国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

超聲橢圓振動(dòng)和微量潤滑耦合切削Inconel718的性能研究

2020-07-04 02:27林靖朋王大中

林靖朋 王大中

摘要:本文利用仿真軟件AdvantEdge研究了微量潤滑量(MQL)和超聲橢圓振動(dòng)(UEV)切削對(duì)加工性能的影響,與常規(guī)切削(CT)相比,顯著降低了切削力和切削溫度。同時(shí)比較了UEV車削條件下不同噴嘴角度對(duì)加工性能的影響。不同的噴嘴角度會(huì)影響溫度和應(yīng)力的變化,選擇合適的噴嘴角度有利于提高工件的表面質(zhì)量,提高刀具的使用壽命。

關(guān)鍵詞: 超聲橢圓振動(dòng); 微量潤滑; 噴嘴角度; 車削

【Abstract】In this paper, the simulation software AdvantEdge is used to study the effect of micro-lubrication (MQL) and ultrasonic elliptical vibration (UEV) cutting on machining performance.Compared with conventional cutting (CT), cutting force and cutting temperature are significantly reduced.The effects of different nozzle angles on machining performance under UEV turning conditions are also compared.Different nozzle angles affect changes in temperature and stress, selecting the proper nozzle angle is conducive to improving the surface quality of the workpiece and increasing the service life of the tool.

【Key words】 ?ultrasonic elliptical vibration; minimal lubrication; nozzle angle; turning

0 引 言

鎳基高溫合金具有優(yōu)異的高溫強(qiáng)度,化學(xué)穩(wěn)定性、耐蝕性、抗熱震性等性能,廣泛用于航空航天、能源和化學(xué)領(lǐng)域、燃?xì)廨啓C(jī)、火箭發(fā)動(dòng)機(jī)和核反應(yīng)堆等[1]。 Inconel718的常規(guī)車削(CT)工藝中的主要問題是切削力高和切削溫度高,這會(huì)加劇刀具磨損并降低加工質(zhì)量[2]。

超聲橢圓振動(dòng)(UEV)車削Inconel718可以降低切削力和溫度,提高工件的表面質(zhì)量,并延長刀具和工件的使用壽命[3]。超聲振動(dòng)車削,也稱為超聲輔助車削,是一種基于普通車削加工在一個(gè)方向或多個(gè)方向上施加頻率超過20 KHz的周期性振動(dòng)的加工技術(shù)。 UEV車削示意圖如圖1所示。

綠色制造和可持續(xù)發(fā)展已成為新時(shí)代機(jī)械制造業(yè)的主要發(fā)展趨勢(shì)之一,如何最大限度地減少切削液的危害并確保加工質(zhì)量已成為當(dāng)前國內(nèi)外機(jī)械制造業(yè)面臨的主要問題[4]。目前,金屬切削領(lǐng)域有許多冷卻和潤滑方法,例如液氮冷卻、低溫冷卻、空冷、噴霧冷卻和微量潤滑(MQL)[5]。 MQL是指使用非常少量的切削液,通常為100 ml / h或更少,其使用量約為傳統(tǒng)濕切削液的六十分之一[6]。 MQL可以顯著減少切削液的使用,大大減少傳統(tǒng)泛流冷卻對(duì)環(huán)境造成的危害[7]。本文將MQL與超聲振動(dòng)耦合車削,研究了不同噴嘴位置對(duì)切削性能的影響。

1 實(shí)驗(yàn)設(shè)置

實(shí)驗(yàn)裝置如圖2所示。工件材料選用Inconel718,材料加工選用11°前角和10°后角的CBN刀具。切削速度(25 m/min),進(jìn)給量(0.005 mm/r),背吃刀量(0.005 mm)。刀具的振動(dòng)頻率是40 KHz,x方向的振幅為7 μm,y方向的振幅為7.5 μm。潤滑作用如圖3所示,噴嘴有2個(gè)方向,一是垂直于工件,二是平行于前刀面,θ是前刀面和噴嘴中心線的夾角。

2 仿真有限元模型

仿真過程中使用了商用軟件AdvantEdge。該模型采用了拉格朗日有限元公式和自適應(yīng)網(wǎng)格劃分技術(shù)。仿真模型采用自適應(yīng)網(wǎng)格生成技術(shù)。硬車削是一種劇烈的變形過程。自適應(yīng)網(wǎng)格技術(shù)提高了工件表面質(zhì)量判斷的準(zhǔn)確性,節(jié)省了大量的時(shí)間。

4 結(jié)束語

與常規(guī)切削相比,UEV車削溫度降低了10.2%,UEV 與 MQL耦合切削溫度降低了16.9%;UEV車削的主切削力和推力分別降低61.7%和72.9%,UEV與MQL耦合切削的主切削力和推力分別降低67.8%和79.7%。當(dāng)噴嘴角與前刀面平行時(shí),工件和刀具溫度較低,刀具應(yīng)力較小。噴嘴角度對(duì)切削力影響不大。為了提高工件質(zhì)量和刀具壽命,有必要選擇合適的噴嘴角度。

參考文獻(xiàn)

[1] ?CHOUDHURY I A , ELBARADIE M A. Machinability of nickel-base super alloys: A general review[J]. Journal of Materials Processing Technology, 1998, 77(1-3): 278.

[2]LI Huaizhong , ZENG H, CHEN Xiaoqi. An experimental study of tool wear and cutting force variation in the end milling of Inconel 718 with coated carbide inserts[J]. Journal of Materials Processing Technology,2006, 180(1-3): 296.

[3]WANG Fei, LIU Yonghong, SHEN Yang, et al. Machining performance of Inconel 718 using high current density electrical discharge milling[J]. Materials and Manufacturing Processes ,2013,28:1147.

[4]BOSWELL B , ISLAM M N, DAVIES I J, et al. A review identifying the effectiveness of minimum quantity lubrication (MQL) during conventional machining[J]. The International Journal of Advanced Manufacturing Technology ,2017,92:321.

[5]JIA Dongzhou, ZHANG Dongkun, ZHANG Yanbin, et al. Experimental verification of nanoparticle jet minimum quantity lubrication effectiveness in grinding[J]. Journal of Nanoparticle Research,2018, 16:2758.

[6]TAWAKOLI T , HADAD M J, SADEGHI M H. Influence of oil mist parameters on minimum quantity lubrication – MQL grinding process[J].International Journal of Machine Tools & Manufacture, 2010,50:521.

[7]HEE P K, OLORTEGUI-YUME J, YOON M C, et al. A study on droplets and their distribution for minimum quantity lubrication (MQL)[J]. International Journal of Machine Tools and Manufacture, 2010,50(9): 824.

[8]JIANG Zenghui, WANG Xiaoliang, ZHANG Jianhai, et al. Finite element analysis of surface residual stress of titanium alloy TC4 based on high speed cutting[J]. Advanced Materials Research,2012, 500:157.