呂小利 陶津華 繆晚虹
[摘要] 睫狀肌的結(jié)構(gòu)和功能與許多眼科疾病的發(fā)生和發(fā)展有關(guān),如睫狀肌前旋、肥厚與青光眼相關(guān),睫狀肌收縮帶動(dòng)玻璃體向前運(yùn)動(dòng)與特發(fā)性黃斑前膜、特發(fā)性黃斑裂孔等玻璃體視網(wǎng)膜界面疾病相關(guān),睫狀肌功能過度和不足可導(dǎo)致視疲勞的發(fā)生。同時(shí)睫狀肌的結(jié)構(gòu)和功能也受局部因素和全身因素的影響,局部的眼外傷可導(dǎo)致睫狀體水腫,腦外傷可導(dǎo)致睫狀肌痙攣,心理因素也可影響睫狀肌的功能狀態(tài)。這些因素可通過直接作用于外周睫狀肌導(dǎo)致其結(jié)構(gòu)和功能異常,也可通過中樞的神經(jīng)支配影響睫狀肌的功能狀態(tài)。因此,深入理解睫狀肌的結(jié)構(gòu)及其神經(jīng)支配對(duì)于臨床疾病的診療及相關(guān)領(lǐng)域的研究有很大意義。本文旨在總結(jié)睫狀肌結(jié)構(gòu)和功能,著重從睫狀肌水平、中腦Edinger-Westphal核水平和核上水平,闡述睫狀肌神經(jīng)支配的概況。
[關(guān)鍵詞] 睫狀肌;神經(jīng)環(huán)路;調(diào)節(jié);中腦;大腦皮層
[中圖分類號(hào)] R773.3 ? ? ? ? ?[文獻(xiàn)標(biāo)識(shí)碼] A ? ? ? ? ?[文章編號(hào)] 1673-7210(2020)04(c)-0053-04
Structure, function and innervation of ciliary muscle
LYU Xiaoli1,2 ? TAO Jinhua1 ? MIAO Wanhong1
1.Department of Ophthalmology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai ? 200120, China; 2.Department of Ophthalmology, the Second Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Province, Hangzhou ? 310005, China
[Abstract] The structure and function of ciliary muscle are related to the occurrence and development of many ophthalmic diseases, such as anterior rotation, hypertrophy of ciliary muscle are associated with glaucoma, vitreous body movement driven by ciliary muscle contraction is related to vitreoretinal interface diseases such as idiopathic macular membrane and idiopathic macular hole, the excessive and insufficient function of ciliary muscle can lead to the occurrence of visual fatigue. At the same time, the structure and function of ciliary muscle are also affected by local and systemic factors, such as local eye injury can lead to ciliary body edema, brain injury can lead to ciliary muscle spasm and psychological factors can also affect the function of ciliary muscle. These factors can directly affect the peripheral ciliary muscle to cause structural and functional abnormalities, and can also affect the functional state of the ciliary muscle through the central nerve innervation. Therefore, a deep understanding of the structure and innervation of ciliary muscle is of great significance for the diagnosis and treatment of clinical diseases and research in related fields. This paper aims to summarize ciliary muscle structure and function, focusing on ciliary muscle level, the midbrain Edinger-Westphal nuclear level and the supra nuclear level, describe the general situation of ciliary muscle nerve innervation.
[Key words] Ciliary muscle; Nerve loop; Accommodation; Midbrain; Cerebral cortex
睫狀體為葡萄膜的中間部分,前接虹膜根部,后以鋸齒緣為界與脈絡(luò)膜相互移行。睫狀肌為睫狀體的主要構(gòu)成部分,起源于鞏膜突及其周圍結(jié)締組織[1]?;诤舜殴舱癯上窦夹g(shù)[2]及前節(jié)光學(xué)相干斷層掃描(OCT)成像技術(shù)[3]的發(fā)展,睫狀肌的結(jié)構(gòu)、功能及其與眼部疾病之間的關(guān)系逐漸被揭開面紗。然而大多數(shù)研究聚焦于調(diào)節(jié)時(shí)睫狀肌厚度、長(zhǎng)度的變化[4],其結(jié)構(gòu)和功能隨年齡的變化[5]等,較少有研究關(guān)注睫狀肌發(fā)揮功能的先決條件,即神經(jīng)沖動(dòng)的釋放。睫狀肌屬平滑肌,受交感神經(jīng)和副交感神經(jīng)雙重支配,其功能異常涉及的環(huán)節(jié)較多,因此,本文在對(duì)睫狀肌的結(jié)構(gòu)和功能進(jìn)行梳理的基礎(chǔ)上,著重從睫狀肌水平、中腦Edinger-Westphal(E-W)核水平和核上水平3個(gè)方面對(duì)睫狀肌的神經(jīng)支配及功能異常進(jìn)行闡述。
1 睫狀肌的結(jié)構(gòu)和功能
1.1 組織學(xué)結(jié)構(gòu)特點(diǎn)
從組織學(xué)水平上,根據(jù)睫狀肌纖維走行方向不同,分為縱行纖維、放射纖維和環(huán)行纖維3種。較大的肌束位于睫狀體前2/3,有少量的縱行肌纖維向后到達(dá)鋸齒緣及赤道部脈絡(luò)膜[6]。睫狀肌矢狀切面觀為直角三角形,斜邊平行鞏膜,直角朝向睫狀突,尖端指向脈絡(luò)膜??v行纖維在外側(cè)為前后排列走行,在內(nèi)側(cè)前端平行于角膜緣走行的是環(huán)行纖維,兩者之間為斜行的放射纖維[1]。有學(xué)者認(rèn)為睫狀肌的纖維排列為格子狀,內(nèi)側(cè)為橫行肌纖維,外側(cè)為縱行肌纖維;其結(jié)構(gòu)是一整體,為四頭肌肉,按“人”字呈不同角度和交叉走行[6]。同時(shí)睫狀肌具有前后附著的肌腱,前部附著于鞏膜突和小梁網(wǎng),后部附著于脈絡(luò)膜及Bruch′s膜向前延伸的部分,前部肌腱、較后部肌腱含有較少的彈性蛋白,且被纖維鞘膜包繞[7]。
1.2 細(xì)胞學(xué)構(gòu)成特征
從細(xì)胞水平上[8],睫狀肌在人體所有副交感神經(jīng)支配的平滑肌中是獨(dú)特的,因?yàn)樗哂性S多快速橫紋肌的超微結(jié)構(gòu)、組織化學(xué)和傳出神經(jīng)特征。與血管或腸壁等其他部位的平滑肌不同,肌細(xì)胞呈規(guī)則排列的致密帶和致密體,類似于橫紋肌中的Z帶。在超微結(jié)構(gòu)上,人類睫狀肌細(xì)胞的主要特征是線粒體和內(nèi)質(zhì)網(wǎng)的數(shù)量比普通平滑肌豐富,尤其在放射和環(huán)形纖維部分更加明顯。
睫狀肌肌束周圍有扁平的結(jié)締組織細(xì)胞包裹,可見膠原、彈性纖維、有髓神經(jīng)纖維和無髓神經(jīng)纖維及毛細(xì)血管。這些神經(jīng)末梢可能與多個(gè)睫狀肌細(xì)胞有關(guān),但僅與一個(gè)肌束內(nèi)的細(xì)胞有關(guān)。睫狀肌的神經(jīng)末梢在單節(jié)段出現(xiàn)的頻率比其他平滑肌高得多,在少數(shù)情況下,神經(jīng)纖維與肌細(xì)胞膜非常接近,但在大多數(shù)情況下,神經(jīng)纖維與肌細(xì)胞膜是由基底膜分隔[9-10]。
1.3 功能特點(diǎn)
結(jié)構(gòu)決定功能,人眼的調(diào)節(jié)過程是由睫狀肌實(shí)現(xiàn)的,通過睫狀肌3個(gè)部分肌纖維的構(gòu)型變化,產(chǎn)生向前向內(nèi)的運(yùn)動(dòng),從而影響懸韌帶的張力改變晶狀體的曲率[1],這個(gè)復(fù)雜的過程主要依賴于睫狀肌本身的結(jié)構(gòu)。位于外側(cè)的縱行肌收縮時(shí)可開放鞏膜靜脈竇[6],促進(jìn)房水循環(huán);位于內(nèi)側(cè)的環(huán)行及放射纖維,收縮時(shí)可改變晶狀體懸韌帶張力,改變晶狀體的曲率,但這些肌肉并不單獨(dú)收縮,而是一個(gè)功能整體。Ruggeri等[11]應(yīng)用前節(jié)OCT成像分析睫狀肌隨調(diào)節(jié)的形態(tài)變化,表現(xiàn)為收縮性縮短,尤其是前端部分收縮和增厚明顯,且顳側(cè)肌肉有較大的收縮反應(yīng),產(chǎn)生睫狀肌群向前和向心收縮的位移。
2 睫狀肌的神經(jīng)支配及功能異常表現(xiàn)
睫狀肌收縮過程復(fù)雜,其動(dòng)態(tài)、精確、快速地對(duì)任何距離的物體進(jìn)行視覺聚焦,需精密的神經(jīng)支配,以實(shí)現(xiàn)肌肉運(yùn)動(dòng)的精細(xì)調(diào)整。以下將從“3個(gè)神經(jīng)環(huán)路”水平說明睫狀肌神經(jīng)支配及功能異常的具體環(huán)節(jié)和表現(xiàn)。
2.1 睫狀體內(nèi)部神經(jīng)環(huán)路及功能表現(xiàn)
2.1.1 睫狀肌內(nèi)部神經(jīng)環(huán)路 ?人眼調(diào)節(jié)功能的發(fā)揮,需要出色的中心視覺分辨率,快速調(diào)整焦距,以及強(qiáng)大的圖像跟蹤和圖像穩(wěn)定能力。即使在固定距離上保持對(duì)一個(gè)物體的聚焦,也需要不斷精細(xì)地調(diào)整晶狀體的形狀和位置。因此,與調(diào)節(jié)機(jī)制有關(guān)的肌肉本身,應(yīng)該存在某種感覺傳入機(jī)制來監(jiān)測(cè)肌肉的收縮和放松狀態(tài),從而調(diào)整懸韌帶的張力。
Flügel-Koch等[10]對(duì)睫狀體進(jìn)行顯微結(jié)構(gòu)研究發(fā)現(xiàn),睫狀體中存在形態(tài)和功能不同的本體感受器。在內(nèi)側(cè)環(huán)行肌和睫狀突構(gòu)成的間隙里,存在數(shù)量多且復(fù)雜的傳入結(jié)構(gòu)[8-9],縱行肌纖維和放射肌纖維間的過渡區(qū)及附著于脈絡(luò)膜及Bruch′s膜向前延伸部分的彈性肌腱周圍,富含機(jī)械受體樣結(jié)構(gòu)存在,且發(fā)現(xiàn)環(huán)行肌含有大量的內(nèi)在神經(jīng)細(xì)胞可構(gòu)成局部的神經(jīng)反射弧以完成肌肉的自我調(diào)節(jié)。
在調(diào)節(jié)過程中睫狀體前部肌纖維向前、向內(nèi)運(yùn)動(dòng)[9],位于睫狀體前端肌腱周圍的感受器可測(cè)量肌肉形成的剪切力;調(diào)節(jié)過程中睫狀體后部肌纖維向前運(yùn)動(dòng),拉伸后部彈性肌腱,同時(shí)在放松調(diào)節(jié)過程中,放松的肌肉被肌腱的彈力向后拉[12]位于睫狀體后端的感受器可以測(cè)量后部肌腱的伸展。這些神經(jīng)終末結(jié)構(gòu)及其存在的位置顯示,其可以記錄組織間隙中結(jié)締組織纖維的運(yùn)動(dòng)以及肌肉纖維本身的增厚對(duì)肌肉收縮和拉伸狀態(tài)起到監(jiān)控作用[9]。
總之,在睫狀肌的內(nèi)側(cè)部分存在著一個(gè)復(fù)雜的內(nèi)在神經(jīng)系統(tǒng)。這些神經(jīng)細(xì)胞具有特殊的超微結(jié)構(gòu)特征,有直接的機(jī)械感受功能,其通過樹突與肌肉細(xì)胞的直接接觸,感受環(huán)行肌纖維及放射肌纖維的形狀變化,間接測(cè)量收縮狀態(tài)[13]。此外,這些結(jié)構(gòu)也存在于睫狀突皺褶的基底部,感受懸韌帶的張力變化。因此Flügel-Koch等[10]認(rèn)為睫狀肌內(nèi)部存在神經(jīng)環(huán)路,調(diào)控睫狀肌精細(xì)而快速實(shí)現(xiàn)細(xì)微的收縮和放松。
2.1.2 功能表現(xiàn) ?導(dǎo)致睫狀肌功能異常有多種因素,如外傷[14]、藥物[15-17]、久視[4],此外,聲能射線也可能穿過眼瞼,導(dǎo)致睫狀肌功能障礙。有文獻(xiàn)報(bào)道[18],眼部皮膚美容等超聲儀器,可造成睫狀肌痙攣,引起假性近視。局部睫狀肌的電刺激也可影響其功能,Gualdi等[19]使用聚碳酸酯的鞏膜隱形眼鏡對(duì)睫狀肌部位(角膜緣區(qū)域外3.5 mm處的4個(gè)點(diǎn)配備有4個(gè)微電極)進(jìn)行脈沖電刺激,用來治療早期老視患者,發(fā)現(xiàn)電刺激后這些患者具有較好的近距離視覺表現(xiàn)。
2.2 調(diào)節(jié)反射環(huán)路及功能表現(xiàn)
2.2.1 調(diào)節(jié)反射的神經(jīng)環(huán)路 ?調(diào)節(jié)反射是人眼聚焦于近處物體的視覺反應(yīng),通常與雙眼集合、瞳孔縮小聯(lián)動(dòng),因此也被稱為調(diào)節(jié)-集合反射或近反射[20]。從中腦和間腦到睫狀肌的傳出通路為:副交感神經(jīng)通路,起源于E-W核,節(jié)前神經(jīng)纖維到達(dá)睫狀神經(jīng)節(jié)后換元,神經(jīng)節(jié)后副交感神經(jīng)通過釋放乙酰膽堿,支配睫狀肌收縮;睫狀肌的交感神經(jīng)支配通路起源于間腦,沿脊髓下行至頸下段和胸上段,到達(dá)脊髓中外側(cè)束后換元,換元后二級(jí)神經(jīng)元由第七頸椎和第一胸椎腹根離開脊髓,這些神經(jīng)節(jié)前纖維沿著頸交感鏈向上延伸至頸神經(jīng)節(jié)后換元;第三級(jí)神經(jīng)節(jié)后纖維沿交感頸動(dòng)脈叢上行進(jìn)入眼眶,或獨(dú)立、或與三叉神經(jīng)的第一分支一起進(jìn)入眼眶,與睫狀長(zhǎng)或短神經(jīng)匯合后支配睫狀肌[21]。
引起調(diào)節(jié)反射的bottom-up通路為:模糊的視覺信號(hào)→視皮層→額葉眼→腦橋旁正中網(wǎng)狀結(jié)構(gòu)→中腦網(wǎng)狀結(jié)構(gòu)動(dòng)眼神經(jīng)核→E-W核→睫狀神經(jīng)節(jié)→睫狀肌[22-24]。然而模糊的視覺信號(hào)并不是調(diào)節(jié)反射的唯一條件,三叉神經(jīng)節(jié)輸入的本體感受信號(hào),也可經(jīng)過神經(jīng)環(huán)路的信號(hào)反饋,最終通過動(dòng)眼神經(jīng)影響到睫狀神經(jīng)節(jié)的傳出反應(yīng)[10]。而且,光線本身的聚散度也可引起調(diào)節(jié)反饋[25]。
2.2.2 睫狀肌自主神經(jīng)支配特點(diǎn)及功能異常表現(xiàn) ?睫狀肌主要由密集的膽堿能副交感神經(jīng)末梢支配[26],也有證據(jù)支持受交感神經(jīng)支配[27]。副交感神經(jīng)支配的增加(在1 s內(nèi))可迅速產(chǎn)生多達(dá)20 D的調(diào)節(jié)反應(yīng)(看近),而交感神經(jīng)支配要慢得多,一般在10~40 s內(nèi)產(chǎn)生至多1.5 D的調(diào)節(jié)反應(yīng)(看遠(yuǎn))[26-27]。有研究顯示[28],交感神經(jīng)系統(tǒng)對(duì)調(diào)節(jié)的動(dòng)力學(xué)影響很小,對(duì)其靜息水平或振幅影響不大。Del águila-Carrasco等[29]也認(rèn)為使用鹽酸苯腎上腺素(擬交感藥物)可調(diào)節(jié)變化是由藥物散瞳造成的光學(xué)像差引起,而非藥物本身作用。
中腦的病灶可影響調(diào)節(jié)功能,有文獻(xiàn)曾報(bào)道[30-31],頭部外傷后可導(dǎo)致調(diào)節(jié)功能障礙,表現(xiàn)為持續(xù)性的調(diào)節(jié)痙攣或者調(diào)節(jié)不足等。
2.3 大腦皮層top-down神經(jīng)調(diào)控網(wǎng)絡(luò)
目前,對(duì)靈長(zhǎng)類動(dòng)物睫狀肌的核上神經(jīng)支配研究較少,大腦如何計(jì)算和調(diào)控來自眼睛的感覺信號(hào),這些大腦信號(hào)又如何進(jìn)入E-W核,并調(diào)控位于E-W核內(nèi)的節(jié)前神經(jīng)元,并最終轉(zhuǎn)變?yōu)橹浣逘罴〉倪\(yùn)動(dòng)信號(hào),還知之甚少。
由于大腦皮層神經(jīng)元豐富,對(duì)支配睫狀肌的神經(jīng)元標(biāo)記研究比較困難,而一項(xiàng)對(duì)恒河猴睫狀肌的逆行神經(jīng)的標(biāo)記研究,也只追蹤到中腦[32]。近年來,隨著功能核磁共振、近紅外腦功能等技術(shù)應(yīng)用于眼球功能的研究得知許多大腦區(qū)域參與控制近反射,如枕葉、小腦半球、蚓部以及顳葉等[33-35]。
3 總結(jié)與展望
關(guān)于睫狀肌的精細(xì)神經(jīng)調(diào)控,還有許多內(nèi)容未被認(rèn)識(shí)。目前的研究只是部分描述了眼調(diào)節(jié)運(yùn)動(dòng)控制的神經(jīng)通路,但對(duì)于眼調(diào)節(jié)的視覺輸入通路和感覺運(yùn)動(dòng)轉(zhuǎn)換卻知之甚少。將來還需要進(jìn)一步研究E-W核上神經(jīng)相關(guān)通路,以及影響調(diào)節(jié)輸出的功能腦區(qū),包括心理和注意力相關(guān)腦區(qū)的皮層調(diào)控。
[參考文獻(xiàn)]
[1] ?葛堅(jiān),王寧利.眼科學(xué)[M].3版.北京:人民衛(wèi)生出版社,2015:66-68.
[2] ?Khan A,Pope JM,Verkicharla PK,et al. Change in human lens dimensions,lens refractive index distribution and ciliary body ring diameter with accommodation [J]. Biomed Opt Express,2018,9(3):1272-1282.
[3] ?Chang YC,Liu K,Cabot F,et al. Variability of manual ciliary muscle segmentation in optical coherence tomography images [J]. Biomed Opt Express,2018,9(2):791-800.
[4] ?Wagner S,Schaeffel F,Zrenner E,et al. Prolonged nearwork affects the ciliary muscle morphology [J]. Exp Eye Res,2019,186:107741.
[5] ?Domínguez-Vicent A,Monsálvez-Romín D,Esteve-Taboada JJ,et al. Effect of age in the ciliary muscle during accommodation:Sectorial analysis [J]. J Optom,2019,12(1):14-21.
[6] ?Mao Y,Bai HX,Li B,et al. Dimensions of the ciliary muscles of Brücke,Müller and Iwanoff and their associations with axial length and glaucoma [J]. Graefes Arch Clin Exp Ophthalmol,2018,256(11):2165-2171.
[7] ?Park CY,Lee JK,Kahook MY,et al. Revisiting ciliary muscle tendons and their connections with the trabecular meshwork by two photon excitation microscopic imaging [J]. Invest Ophthalmol Vis Sci,2016,57(3):1096-1105.
[8] ?May C. Morphologic characteristics of the human ciliary muscle [J]. New Front Ophthalmol,2017:3.
[9] ?Flügel-Koch CM,Croft MA,Kaufman PL,et al. Anteriorly located zonular fibres as a tool for fine regulation in accommodation [J]. Ophthalmic Physiol Opt,2016,36(1):13-20.
[10] ?Flügel-Koch C,Neuhuber WL,Kaufman PL,et al. Morphologic indication for proprioception in the human ciliary muscle [J]. Invest Ophthalmol Vis Sci,2009,50(12):5529-5536.
[11] ?Ruggeri M,de Freitas C,Williams S,et al. Quantification of the ciliary muscle and crystalline lens interaction during accommodation with synchronous OCT imaging [J]. Biomed Opt Express,2016,7(4):1351-1364.
[12] ?Croft MA,Lütjen-Drecoll E,Kaufman PL. Age-related posterior ciliary muscle restriction–A link between trabecular meshwork and optic nerve head pathophysiology [J]. Exp Eye Res,2017,158:187-189.
[13] ?Neuhuber W,Schr?觟dl F. Autonomic control of the eye and the iris [J]. Auton Neurosci,2011,165(1):67-79.
[14] ?Ikeda N,Ikeda T,Kohno T. Traumatic myopia secondary to ciliary spasm after blunt eye trauma and reconsideration of its pathogenesis [J]. Graefes Arch Clin Exp Ophthalmol,2016,254(7):1411-1417.
[15] ?Esteve-Taboada JJ,?譧guila-Carrasco D,Antonio J,et al. Effect of phenylephrine on the accommodative system [J]. J Ophthalmol,2016,2016:1-13.
[16] ?Zhang J,Ni Y,Li P,et al. Anterior Segment Biometry with Phenylephrine and Tropicamide during Accommodation Imaged with Ultralong Scan Depth Optical Coherence Tomography [J]. J Ophthalmol,2019:6827215.
[17] ?Randhawa P. Pharmacological and physiological manipulation of ocular accommodation [D]. Birmingham:Aston University,2017.
[18] ?Chen Y,Shi Z,Shen Y. Eye damage due to cosmetic ultrasound treatment:a case report [J]. BMC Ophthalmol,2018,18(1):214.
[19] ?Gualdi L,Gualdi F,Rusciano D,et al. Ciliary muscle electrostimulation to restore accommodation in patients with early presbyopia:Preliminary results [J]. J Refract Surg,2017,33(9):578-583.
[20] ?Heermann S. Neuroanatomy of the Oculomotor System [J]. Klin Monbl Augenheilkd,2017,234(11):1327-1343.
[21] ?Richter HO,Lee JT,Pardo JV. Neuroanatomical correlates of the near response:Voluntary modulation of accommodation/vergence in the human visual system [J]. Eur J Neurosci,2000,12(1):311-321.
[22] ?Agarwal M,Ulmer JL,Chandra T,et al. Imaging correlates of neural control of ocular movements [J]. Eur Radiol,2016,26(7):2193-2205.
[23] ?May PJ,Billig I,Gamlin P,et al. Central mesencephalic reticular formation control of the near response:lens accommodation circuits [J]. J Neurophysiol,2019,121(5):1692-1703.
[24] ?May PJ,Warren S,Bohlen MO,et al. A central mesencephalic reticular formation projection to the Edinger-Westphal nuclei [J]. Brain Struct Funct,2016,221(8):4073-4089.
[25] ?Marin-Franch I,Del Aguila-Carrasco AJ,Bernal-Molina P,et al. There is more to accommodation of the eye than simply minimizing retinal blur [J]. Biomed Opt Express,2017,8(10):4717-4728.
[26] ?May PJ,Reiner A,Gamlin PD. Autonomic Regulation of the Eye [M]. Oxford Research Encyclopedia of Neuroscience,2019.
[27] ?Sander BP. The influence of the autonomic nervous system on the human choroid [D]. Brisbane:Queensland University of Technology,2017:48.
[28] ?Ostrin LA,Glasser A. Autonomic drugs and the accommodative system in rhesus monkeys [J]. Exp Eye Res,2010,90(1):104-112.
[29] ?Del águila-Carrasco AJ,Lara F,Bernal-Molina P,et al. Effect of phenylephrine on static and dynamic accommodation [J]. J Optom,2019,12(1):30-37.
[30] ?Hughes FE,Treacy MP,Duignan ES,et al. Persistent pseudomyopia following a whiplash injury in a previously emmetropic woman [J]. Am J Ophthalmol Case Rep,2017, 8:28-30.
[31] ?Padula WV,Capo-Aponte JE,Padula WV,et al. The consequence of spatial visual processing dysfunction caused by traumatic brain injury (TBI) [J]. Brain Inj,2017, 31(5):589-600.
[32] ?May PJ,Warren S,Gamlin PDR,et al. An Anatomic Characterization of the Midbrain Near Response Neurons in the Macaque Monkey [J]. Invest Ophthalmol Vis Sci,2018,59(3):1486-1502.
[33] ?Cléry J,Guipponi O,Odouard S,et al. Cortical networks for encoding near and far space in the non-human primate [J]. Neuroimage,2018,176:164-178.
[34] ?Krauzlis RJ,Goffart L,Hafed ZM. Neuronal control of fixation and fixational eye movements [J]. Philos Trans R Soc Lond B Biol Sci,2017,372(1718). pii:20160205.
[35] ?Richter HO,F(xiàn)orsman M,Elcadi GH,et al. Corrigendum:Prefrontal Cortex Oxygenation Evoked by Convergence Load Under Conflicting Stimulus-to-Accommodation and Stimulus-to-Vergence Eye-Movements Measured by NIRS [J]. Front Hum Neurosci,2018,12:298.
(收稿日期:2019-11-19 ?本文編輯:劉明玉)