国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

調(diào)控植物種子大小的分子機(jī)制綜述

2020-05-21 03:33曹維趙靜禹艷坤
江蘇農(nóng)業(yè)科學(xué) 2020年6期
關(guān)鍵詞:分子機(jī)制

曹維 趙靜 禹艷坤

摘要:植物種子大小對(duì)農(nóng)業(yè)生產(chǎn)和植物自身的發(fā)展尤為重要,迄今為止已鑒定出大量的調(diào)控種子大小的基因,它們作用于不同的途徑,以調(diào)節(jié)種子不同結(jié)構(gòu)(種皮、胚乳和胚)的生長(zhǎng),從而協(xié)調(diào)地控制種子大小。從泛素-蛋白酶體途徑、HAIKU(IKU)途徑、植物激素途徑、絲裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)信號(hào)途徑以及G蛋白信號(hào)途徑和轉(zhuǎn)錄調(diào)控因子等方面綜述調(diào)控種子大小的基因的分子機(jī)制,以及某些途徑之間可能存在的聯(lián)系,以期為探索新的種子大小調(diào)控基因和進(jìn)行分子設(shè)計(jì)育種工作提供切實(shí)可用的理論基礎(chǔ)。

關(guān)鍵詞:種子大小;分子機(jī)制;調(diào)控基因;調(diào)控途徑

中圖分類號(hào):Q943.2 ?文獻(xiàn)標(biāo)志碼:A ?文章編號(hào):1002-1302(2020)06-0001-07

種子大小是農(nóng)業(yè)生產(chǎn)中最受關(guān)注的農(nóng)藝性狀之一,是決定產(chǎn)量的重要因素,同時(shí)種子大小對(duì)植物的進(jìn)化至關(guān)重要,大種子能夠積累足夠的營(yíng)養(yǎng)物質(zhì)用于發(fā)芽,并且對(duì)非生物脅迫具有更好的耐受性,而小種子有利于分散和繁殖大量的后代[1-2]。

在各物種中,種子大小差異非常大。然而,關(guān)于植物是如何調(diào)控其種子大小的研究尚未見(jiàn)系統(tǒng)的報(bào)道。在被子植物中,一個(gè)精細(xì)胞與卵融合形成二倍體的合子,另一個(gè)精細(xì)胞與中央細(xì)胞融合形成初生胚乳核,雙受精后由合子發(fā)育成胚,中央細(xì)胞則發(fā)育成胚乳,而胚珠的珠被發(fā)育成種皮[3]。因此,種子大小主要由來(lái)自孢子體組織和合子組織的遺傳信息所控制,但也會(huì)受到環(huán)境因素的影響[4]。一些控制種子大小的基因已經(jīng)在模式植物擬南芥(Arabidopsis thaliana)、水稻(Oryza sativa L.)中被鑒定出來(lái)了,它們主要參與泛素-蛋白酶體途徑、HAIKU(IKU)途徑、植物激素途徑、絲裂原活化蛋白激酶(MAPK)信號(hào)途徑、G蛋白信號(hào)途徑和轉(zhuǎn)錄調(diào)控因子等途徑。

1 泛素-蛋白酶體途徑

泛素途徑在植物種子大小的確定中起重要作用[5-8]。在擬南芥中,DA1編碼1個(gè)泛素受體,含有2個(gè)泛素互作基序(UIMs)和1個(gè)結(jié)合單鏈的LIM結(jié)構(gòu)域[6]。DA1蛋白中第358位精氨酸-賴氨酸的突變(DA1R358K)產(chǎn)生了da1-1突變體,da1-1突變體產(chǎn)生的種子比野生型的更大且更重,這是由于促進(jìn)了孢子體珠被細(xì)胞的增殖而產(chǎn)生了較大的珠被[6,9]。AtDA1在甘藍(lán)型油菜(Brassica napus L.)中的同源基因BnDA1,也具有負(fù)調(diào)控種子和器官大小的功能[10]。DA1-related protein 1(DAR1)和 DA1-related protein 2(DAR2)與DA1蛋白的氨基酸序列很相似,它們?cè)谙拗品N子和器官生長(zhǎng)的功能上是冗余的[11]。

擬南芥中的2個(gè)RING型E3泛素連接酶,DA2 和BIGBROTHER (BB)/ENHANCER OF DA1 (EOD1)是種子大小的負(fù)調(diào)控因子,DA2或者BB/EOD1的過(guò)量表達(dá)都能引起植株器官變小,雖然它們都通過(guò)限制珠被細(xì)胞的增殖來(lái)調(diào)控種子大小,但是在控制種子大小的途徑中它們不能相互作用;此外,eod1和da2-1的突變協(xié)同地增強(qiáng)了da1-1突變體的種子大小表型,表明DA2和EOD1可能通過(guò)DA1進(jìn)行相同的調(diào)控來(lái)降解不同的生長(zhǎng)刺激因子[7,12]。DA1的一個(gè)抑制子SUPPRESSOR OF DA1(SOD2),編碼去泛素化酶UBIQUITIN-SPECIFIC PROTEASE 15 (UBP15),UBP15作用于DA1的下游,它是種子和器官生長(zhǎng)的正調(diào)控因子[8,13]。在水稻中,1個(gè)谷粒寬度和質(zhì)量的數(shù)量性狀位點(diǎn)GRAIN WIDTH AND WEIGHT 2 (GW2),編碼1個(gè)Really Interesting New Gene (RING)型E3泛素連接酶,在擬南芥中過(guò)量表達(dá)GW2產(chǎn)生了小的種子和器官;與GW2的RING結(jié)構(gòu)域相比,DA2的RING結(jié)構(gòu)域中一個(gè)保守的His殘基被Asn殘基(Asn-91)取代[7]。

SAPSTERILE APETALA (SAP)/SUPPRESSOR OF DA1 (SOD3)是一種F-box蛋白,參與構(gòu)成一種SKP1/Cullin/F-box E3泛素連接酶復(fù)合物,它通過(guò)促進(jìn)分生組織細(xì)胞的增殖來(lái)控制器官大小。此外,SAP能夠降解PEAPOD1 和 PEAPOD2(分生組織增殖的負(fù)調(diào)控因子)以控制器官大小[14]。KIX8和KIX9是SAP的底物,SAP與KIX8/KIX9相互作用并調(diào)節(jié)其蛋白質(zhì)穩(wěn)定性,從而通過(guò)調(diào)控分生組織細(xì)胞的增殖來(lái)控制器官生長(zhǎng)[15]。

2 IKU途徑

胚乳發(fā)育是決定種子大小的一個(gè)重要因素[16],HAIKU(IKU)途徑控制植物種子胚乳的早期生長(zhǎng),IKU途徑包括1個(gè)富含亮氨酸的重復(fù)受體激酶IKU2和1個(gè)WRKY轉(zhuǎn)錄因子MINI-SEED3(MINI3)[17]。

HAIKU1(IKU1)編碼一個(gè)含有VQ基序(植物所特有的)的蛋白,遺傳分析表明VQ基序是IKU1調(diào)控種子大小的不可缺少的元件。IKU1在發(fā)育早期的胚乳和中央細(xì)胞中表達(dá),iku1突變體產(chǎn)生了具有少量胚乳的小種子[16]。在iku1功能缺失突變體中IKU2和MINI3的表達(dá)量均減少,在mini3突變體中IKU2的表達(dá)水平降低,而iku2突變體中MINI3的表達(dá)量沒(méi)有變化,表明IKU1、IKU2和MINI3作用于同一信號(hào)途徑并且通過(guò)影響胚乳的生長(zhǎng)來(lái)控制種子大小[18]。此外,SHORT HYPOCOTYLUNDER BLUE 1 (SHB1)能夠結(jié)合IKU2和MINI3的啟動(dòng)子以調(diào)控它們的表達(dá)[19]。MINI3結(jié)合cytokinin oxidase/dehydrogemase2(CKX2)的啟動(dòng)子并促進(jìn)其表達(dá)從而調(diào)控胚乳的生長(zhǎng)[20]。因此,胚乳發(fā)育過(guò)程將IKU途徑與細(xì)胞分裂素信號(hào)途徑相關(guān)聯(lián)。

3 植物激素途徑

3.1 細(xì)胞分裂素

細(xì)胞分裂素水平受到生物合成[異戊烯基轉(zhuǎn)移酶(IPT)]、激活[Lonely Guy(LOG)]、失活(O-葡萄糖基轉(zhuǎn)移酶)、再激活(β-葡萄糖苷酶)和降解[細(xì)胞分裂素氧化酶/脫氫酶(CKX)]等之間的平衡調(diào)節(jié)。在果實(shí)和種子發(fā)育的早期階段,細(xì)胞分裂素水平暫時(shí)升高,并與細(xì)胞核和細(xì)胞分裂一致,細(xì)胞核和細(xì)胞分裂是種子最終大小的決定因素。細(xì)胞分裂素的外源性應(yīng)用,IPT的異位表達(dá)或CKX的下調(diào)有時(shí)會(huì)使種子產(chǎn)量增加,表明細(xì)胞分裂素可能限制產(chǎn)量[21]?,F(xiàn)代基因組編輯工具可用于靶向和操縱細(xì)胞分裂素水平以增加種子產(chǎn)量。

CKX2影響細(xì)胞分裂素信號(hào)轉(zhuǎn)導(dǎo),而且是IKU途徑的靶向基因,CKX2的表達(dá)直接受到IKU轉(zhuǎn)錄因子WRKY10的激活然后促進(jìn)胚乳的生長(zhǎng);同時(shí)CKX2的表達(dá)還依賴于H3K27me3的沉積,其因母體基因組劑量不平衡和雄配子的DNA去甲基化而產(chǎn)生波動(dòng)[20]。3種Arabidopsis histidine kinases(AHKs),AHK2、AHK3和CRE1(cytokinin response1)/AHK4是細(xì)胞分裂素受體,它們以依賴細(xì)胞分裂素的方式負(fù)調(diào)控?cái)M南芥種子大小,它們形成的三突變體的種子比野生型的大2倍多[22-23]。

3.2 生長(zhǎng)素

植物激素生長(zhǎng)素,通過(guò)調(diào)節(jié)轉(zhuǎn)錄因子與其下游基因的生長(zhǎng)素響應(yīng)元件(auxin-response elements,AuxREs)的相互作用來(lái)調(diào)控植物生理[24]。AUXIN RESPONSE FACTORS (ARFs)和Aux/IAAs調(diào)控生長(zhǎng)素響應(yīng)基因的表達(dá),大多數(shù)ARF蛋白在N末端含有高度保守的B3-like DNA結(jié)合結(jié)構(gòu)域,其識(shí)別生長(zhǎng)素響應(yīng)基因啟動(dòng)子中的生長(zhǎng)素應(yīng)答元件(AuxRE:TGTCTC),而C末端結(jié)構(gòu)域包含2個(gè)基序,稱為Ⅲ和Ⅳ,在Aux/IAA蛋白中也發(fā)現(xiàn)了這2個(gè)基序,并且在ARF和Aux/IAAs中能形成同源二聚體和異源二聚體[25-26]。

擬南芥AUXIN RESPONSE FACTOR 2 (ARF2)是一個(gè)轉(zhuǎn)錄抑制因子,純合的arf2 T-DNA插入突變體的種子比野生型的大[27]。在木本植物麻瘋樹(shù)(Jatropha curcas L.)中,JcARF19的異位表達(dá)上調(diào)了某些生長(zhǎng)素響應(yīng)基因,這些基因參與編碼種子發(fā)育過(guò)程中細(xì)胞分化和細(xì)胞骨架形成,因此JcARF19的過(guò)量表達(dá)顯著增加了擬南芥和麻瘋樹(shù)種子的大小和產(chǎn)量[28]。此外,在麻瘋樹(shù)中ARF19和IAA9相互作用,能影響種子的長(zhǎng)度[29]。

3.3 油菜素內(nèi)酯

油菜素內(nèi)酯(brassinosteroids,BR)通過(guò)激活許多可能增加種子大小的基因表達(dá)以促進(jìn)種子變大,并且抑制負(fù)調(diào)控種子生長(zhǎng)基因的表達(dá),當(dāng)用BR處理3 h后,種子大小的正調(diào)控因子SHB1、IKU1、MINI3和IKU2的表達(dá)水平明顯升高[30]。Carbon Starved Anther(CSA)基因編碼1個(gè)MYB結(jié)構(gòu)域蛋白,BRs通過(guò)上調(diào)其表達(dá)來(lái)促進(jìn)水稻花粉和種子的發(fā)育;BR合成基因DWARF 11(D11)或BR信號(hào)因子Oryza sativa BRASSINAZOLE-RESISTANT1 (OsBZR1)的低表達(dá)會(huì)導(dǎo)致花粉敗育以及種子大小和質(zhì)量的減小,并積累較少的淀粉,因此,OsBZR1促進(jìn)CSA的表達(dá),而CSA又調(diào)控下游糖類分配和代謝基因的表達(dá)[31]。BR-deficientmutant(det2)和BR receptor mutant(bri1-5,bri1突變體的一個(gè)弱等位基因)的種子均比野生型的小且輕,形狀上短而略寬[30]。水稻SEED WIDTH ON CHROMOSOME 5(qSW5/GW5)基因編碼鈣調(diào)蛋白結(jié)合蛋白,它可以與水稻glycogen synthase kinase 2(GSK2)互作并抑制其激酶活性,導(dǎo)致未磷酸化的OsBZR1和dwarfand low-tillering(DLT)蛋白的積累,從而調(diào)控油菜素內(nèi)酯響應(yīng)的基因表達(dá)和生長(zhǎng)反應(yīng)(包括谷粒寬度和質(zhì)量)[32]。grain-length-associated QTL、GL2在其miR396靶向序列中含有突變,導(dǎo)致它的表達(dá)水平適度增加,從而可以通過(guò)上調(diào)大量的BR誘導(dǎo)基因來(lái)激活BR反應(yīng)以促進(jìn)谷粒發(fā)育;此外,GSK2能夠直接與GL2相互作用并抑制其轉(zhuǎn)錄激活活性,從而介導(dǎo)激素對(duì)谷粒長(zhǎng)度的特異性調(diào)節(jié)[33]。

4 MAPK信號(hào)途徑

MAPK級(jí)聯(lián)包含至少3種激酶:MAPK激酶激酶(MKKK),MAPK激酶(MKK)和MAPK。MAPK信號(hào)通路在防御反應(yīng)以及與植物生長(zhǎng)和發(fā)育有關(guān)的多個(gè)過(guò)程中起著重要作用。

LARGE GRAIN 8(LARGE8)編碼mitogen-activated protein kinase phosphatase 1(OsMKP1),它通過(guò)限制小穗殼細(xì)胞的增殖來(lái)影響谷粒大小,過(guò)表達(dá)OsMKP1時(shí)會(huì)產(chǎn)生小的谷粒;同時(shí)OsMKP1能直接與mitogen-activated protein kinase 6(OsMAPK6)相互作用并使其失活,表明OsMAPK6的可逆磷酸化在確定谷粒大小中起著重要的作用[34]。SMALL GRAIN 1(SMG1)編碼mitogen-activated protein kinase kinase 4(OsMKK4),smg1突變體由于細(xì)胞增殖缺陷而具有小而輕的谷粒、致密且直立的圓錐花序和相對(duì)較矮的植株;此外OsMKK4可以抑制BR反應(yīng)以及BR相關(guān)基因的表達(dá),表明MAPK途徑與BRs在谷粒生長(zhǎng)中可能存在聯(lián)系[35]。dwarf and small grain1(dsg1)突變體具有小谷粒、植株矮小和葉片直立的表型,DSG1編碼OsMAPK6,OsMKK4可能是OsMAPK6的上游MAPK激酶,dsg1突變體中的內(nèi)源性BR水平降低了,并且當(dāng)不論是否施加外源性BR時(shí),dsg1突變體中幾種有關(guān)BR信號(hào)轉(zhuǎn)導(dǎo)的基因和反饋抑制基因的表達(dá)均被改變,表明OsMAPK6可能影響B(tài)R穩(wěn)態(tài)和信號(hào)轉(zhuǎn)導(dǎo)[36]。一個(gè)隱性突變基因grain length and awn 1 (gla1)的突變位于編碼MAPK磷酸酶基因中的單核苷酸多態(tài)性(single-nucleotide polymorphism,SNP),GLA1蛋白與OsMAPK6相互作用,通過(guò)OsMAPK6的去磷酸化來(lái)控制谷粒大小,GLA1的過(guò)表達(dá)會(huì)導(dǎo)致谷粒長(zhǎng)度和質(zhì)量減小,表明GLA1可以作為OsMAPKK4-OsMAPK6級(jí)聯(lián)的負(fù)調(diào)節(jié)因子[37]。SMALL GRAIN 2(SMG2)編碼mitogen-activated protein kinase kinase kinase 10(OsMKKK10),smg2突變體具有小而輕的谷粒、短穗和半矮稈植株,OsMKKK10與OsMKK4相互作用并使其磷酸化,綜上所述OsMKKK10、OsMKK4和OsMAPK6可能是作為一個(gè)級(jí)聯(lián)調(diào)控谷粒大小[38],并且MAPK途徑和BRs在谷粒生長(zhǎng)中可能存在一定聯(lián)系。

5 G蛋白信號(hào)途徑

水稻的異源三聚體G蛋白復(fù)合物含有1個(gè)α亞基基因RICE G-PROTEIN ALPHA SUBUNIT(RGA1),4個(gè)GTP結(jié)合蛋白基因eXtra Large GTP-binding proteins(XLGs),1個(gè)β亞基基因RICE G-PROTEIN BETA SUBUNIT (RGB1)和5個(gè)γ亞基基因[暫定名為Rice heterotrimeric G-protein gamma subunit1(RGG1),Rice heterotrimeric G-protein gamma subunit2(RGG2),Rice heterotrimeric G-protein gamma subunit 3(RGG3)/GRAIN SIZE 3 (GS3),Rice heterotrimeric G-protein gamma subunit 4(RGG4)/DENSE AND ERECT PANICLE1 (DEP1)/DENSE PANICLE1 (DN1) 和Rice heterotrimeric G-protein gamma subunit 5(RGG5)][39]。在最近發(fā)現(xiàn)的一個(gè)由異源三聚體G蛋白的5個(gè)亞基組成的通路中,Gβ蛋白對(duì)植物的存活和生長(zhǎng)至關(guān)重要,Gα為谷粒增大提供了基礎(chǔ),3種Gγ蛋白DEP1、GGC2和GS3拮抗地調(diào)節(jié)谷粒大小,其中DEP1和GGC2都可以在與RGB1形成復(fù)合物時(shí)增加谷粒的長(zhǎng)度[40]。RGA1基因的功能喪失會(huì)引起水稻植株的形態(tài)異常:直立的葉子和小而圓的種子[41]。此外,水稻Gα影響B(tài)R信號(hào)級(jí)聯(lián),但Gα可能不是BRI1介導(dǎo)的轉(zhuǎn)導(dǎo)中的信號(hào)分子[42]。

植物特異性G蛋白γ亞基ARABIDOPSIS G-PROTEIN GAMMA SUBUNIT 3(AGG3)通過(guò)增加擬南芥的增殖生長(zhǎng)期來(lái)促進(jìn)種子和器官生長(zhǎng),同時(shí)AGG3包含跨膜結(jié)構(gòu)域,它位于質(zhì)膜中并與功能性G蛋白α亞基G-protein α subunit(GPA1)和G蛋白β亞基Arabidopsis G-Protein β Subunit 1(AGB1)相互作用[43]。當(dāng)將擬南芥G蛋白γ亞基AGG3在亞麻薺中用組成型啟動(dòng)子或種子特異性啟動(dòng)子過(guò)表達(dá)時(shí),每棵植株的種子大小、種子質(zhì)量和種子數(shù)量均增加15%~40%[44]。AGG3在水稻中的同源基因GS3和DEP1/qPE9-1已被確定為種子大小和產(chǎn)量的重要數(shù)量性狀位點(diǎn),GS3通過(guò)限制細(xì)胞增殖來(lái)影響種子和器官生長(zhǎng)[45]。DEP1/qPE9-1蛋白的N末端含有G gamma-like(GGL)結(jié)構(gòu)域,GGL負(fù)調(diào)控谷粒的長(zhǎng)度和質(zhì)量,而C末端的von Willebrand factor type C(VWFC)結(jié)構(gòu)域可以抑制GGL的負(fù)調(diào)控作用。但只有1個(gè)VWFC結(jié)構(gòu)域時(shí)不能改變GGL結(jié)構(gòu)域?qū)攘4笮〉囊种芠46]。水稻谷粒產(chǎn)量QTL qLGY3編碼MADS結(jié)構(gòu)域轉(zhuǎn)錄因子OsMADS1,它是G蛋白βγ二聚體關(guān)鍵的下游效應(yīng)蛋白;Gγ亞基GS3和DEP1直接與MADS轉(zhuǎn)錄因子保守的角蛋白樣結(jié)構(gòu)域相互作用,以增強(qiáng)OsMADS1的轉(zhuǎn)錄活性并促進(jìn)共同靶基因的協(xié)同反式激活,從而調(diào)節(jié)谷粒的大小和形狀[47]。Hordeum vulgare Dense anderectpanicle1(HvDep1)是AGG3型亞基的編碼基因,它在大麥(Hordeum vulgare L.)中具有功能喪失性質(zhì)的突變,這可以正調(diào)節(jié)大麥的莖伸長(zhǎng)和種子大小,但是HvDep1對(duì)大麥產(chǎn)量的影響是受基因型和環(huán)境共同調(diào)節(jié)的[48]。

6 轉(zhuǎn)錄調(diào)控因子

轉(zhuǎn)錄因子在調(diào)控種子大小中起著重要的作用。BIG SEEDS1(BS1)基因編碼植物特異性轉(zhuǎn)錄調(diào)節(jié)因子,通過(guò)抑制原代細(xì)胞的增殖來(lái)調(diào)控植物器官大?。òǚN子、種莢和葉片)[49]。GRAIN WEIGHT8(GW8)編碼SQUAMOSA promoter binding protein (SBP)家族轉(zhuǎn)錄因子SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 16(OsSPL16),該基因的高表達(dá)促進(jìn)細(xì)胞分裂和谷粒灌漿,對(duì)水稻的谷粒寬度和產(chǎn)量具有積極影響,此外GW8的谷粒大小和等位基因變異之間的相關(guān)性表明,在水稻育種計(jì)劃中可能選擇了啟動(dòng)子區(qū)域內(nèi)的突變[50]。

在水稻中GRAIN SIZE 2(GS2)編碼RICE GROWTH REGULATING FACTOR 4(OsGRF4),定位于細(xì)胞核并可作為轉(zhuǎn)錄激活因子,一種罕見(jiàn)的突變影響了GS2的microRNA(miR396c)結(jié)合位點(diǎn):第3個(gè)外顯子中一個(gè)2 bp的突變(1187TC→AA),導(dǎo)致它的表達(dá)水平升高,產(chǎn)生了更大的細(xì)胞并且增加了細(xì)胞數(shù)量,從而提高了谷粒質(zhì)量和產(chǎn)量[51-52]。Growth-regulating factor interacting factor1(OsGIF1)通過(guò)調(diào)控細(xì)胞大小來(lái)影響葉片、莖和谷粒的大小,此外它也影響水稻的繁殖[53]。OsGIF1直接與OsGRF4相互作用,并且上調(diào)其表達(dá)水平從而增加谷粒大小,綜上所述,miR396c-OsGRF4-OsGIF1調(diào)控機(jī)制在谷粒大小的確定中起著重要作用,并對(duì)水稻產(chǎn)量的提高具有重要意義[54]。

由SUPPRESSOR 7 OF DA1(SOD7)編碼的B3 domain transcriptional repressor NGATHA-like protein (NGAL2),通過(guò)限制珠被和發(fā)育中種子中的細(xì)胞增殖來(lái)調(diào)節(jié)種子大小[52]。DEVELOPMENT-RELATED PcG TARGET IN THE APEX4 (DPA4/NGAL3)和SOD7與種子大小調(diào)節(jié)因子KLUH(KLU)在同一途徑中起作用以調(diào)節(jié)種子生長(zhǎng),但獨(dú)立于DA1,同時(shí)SOD7直接結(jié)合KLUH(KLU)的啟動(dòng)子并抑制KLU的表達(dá)[55]。

7 結(jié)論與展望

植物種子大小受到珠被、胚乳和胚的協(xié)同控制,同時(shí)這些組織的發(fā)育又被各種分子機(jī)制調(diào)節(jié)著(表1)。如圖1所示,泛素-蛋白酶體途徑和MAPK信號(hào)途徑主要影響珠被的大小,IKU途徑主要調(diào)控胚乳的發(fā)育等;并且控制種子大小的幾個(gè)途徑之間可能會(huì)通過(guò)一些基因或植物激素構(gòu)成聯(lián)系,例如生長(zhǎng)素信號(hào)轉(zhuǎn)導(dǎo)途徑和BR信號(hào)轉(zhuǎn)導(dǎo)途徑(BZR1與ARF2),IKU途徑和細(xì)胞分裂素信號(hào)途徑(MINI3與CKX2),BR信號(hào)轉(zhuǎn)導(dǎo)途徑和MAPK途徑(OsMKK4、OsMAPK6與BR相關(guān)基因),G蛋白途徑和BR信號(hào)轉(zhuǎn)導(dǎo)途徑(Gα影響B(tài)R信號(hào)級(jí)聯(lián))等。盡管如此,調(diào)控種子大小的分子機(jī)制仍然不夠清楚,各種途徑之間的聯(lián)系甚少,還不能闡明珠被、胚乳和胚之間的發(fā)育是如何相互協(xié)調(diào)的。

在經(jīng)濟(jì)作物中,探索調(diào)控種子大小的基因意義重大,可以直接有效地提高產(chǎn)量,然而很多已經(jīng)被鑒定出的基因或QTL并不能直接用于改造已有品種,對(duì)促進(jìn)分子設(shè)計(jì)育種、提高作物產(chǎn)量和質(zhì)量的作用并不大。因此須要不斷探索新的功能基因或是已知基因的新功能,同時(shí)篩選出切實(shí)可用的分子標(biāo)記,將研究工作真正落實(shí)到生產(chǎn)中。

參考文獻(xiàn):

[1]Westoby M,F(xiàn)alster D S,Angela T M,et al. Plant ecological strategies:some leading dimensions of variation between species[J]. Annual Review of Ecology and Systematics,2002,33(1):125-159.

[2]Moles A T,Ackerly D D,Webb C O,et al. A brief history of seed size[J]. Science,2005,307(5709):576-580.

[3]劉春明,程佑發(fā),劉永秀,等. 植物種子發(fā)育的分子機(jī)理[J]. 中國(guó)基礎(chǔ)科學(xué),2016,18(2):1-13.

[4]Li N,Li Y H. Signaling pathways of seed size control in plants[J]. Current Opinion in Plant Biology,2016,33:23-32.

[5]Song X J,Huang W,Shi M,et al. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase[J]. Nature Genetics,2007,39(5):623-630.

[6]Li Y,Zheng L,Corke F,et al. Control of final seed and organ size by the DA1 gene family in Arabidopsis thaliana[J]. Genes & Development,2008,22(10):1331-1336.

[7]Xia T,Li N,Dumenil J,et al. The ubiquitin receptor DA1 interacts

with the E3 ubiquitin ligase DA2 to regulate seed and organ size in Arabidopsis[J]. The Plant Cell,2013,25(9):3347-3359.

[8]Du L,Li N,Chen L,et al. The ubiquitin receptor DA1 regulates seed and organ size by modulating the stability of the ubiquitin-specific protease UBP15/SOD2 in Arabidopsis[J]. The Plant Cell,2014,26(2):665-677.

[9]夏 天,李 娜,李云海. 植物種子和器官大小調(diào)控研究取得新進(jìn)展[J]. 遺傳,2013,35(10):1208.

[10]Wang J L,Tang M Q,Chen S,et al. Down-regulation of BnDA1,whose gene locus is associated with the seeds weight,improves the seeds weight and organ size in Brassica napus[J]. Plant Biotechnology Journal,2017,15(8):1024-1033.

[11]Peng Y,Chen L,Lu Y,et al. The ubiquitin receptors DA1,DAR1,and DAR2 redundantly regulate endoreduplication by modulating the stability of TCP14/15 in Arabidopsis[J]. The Plant Cell,2015,27(3):649-662.

[12]夏 天,李 杰,李勝軍,等. DA1和DA2協(xié)同調(diào)控植物種子和器官大小[C]//植物分子生物學(xué)與現(xiàn)代農(nóng)業(yè)——全國(guó)植物生物學(xué)研討會(huì)論文摘要集,2010.

[13]Liu Y,Wang F,Zhang H,et al. Functional characterization of the Arabidopsis ubiquitin-specific protease gene family reveals specific role and redundancy of individual members in development[J]. The Plant Journal:for Cell and Molecular Biology,2008,55(5):844-856.

[14]Wang Z,Li N,Jiang S,et al. SCF(SAP) controls organ size by targeting PPD proteins for degradation in Arabidopsis thaliana[J]. Nature Communications,2016,7:11192.

[15]Li N,Liu Z,Wang Z,et al. STERILE APETALA modulates the stability of a repressor protein complex to control organ size in Arabidopsis thaliana[J]. PLoS Genetics,2018,14(2):e1007218.

[16]Wang A,Garcia D,Zhang H,et al. The VQ motif protein IKU1 regulates endosperm growth and seed size in Arabidopsis[J]. The Plant Journal:for Cell and Molecular Biology,2010,63(4):670-679.

[17]Garcia D,Saingery V,Chambrier P,et al. Arabidopsis haiku mutants reveal new controls of seed size by endosperm[J]. Plant Physiology,2003,131(4):1661-1670.

[18]Luo M,Dennis E S,Berger F,et al. MINISEED3 (MINI3),a WRKY family gene,and HAIKU2 (IKU2),a leucine-rich repeat (LRR) KINASE gene,are regulators of seed size in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America,2005,102(48):17531-17536.

[19]Zhou Y,Zhang X,Kang X,et al. SHORT HYPOCOTYL UNDER BLUE1 associates with MINISEED3 and HAIKU2 promoters in vivo to regulate Arabidopsis seed development[J]. The Plant Cell,2009,21(1):106-117.

[20]Li J,Nie X,Tan J L,et al. Integration of epigenetic and genetic controls of seed size by cytokinin in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America,2013,110(38):15479-15484.

[21]Jameson P E,Song J. Cytokinin:a key driver of seed yield[J]. Journal of Experimental Botany,2016,67(3):593-606.

[22]Riefler M,Novak O,Strnad M,et al. Arabidopsis cytokinin receptor mutants reveal functions in shoot growth,leaf senescence,seed size,germination,root development,and cytokinin metabolism[J]. The Plant Cell,2006,18(1):40-54.

[23]Kumar M N,Verslues P E. Stress physiology functions of the Arabidopsis histidine kinase cytokinin receptors[J]. Physiologia Plantarum,2015,154(3):369-380.

[24]Ulmasov T,Hagen G,Guilfoyle T J. ARF1,a transcription factor that binds to auxin response elements[J]. Science,1997,276(5320):1865-1868.

[25]Hagen G,Guilfoyle T. Auxin-responsive gene expression:genes,promoters and regulatory factors[J]. Plant Molecular Biology,2002,49(3/4):373-385.

[26]Ulmasov T,Hagen G,Guilfoyle T J. Activation and repression of transcription by auxin-response factors[J]. Proceedings of the National Academy of Sciences of the United States of America,1999,96(10):5844-5849.

[27]Okushima Y,Mitina I,Quach H L,et al. AUXIN RESPONSE FACTOR 2 (ARF2):a pleiotropic developmental regulator[J]. The Plant Journal,2005,43(1):29-46.

[28]Sun Y W,Wang C M,Wang N,et al. Manipulation of Auxin Response Factor 19 affects seed size in the woody perennial Jatropha curcas[J]. Scientific Reports,2017,7:40844.

[29]Ye J,Liu P,Zhu C,et al. Identification of candidate genes JcARF19 and JcIAA9 associated with seed size traits in Jatropha[J]. Functional & Integrative Genomics,2014,14(4):757-766.

[30]Jiang W B,Huang H Y,Hu Y W,et al. Brassinosteroid regulates seed size and shape in Arabidopsis[J]. Plant Physiology,2013,162(4):1965-1977.

[31]Zhu X,Liang W,Cui X,et al. Brassinosteroids promote development of rice pollen grains and seeds by triggering expression of Carbon Starved Anther,a MYB domain protein[J]. The Plant Journal,2015,82(4):570-581.

[32]Liu J F,Chen J,Zheng X M,et al. GW5 acts in the brassinosteroid signalling pathway to regulate grain width and weight in rice[J]. Nature Plants,2017,3:17043.

[33]Che R H,Tong H N,Shi B H,et al. Control of grain size and rice yield by GL2-mediated brassinosteroid responses[J]. Nature Plants,2015,2(1):15195.

[34]Xu R,Yu H,Wang J,et al. A mitogen-activated protein kinase phosphatase influences grain size and weight in rice[J]. The Plant Journal,2018,95(6):937-946.

[35]Duan P,Rao Y,Zeng D,et al. SMALL GRAIN 1,which encodes a mitogen-activated protein kinase kinase 4,influences grain size in rice[J]. The Plant Journal,2014,77(4):547-557.

[36]Liu S,Hua L,Dong S,et al. OsMAPK6,a mitogen-activated protein kinase,influences rice grain size and biomass production[J]. The Plant Journal,2015,84(4):672-681.

[37]Wang T,Zou T,He Z,et al. GRAIN LENGTH AND AWN 1 negatively regulates grain size in rice[J]. Journal of Integrative Plant Biology,2019,61(10):1036-1042.

[38]Xu R,Duan P,Yu H,et al. Control of grain size and weight by the OsMKKK10-OsMKK4-OsMAPK6 signaling pathway in rice[J]. Molecular Plant,2018,11(6):860-873.

[39]Matsuta S,Nishiyama A,Chaya G,et al. Characterization of heterotrimeric G protein γ4 subunit in rice[J]. International Journal of Molecular Sciences,2018,19(11):3596.

[40]Sun S,Wang L,Mao H,et al. A G-protein pathway determines grain size in rice[J]. Nature Communications,2018,9(1):851.

[41]Fujisawa Y,Kato T,Ohki S,et al. Suppression of the heterotrimeric G protein causes abnormal morphology,including dwarfism,in rice[J]. Proceedings of the National Academy of Sciences of the United States of America,1999,96(13):7575-7580.

[42]Oki K,Inaba N,Kitagawa K,et al. Function of the alpha subunit of rice heterotrimeric G protein in brassinosteroid signaling[J]. Plant & Cell Physiology,2009,50(1):161-172.

[43]Li S,Liu Y,Zheng L,et al. The plant-specific G protein γ subunit AGG3 influences organ size and shape in Arabidopsis thaliana[J]. The New Phytologist,2012,194(3):690-703.

[44]Roy Choudhury S,Riesselman A J,Pandey S. Constitutive or seed-specific overexpression of Arabidopsis G-protein γ subunit 3 (AGG3) results in increased seed and oil production and improved stress tolerance in Camelina sativa[J]. Plant Biotechnology Journal,2014,12(1):49-59.

[45]Li S,Liu W,Zhang X,et al. Roles of the Arabidopsis G protein γ subunit AGG3 and its rice homologs GS3 and DEP1 in seed and organ size control[J]. Plant Signaling & Behavior,2012,7(10):1357-1359.

[46]Li X,Tao Q,Miao J,et al. Evaluation of differential qPE9-1/DEP1 protein domains in rice grain length and weight variation[J]. Rice,2019,12(1):5.

[47]Liu Q,Han R,Wu K,et al. G-protein βγ subunits determine grain size through interaction with MADS-domain transcription factors in rice[J]. Nature Communications,2018,9:852.

[48]Wendt T,Holme I,Dockter C,et al. HvDep1 is a positive regulator of culm elongation and grain size in barley and impacts yield in an Environment-Dependent manner[J]. PLoS One,2016,11(12):e0168924.

[49]Ge L,Yu J,Wang H,et al. Increasing seed size and quality by manipulating BIG SEEDS1 in legume species[J]. Proceedings of the National Academy of Sciences of the United States of America,2016,113(44):12414-12419.

[50]Wang S,Wu K,Yuan Q,et al. Control of grain size,shape and quality by OsSPL16 in rice[J]. Nature Genetics,2012,44(8):950-954.

[51]Hu J,Wang Y,F(xiàn)ang Y,et al. A rare allele of GS2 enhances grain size and grain yield in rice[J]. Molecular Plant,2015,8(10):1455-1465.

[52]Duan P,Ni S,Wang J,et al. Regulation of OsGRF4 by OsmiR396 controls grain size and yield in rice[J]. Nature Plants,2015,2:15203.

[53]He Z S,Zeng J,Ren Y,et al. OsGIF1 positively regulates the sizes of stems,leaves,and grains in rice[J]. Frontiers in Plant Science,2017,8:1730.

[54]Li S,Gao F,Xie K,et al. The OsmiR396c-OsGRF4-OsGIF1 regulatory module determines grain size and yield in rice[J]. Plant Biotechnology Journal,2016,14(11):2134-2146.

[55]Zhang Y,Du L,Xu R,et al. Transcription factors SOD7/NGAL2 and DPA4/NGAL3 act redundantly to regulate seed size by directly repressing KLU expression in Arabidopsis thaliana[J]. The Plant Cell,2015,27(3):620-632.

[56]張雪晶,江文波,龐永珍. 植物種子大小調(diào)控機(jī)制的研究進(jìn)展[J]. 植物生理學(xué)報(bào),2016,52(7):998-1010.鄭 林,祝令偉,郭學(xué)軍,等. 沙門(mén)氏菌主要流行血清型耐藥性的研究進(jìn)展[J]. 江蘇農(nóng)業(yè)科學(xué),2020,48(6):8-12.

猜你喜歡
分子機(jī)制
縮泉丸補(bǔ)腎縮尿的分子機(jī)制探討
昌江| 沈阳市| 滨海县| 涡阳县| 遵义县| 突泉县| 沾益县| 诏安县| 中宁县| 朔州市| 博爱县| 鹤峰县| 武邑县| 克山县| 绥棱县| 古蔺县| 揭阳市| 定西市| 林周县| 仁化县| 岳阳市| 上栗县| 天镇县| 靖西县| 印江| 利川市| 怀来县| 濮阳县| 通渭县| 洮南市| 湘潭县| 介休市| 封丘县| 涿州市| 庆元县| 泸定县| 黔西| 班玛县| 屏边| 治多县| 钦州市|