13th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), Rome, Italy, 2017: 278-284.

[21]楊俊闖,趙超. K-means聚類算法研究綜述[J]. 計(jì)算機(jī)工程與應(yīng)用,2019,55(23):7-14,63.

Yang Junchuang, Zhao Chao. Survey on K-means clustering algorithm[J]. Computer Engineering and Applications, 2019, 55(23): 7-14, 63. (in Chinese with English abstract)

[22]Choi W, Chang Y S, Jung Y, et al. Low-power LoRa signal-based outdoor positioning using fingerprint algorithm[J]. ISPRS International Journal of Geo-Information. 2018, 7(11): 440.

[23]LoRa Alliance? Strategy Committee. LoRa alliance geolocation whitepaper[EB/OL]. [2018-03-31]. https://lora-alliance.org/ resource-hub/lora-alliance-geolocation-whitepaper.

[24]Kim S, Ko J. Low-complexity outdoor localization for long-range, low-power radios[C]//In Proceedings of the 14thAnnual International Conference on Mobile Systems, Applications, and Services Companion, Singapore, 2016: 44.

[25]王金偉,孫毓忠,樊建平. 動(dòng)態(tài)可更新的分布式監(jiān)測(cè)系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)[J]. 小型微型計(jì)算機(jī)系統(tǒng),2007,28(8):1502-1507.

Wang Jinwei, Sun Yuzhong, Fan Jianping. Design and implementation of dynamic updatable distributed monitoring system[J]. Journal of Chinese Computer Systems, 2007, 28(8): 1502-1507. (in Chinese with English abstract)

[26]劉基余. GNSS衛(wèi)星導(dǎo)航定位的主要誤差:GNSS導(dǎo)航定位誤差之二[J]. 數(shù)字通信世界,2019,15(2):1-3.

Liu Jiyu. Major errors in GNSS satellite navigation/ positioning: GNSS navigation/positioning error(2)[J]. Digital Communication World, 2019, 15(2): 1-3. (in Chinese with English abstract)

[27]蔣可心. 北斗與GPS偽距差分定位技術(shù)研究[C]// 第九屆中國(guó)衛(wèi)星導(dǎo)航學(xué)術(shù)年會(huì)論文集:S01 衛(wèi)星導(dǎo)航應(yīng)用技術(shù),哈爾濱,2018:172-176.

Jiang Kexin. Research on the technology of positioning between Beidou and GPS pseudo-distance differential[C]// Proceedings of the 9thChina Satellite Navigation Conference: S01 Satellite Navigation Application Technology, Harbin, 2018: 172-176. (in Chinese with English abstract)

[28]李亮,陳晶,馮帥,等. 北斗站間單差載波相位差分定位方法[J]. 中國(guó)慣性技術(shù)學(xué)報(bào),2018,26(5):649-653.

Li Liang, Chen Jing, Feng Shuai, et al. Inter-station differenced carrier phase method for BDS RTK positioning[J]. Journal of Chinese Inertial Technology, 2018, 26(5): 649-653. (in Chinese with English abstract)

[29]Veness C. Vincenty solutions of geodesics on the ellipsoid[EB/OL]. [2018-04-17]. http://www.movable-type.co.uk/ scripts/latlong-vincenty.html.

GPS relative positioning strategies for the fishery Internet of Things

Cao Shouqi,Yu Song, Zhang Zheng※

(,,201306,)

Modern fishery farming is developing in the direction of refinement, and the application of the Internet of Things in fisheries is becoming more and more widely used. For the deployed terminal nodes, in addition to the need to obtain environmental awareness information, it is also necessary to obtain the location information of the node, so that the collected data have application value. Moreover, the higher the positioning accuracy of the node, the better the evaluation of the environmental state and the task execution, especially for the node with a buoy as the carrier. At present, the positioning accuracy of Global Positioning System (GPS) technology widely used is about 10 m, the use of RTK differential technology obtain high positioning accuracy, but the equipment price is too high, so it is not very suitable for fishery application. In this study, a low-cost GPS relative positioning method based on the Long Range (LoRa) network was proposed. First, the relative positioning strategy data model was established through error analysis, and then the relative positioning method based on the LoRa network and improved the Time Division Multiple Access (TDMA) transmission strategies were designed to achieve high-precision positioning and energy-efficient data transmission. The premise of the relative positioning of this study was that time synchronization could be achieved, GPS receiver provided accurate timing service, so before nodes started to locate, all nodes in the network were synchronized through GPS module, and every fixed cycle of synchronization operations, to ensure that all nodes had the same time benchmark. Gateways and terminals caused similar system errors due to atmospheric delay, convection, and ionosphere effects, and improved relative position accuracy through relative positioning calculation. The transmission of data based on the LoRa network was fully taken into account that LoRa was suitable for long-distance transmission, which was sufficient for applications in large fisheries environments. Secondly, the low power consumption of LoRa also reduced the cost of fishery production. When the terminal carried out information collection, LoRa went into a dormant state after the completion of work, which effectively reduced the power consumption. In this study, the latitude and longitude information of the gateway and terminal was set up to consist of an observation sequence consisting of satellite signal strength greater than 30 dB in the observed satellite, and each positioning required that the gateway and the terminal had more than 6 same satellites. Considering a large number of nodes in the Internet of Things system, to prevent information collision affected the positioning accuracy, the introduced TDMA technology assigned each terminal its time slot. Each terminal starts its work according to its task and then uploaded data. The transmission strategy of this study was different from the previous strategy, which stipulated that each cycle should firstly collect or locate the data according to the task broadcast in the previous cycle, then broadcasted the task of the next cycle, and finally the terminal response. This shortened the cycle and increased the reliability of information transmission. Finally, the hardware node was designed and the deployment test was carried out in the offshore fishery. The test calculation took the gateway as the origin, the positive east direction was the x-axis, the north direction is the Y-axis to establish a coordinate system, Vincenty method using the ellipsoid model to ensure the accuracy of the calculation. The experimental data showed the validity and reliability of the proposed method in this study. With a low-cost GPS commercial module, the average positioning accuracy of the terminal nodes 1 000 and 499 m from the gateway increased from 10 m to 4.8 and 2.4 m, respectively, and the data delivery rate increased from 80% to more than 95%.

aquaculture; Internet of Things; GPS; LoRa; time synchronization

曹守啟,禹松,張錚. 面向漁業(yè)物聯(lián)網(wǎng)的GPS相對(duì)定位策略[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(10):158-165.doi:10.11975/j.issn.1002-6819.2020.10.019 http://www.tcsae.org

Cao Shouqi, Yu Song, Zhang Zheng. GPS relative positioning strategies for the fishery Internet of Things[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(10): 158-165. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.10.019 http://www.tcsae.org

2020-03-13

2020-04-01

十三五“藍(lán)色糧倉(cāng)科技創(chuàng)新”國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2019YFD0900800);上海市科委“創(chuàng)新行動(dòng)計(jì)劃”(17050502000)

曹守啟,教授,主要從事海洋物聯(lián)網(wǎng)工程、漁業(yè)工程及其自動(dòng)化等技術(shù)研究。Email:sqcao@shou.edu.cn

10.11975/j.issn.1002-6819.2020.10.019

TN929.5; S951.2

A

1002-6819(2020)-10-0158-08

張錚,博士,講師,主要從事物聯(lián)網(wǎng)工程,智能儀器設(shè)計(jì)研究。Email:z-zhang@shou.edu.cn

猜你喜歡
網(wǎng)關(guān)漁業(yè)聯(lián)網(wǎng)
“身聯(lián)網(wǎng)”等五則
基于改進(jìn)RPS技術(shù)的IPSEC VPN網(wǎng)關(guān)設(shè)計(jì)
歡迎訂閱2020年度《河北漁業(yè)》
搶占物聯(lián)網(wǎng)
通信世界(2018年27期)2018-10-16 09:02:56
中菲漁業(yè)合作重啟 菲漁業(yè)代表團(tuán)來華培訓(xùn)交流
湖南省漁業(yè)協(xié)會(huì)成立
LTE Small Cell網(wǎng)關(guān)及虛擬網(wǎng)關(guān)技術(shù)研究
應(yīng)對(duì)氣候變化需要打通“網(wǎng)關(guān)”
可再生能源與物聯(lián)網(wǎng)
風(fēng)能(2015年10期)2015-02-27 10:15:34
漁業(yè)
江蘇年鑒(2014年0期)2014-03-11 17:09:36
江门市| 长乐市| 化德县| 厦门市| 万荣县| 蒙自县| 大新县| 沛县| 隆尧县| 广元市| 丹江口市| 舒城县| 台中县| 沂源县| 松潘县| 宁河县| 金门县| 永州市| 高雄县| 满城县| 团风县| 阳信县| 威海市| 溧阳市| 潞城市| 密山市| 密云县| 琼海市| 灵丘县| 西吉县| 平顶山市| 开化县| 巫溪县| 右玉县| 寿光市| 三亚市| 克什克腾旗| 宽甸| 甘泉县| 鄂托克前旗| 隆回县|