杜運(yùn)興 張忻穎 周芬 張蒙蒙
摘 ? 要:采用三點(diǎn)彎曲試驗(yàn)研究了玄武巖纖維編織網(wǎng)增強(qiáng)混凝土(BTRC)抗彎性能. 試驗(yàn)考慮了編織網(wǎng)層數(shù)、編織網(wǎng)上預(yù)拉力水平和鋼纖維摻量3個(gè)影響因素. 試驗(yàn)結(jié)果表明:隨著編織網(wǎng)層數(shù)的增加,BTRC板的抗彎強(qiáng)度和韌性增大. 隨編織網(wǎng)上預(yù)拉力水平的提高,BTRC板的開裂應(yīng)力和開裂后抗彎剛度均增大,極限撓度減小,而抗彎強(qiáng)度變化不明顯. 鋼纖維有助于提升BTRC板的開裂應(yīng)力、抗彎強(qiáng)度和韌性;對(duì)編織網(wǎng)施加預(yù)拉力使鋼纖維摻量對(duì)BTRC板的抗彎強(qiáng)度影響更顯著. 編織網(wǎng)層數(shù)和鋼纖維的增加使BTRC板上的裂縫形態(tài)更均勻細(xì)密,但對(duì)編織網(wǎng)施加預(yù)拉力使板上裂縫數(shù)目減少且裂縫間距增大.
關(guān)鍵詞:玄武巖纖維編織網(wǎng);BTRC板;抗彎性能;編織網(wǎng)層數(shù);預(yù)拉力;鋼纖維
中圖分類號(hào):TU312 ? ? ? ? ? ? ? ? ? ? ? ? ? 文獻(xiàn)標(biāo)志碼:A
Abstract:The three-point bending tests were conducted to investigate the effects of various textile layers, steel fibers volume contents and prestress levels on the flexural behavior of Basalt Textile Reinforced Concrete(BTRC) plates. With the increase of textile layers, the flexural strength and toughness of BTRC plate are improved. Prestress on the textiles improves the first crack stress and the post-cracking flexural stiffness, but decreases the ultimate deflection of BTRC plate, while no obvious change occurs for the flexural strength. Adding steel fibers in matrix is revealed to positively affect the first crack stress, flexural strength and toughness of BTRC plate, and the effect of steel fibers on the flexural strength is more prominent after applying prestress on the textiles. Moreover, the increase of textile layers and the presence of steel fibers contribute to the crack pattern characterized by more and finer cracks; however, prestress on the textile reduces the crack number and increases the crack spacing.
Key words:basalt textile;BTRC plate;flexural behavior;textile layers;prestress;steel fibers
纖維編織網(wǎng)增強(qiáng)混凝土(TRC)作為一種新型復(fù)合材料,在建筑領(lǐng)域備受關(guān)注. TRC結(jié)合了高性能混凝土和纖維編織網(wǎng)的優(yōu)點(diǎn),具有承載力高、延性好、自重輕、耐久性好的特點(diǎn)[1]. 同時(shí),TRC可根據(jù)建筑需要制作成各種形狀,具有較高的靈活性[2]. 可見,TRC作為受彎構(gòu)件相比于傳統(tǒng)混凝土材料更具潛力,而充分了解TRC的抗彎性能有利于其在工程中的廣泛應(yīng)用[3-5].
一些學(xué)者已對(duì)TRC板的抗彎性能進(jìn)行了一定的試驗(yàn)研究,表明短纖維有助于改善TRC受彎構(gòu)件的抗彎承載力和裂縫形態(tài),預(yù)應(yīng)力有助于延緩TRC受彎構(gòu)件開裂. Li等[6]的研究發(fā)現(xiàn),在基體中摻入短切聚乙烯醇(PVA)纖維改善了基體的抗裂能力,顯著提高了試件的韌性,增加了試件裂縫數(shù)目. 王激揚(yáng)等[7]的研究發(fā)現(xiàn),鋼纖維提高了TRC板常溫下的抗彎承載力和剛度,而鋼纖維的長徑比對(duì)TRC板抗彎性能沒有明顯影響. 卜良桃等[8]研究發(fā)現(xiàn),鋼纖維可以顯著改善水泥基體的性能,使其具備高強(qiáng)度和良好的韌性及抗裂性能. Vilkner[9]的研究發(fā)現(xiàn),預(yù)應(yīng)力延緩了TRC板開裂,提高了板開裂后的抗彎剛度和板的承載力,但降低了板的延性.
玄武巖纖維作為一種綠色環(huán)保材料,在TRC領(lǐng)域具有廣闊的應(yīng)用前景[10-11].目前對(duì)TRC抗彎性能的研究多為纖維種類、短纖維摻量、預(yù)應(yīng)力水平、表面處理等單一影響因素. 本文將玄武巖纖維編織網(wǎng)作為筋材、精細(xì)混凝土作為基體,采用三點(diǎn)彎曲試驗(yàn),研究了編織網(wǎng)層數(shù)、編織網(wǎng)上預(yù)拉力水平和鋼纖維摻量對(duì)玄武巖纖維編織網(wǎng)混凝土(BTRC)板抗彎性能和裂縫形態(tài)的影響.
1 ? 試驗(yàn)材料
1.1 ? 玄武巖纖維編織網(wǎng)和鋼纖維
試驗(yàn)中采用的玄武巖纖維編織網(wǎng)表面經(jīng)苯丙乳液浸漬處理,如圖1(a)所示. 試件的承載力主要由經(jīng)向纖維束提供,因此制備了寬40 mm、標(biāo)距為100 mm的編織網(wǎng)條帶(圖1(b))以測(cè)試其經(jīng)向纖維束的力學(xué)性能. 在條帶兩端粘貼鋁片,通過夾具將其夾持在MTS C43.304萬能試驗(yàn)機(jī)上,以0.5 mm/min的加載速率進(jìn)行測(cè)試[12]. 表1為玄武巖纖維編織網(wǎng)的材料參數(shù),圖2給出了玄武巖纖維編織網(wǎng)條帶的拉伸應(yīng)力-應(yīng)變曲線.
結(jié)合表5和圖7可得,隨編織網(wǎng)上預(yù)拉力水平的提高,BTRC試件的極限撓度減小. 預(yù)應(yīng)力BTRC試件的編織網(wǎng)在加載前已存在一定的初始拉應(yīng)變?chǔ)?,而編織網(wǎng)的最大拉應(yīng)變?yōu)橐粋€(gè)定值εfu,則在加載過程中底層編織網(wǎng)拉應(yīng)變的增量最大為(εfu-ε0),這就說明對(duì)編織網(wǎng)施加的預(yù)拉力水平越大,它在試件加載過程中的拉伸變形增量就越小,從而使試件變形的能力降低. 試件L3P32.9S0、L4P18.9S0和L5P17.6S0的極限撓度分別較試件L3P0S0、L4P0S0和L5P0S0下降了52.2%、54.4%和56.7%. 對(duì)編織網(wǎng)施加預(yù)拉力造成BTRC試件受拉區(qū)裂縫減少,裂縫間距相應(yīng)增大,如圖8所示. 由于對(duì)編織網(wǎng)施加預(yù)拉力大大減小了試件的極限撓度,但對(duì)試件的抗彎強(qiáng)度沒有明顯的影響,因此試件的韌性顯著下降,如圖7所示.
?
此外,BTRC試件彎曲應(yīng)力-撓度曲線階段Ⅲ的斜率較階段Ⅰ有所減小,但隨編織網(wǎng)上預(yù)拉力水平提高,曲線斜率減小的幅度下降,說明對(duì)編織網(wǎng)施加預(yù)拉力提高了BTRC試件開裂后的剛度. 預(yù)應(yīng)力BTRC試件底層編織網(wǎng)在加載過程中拉伸變形增量減小,則裂縫寬度受到限制,從而開裂截面的抗彎剛度增大;同時(shí),釋放編織網(wǎng)上的預(yù)拉力后,經(jīng)向纖維束由于泊松比效應(yīng)會(huì)沿軸向回縮沿徑向擴(kuò)大,因此經(jīng)向纖維束與基體間產(chǎn)生擠壓,編織網(wǎng)與基體間的摩擦力提高,進(jìn)而提高編織網(wǎng)與基體間的界面粘結(jié)力,使試件在荷載作用下整體性更好,從而開裂截面的抗彎剛度增大.
3.2.3 ? 鋼纖維摻量對(duì)BTRC抗彎性能的影響
由表5可知,鋼纖維摻量的增加可以提高BTRC試件的開裂應(yīng)力和抗彎強(qiáng)度,且鋼纖維對(duì)抗彎強(qiáng)度的影響更顯著. 對(duì)于非預(yù)應(yīng)力BTRC試件,L3P0S0.8和L3P0S1.6的開裂應(yīng)力和抗彎強(qiáng)度較L3P0S0分別提高了14.5%、26.6%和17.0%、31.0%;對(duì)于預(yù)應(yīng)力BTRC試件,L3P20.7S0.8和L3P20.7S1.6的開裂應(yīng)力和抗彎強(qiáng)度較L3P20.7S0分別提高了7.7%、17.2%和18.1%、40.3%. 在基體中的鋼纖維改善了基體的抗裂能力,從而提高了試件的開裂應(yīng)力;跨接在宏觀裂縫處的鋼纖維發(fā)揮橋聯(lián)作用,將拉應(yīng)力傳遞給裂縫兩側(cè)的基體,裂縫擴(kuò)展需要額外克服鋼纖維與基體間的粘結(jié)力,同時(shí),插入網(wǎng)格孔中的鋼纖維發(fā)揮錨固作用,增強(qiáng)編織網(wǎng)與基體間的界面性能,從而提高了試件抗彎強(qiáng)度. 然而,試件開裂前應(yīng)力水平較低,鋼纖維限制微觀裂縫擴(kuò)展成宏觀裂縫的過程中傳遞的拉應(yīng)力較小;開裂后,試件承受的荷載逐漸增大,宏觀裂縫處鋼纖維上的拉應(yīng)力也不斷增大直至錨固段脫粘拔出,因此鋼纖維對(duì)抗彎強(qiáng)度的貢獻(xiàn)比開裂應(yīng)力大.
為了便于對(duì)比鋼纖維對(duì)非預(yù)應(yīng)力和預(yù)應(yīng)力BTRC試件抗彎性能的影響,將數(shù)據(jù)進(jìn)行歸一化處理,并匯總于圖9. 結(jié)合表5和圖9可以發(fā)現(xiàn),對(duì)編織網(wǎng)施加預(yù)拉力使鋼纖維對(duì)開裂應(yīng)力的提高程度降低,由于編織網(wǎng)上的預(yù)拉力是提高開裂應(yīng)力的主要因素,因此鋼纖維對(duì)開裂應(yīng)力的提升效果不明顯. 此外,鋼纖維摻量對(duì)預(yù)應(yīng)力試件抗彎強(qiáng)度的影響比非預(yù)應(yīng)力試件顯著,一方面是因?yàn)榫幙椌W(wǎng)上預(yù)拉力使基體中產(chǎn)生預(yù)壓應(yīng)力,能夠一定程度上消除鋼纖維與基體間的初始間隙,進(jìn)而增大了鋼纖維與基體間的界面摩擦力,更好地發(fā)揮了鋼纖維的作用;另一方面是因?yàn)殇摾w維增強(qiáng)的基體更好地約束經(jīng)向纖維束放張后的徑向擴(kuò)大,進(jìn)一步提高了編織網(wǎng)與基體間的界面性能.
隨著鋼纖維摻量的增加,試件底部的裂縫形態(tài)變得更曲折且不貫通,如圖10所示,這是由于鋼纖維在基體中隨機(jī)亂向分布阻礙了微觀及宏觀裂縫的擴(kuò)展,促使裂縫發(fā)展方向發(fā)生改變. 由表5和圖9可發(fā)現(xiàn),隨著鋼纖維摻量的增加,試件的極限撓度增大,試件L3P0S0.8和L3P0S1.6的極限撓度與L3P0S0相比,分別提高了10.8%、25.6%;L3P20.7S0.8和L3P20.7S1.6的極限撓度比L3P20.7S0分別提高了18.4%、29.2%. 而試件裂縫總寬度等于開裂區(qū)段內(nèi)編織網(wǎng)的伸長量減去基體的伸長量,因此極限撓度增大使受拉底部裂縫的總寬度增大. 同時(shí),基體中的鋼纖維阻礙裂縫向受壓區(qū)發(fā)展,裂縫處的鋼纖維發(fā)揮橋聯(lián)作用限制了裂縫寬度的增大,從而使裂縫數(shù)目增加,裂縫間距減小,表現(xiàn)為細(xì)密的裂縫形態(tài).
此外,鋼纖維提高了BTRC試件的韌性,試件L3P0S0.8和L3P0S1.6較L3P0S0分別提高了31.8%和64.8%;L3P20.7S0.8和L3P20.7S1.6較L3P20.7S0分別提高了46.1%和92.5%. 由于鋼纖維的抗拉強(qiáng)度較高,在荷載作用下跨接在裂縫處的鋼纖維不會(huì)被拉斷,而是隨著裂縫寬度的增大被緩慢拔出,此過程需消耗一部分的能量;摻入鋼纖維使試件裂縫形態(tài)更細(xì)密,更多裂縫的形成需要消耗更多的能量;裂縫從受拉區(qū)向受壓區(qū)擴(kuò)展過程中由一支分叉成多支,使開裂表面積增加,消耗更多的能量.
4 ? 結(jié) 論
本文通過三點(diǎn)彎曲試驗(yàn),研究了不同的編織網(wǎng)層數(shù)、預(yù)拉力水平以及鋼纖維摻量對(duì)BTRC板抗彎性能的影響,得到以下結(jié)論:
1)當(dāng)編織網(wǎng)層數(shù)為2層以上時(shí),BTRC試件表現(xiàn)出多縫開裂的特征. 隨著編織網(wǎng)層數(shù)的增加,BTRC試件的抗彎強(qiáng)度、韌性顯著提高,且開裂后抗彎剛度相對(duì)開裂前減小的程度降低,其中5層BTRC試件抗彎強(qiáng)度較素混凝土板提高了216.9%.
2)對(duì)編織網(wǎng)施加預(yù)拉力,提高了BTRC試件的開裂應(yīng)力和開裂后的抗彎剛度,對(duì)4層和5層BTRC試件中編織網(wǎng)分別施加18.9%和17.6%的預(yù)拉力水平使試件的開裂應(yīng)力提高了55.0%和52.4%%. 但提高編織網(wǎng)的預(yù)拉力水平對(duì)試件的抗彎強(qiáng)度沒有明顯影響,且嚴(yán)重降低BTRC試件的極限撓度和韌性,因此需要合理控制預(yù)拉力的大小.
3)鋼纖維可以提高BTRC試件的開裂應(yīng)力和抗彎強(qiáng)度;對(duì)編織網(wǎng)施加預(yù)拉力使鋼纖維對(duì)開裂應(yīng)力提高程度降低;對(duì)比非預(yù)應(yīng)力試件,鋼纖維摻量對(duì)預(yù)應(yīng)力試件抗彎強(qiáng)度的影響更顯著. 同時(shí),鋼纖維改善了試件的裂縫形態(tài),使裂縫分布更細(xì)密均勻. 因此,對(duì)編織網(wǎng)施加合適大小的預(yù)拉力的同時(shí),摻入鋼纖維可以使BTRC板獲得更好的抗彎性能,對(duì)3層BTRC板中編織網(wǎng)施加20.7%的預(yù)拉力,同時(shí)摻入1.6%摻量的鋼纖維,可以使試件的開裂應(yīng)力和抗彎強(qiáng)度提高43.0%和43.3%.
參考文獻(xiàn)
[1] ? ?MESTICOU Z,BUI L,JUNES A,et al. Experimental investigation of tensile fatigue behaviour of Textile-Reinforced Concrete (TRC):Effect of fatigue load and strain rate[J]. Composite Structures,2016,160:1136—1146.
[2] ? ? TRIANTAFILLOU T,PAPANICOLAOU C. Innovative applications of textile-based composites in strengthening and seismic retrofitting as well as in the prefabrication of new structures[J]. Advanced Materials Research,2013,639/640(1):26—41.
[3] ? ? GOPINATH S,KUMAR V R,SHETH H A,et al. Pre-fabricated sandwich panels using cold-formed steel and textile reinforced concrete[J]. Construction and Building Materials,2014,64:54—59.
[4] ? ? CORRADI M,BORRI A,CASTORI G,et al. Shear strengthening of wall panels through jacketing with cement mortar reinforced by GFRP grids[J]. Composites B,2014,64:33—42.
[5] ? ? ESCRIG C,GIL L,BERNAT-MASO E,et al. Experimental and analytical study of reinforced concrete beams shear strengthened with different types of textile-reinforced mortar[J]. Construction and Building Materials,2015,83:248—260.
[6] ? ? LI Q H,XU S L. Experimental research on mechanical performance of hybrid fiber reinforced cementitious composites with polyvinyl alcohol short fiber and carbon textile[J]. Journal of Composite Materials,2011,45(1):5—28.
[7] ? ? 王激揚(yáng),沈玲華,徐世烺. 鋼纖維TRC薄板的常溫及高溫后彎曲力學(xué)性能[J]. 工程力學(xué),2016,33(增刊):6—10.
WANG J Y,SHEN L H,XU S L. Bending behavior of TRC thin-plates with short steel fibers at room temperature and after high temperature[J]. Engineering Mechanics,2016,33(S):6—10. (In Chinese)
[8] ? ? 卜良桃,魯 晨,朱 健. 水泥鋼纖維砂漿鋼筋網(wǎng)加固矩形RC 偏壓柱試驗(yàn)研究[J]. 湖南大學(xué)學(xué)報(bào)(自然科學(xué)版),2013,40(3):15—20.
BU L T,LU C,ZHU J. Experimental study of RC columns strengthened with steel fiber cement mortar with mesh reinforcement under eccentric loading[J]. Journal of Hunan University (Nature Sciences),2013,40(3):15—20. (In Chinese)
[9] ? ? VILKNER G. Glass concrete thin sheets reinforced with prestressed aramid fabrics[D]. New York:Graduate School of Arts and Sciences,Columbia University,2003:61—84.
[10] ? HIGH C,SELIEM H M,EL-SAFTY A,et al. Use of basalt fibers for concrete structures[J]. Construction and Building Materials,2015,96:37—46.
[11] ? BHAT T,CHEVALI V,LIU X,et al. Fire structural resistance of basalt fibre composite[J]. Composites Part A:Applied Science and Manufacturing,2015,71:107-115.
[12] ? 朱德舉,高炎鑫,李高升,等. 玄武巖織物增強(qiáng)水泥基復(fù)合材料拉伸力學(xué)性能[J]. 湖南大學(xué)學(xué)報(bào)(自然科學(xué)版),2018,45(9):43-51.
ZHU D J,GAO Y X,LI G S,et al. Tensile mechanical properties of basalt fabric reinforced cementitious matrix composite[J]. Journal of Hunan University (Nature Sciences),2018,45(9):43-51. (In Chinese)