王雯 劉坤
摘要:轉(zhuǎn)錄中介體復(fù)合物(Mediator complex)廣泛存在于真核生物中,在進(jìn)化上高度保守,是一個具有模塊化組織的大復(fù)合物,參與轉(zhuǎn)錄因子與RNA聚合酶Ⅱ之間的信息傳遞。中介體復(fù)合物的主要功能是通過其特定亞基與不同信號通路激發(fā)的轉(zhuǎn)錄因子相互作用,調(diào)節(jié)下游基因的表達(dá)。此外,中介體復(fù)合物還與各種輔因子相互作用,參與轉(zhuǎn)錄延伸、mRNA輸出及選擇性剪切等過程,從而調(diào)控細(xì)胞的各種生理功能。中介體復(fù)合物與疾病的密切聯(lián)系使得將中介體作為靶標(biāo)研究疾病的治療方法成為可能。以中介體復(fù)合物的結(jié)構(gòu)為基礎(chǔ),重點(diǎn)介紹了中介體復(fù)合物在基因表達(dá)調(diào)控中的分子機(jī)制及功能,以期為后續(xù)研究提供參考。
關(guān)鍵詞:中介體復(fù)合物(Mediator complex);結(jié)構(gòu);分子機(jī)制;功能
中圖分類號:Q71? ? ? ? ?文獻(xiàn)標(biāo)識碼:A
文章編號:0439-8114(2020)03-0005-08
DOI:10.14088/j.cnki.issn0439-8114.2020.03.001
Resarch progress of transcription mediator complex
WANG Wen,LIU Kun
(School of Life Sciences,Tianjin University,Tianjin 300072,China)
Abstract: The mediator complex, a highly conserved large complex with modular tissue, is widely distributed in eukaryotes and is involved in the transmission of information between transcription factors and RNA polymerase II. The main function of the mediator complex is to regulate the expression of downstream genes by interacting with transcription factors stimulated by different signaling pathways. In addition, the mediator complex interacts with various cofactors to participate in processes such as transcriptional elongation, mRNA export, and selective splicing, thereby controlling various physiological functions of the cell. The close relationship between mediator complexes and disease makes it possible to study the treatment of disease with mediator as a target. Based on the structure of the mediator complex, the molecular mechanism and function of the mediator complex in the regulation of gene expression were introduced, in order to provide reference for the following research.
Key words: mediator complex; structure; molecular mechanism; function
中介體復(fù)合物(Mediator complex)最早在酵母中被發(fā)現(xiàn),此后陸續(xù)在果蠅和小鼠的細(xì)胞中發(fā)現(xiàn)了酵母中介體復(fù)合物的同源蛋白[1,2]。2004年,科學(xué)家對已發(fā)現(xiàn)的中介體復(fù)合物各亞基采用了統(tǒng)一的命名法,突出了所有真核生物中中介體復(fù)合物的保守性。中介體復(fù)合物作為最大的銜接蛋白之一,由30個不同亞基組成,不同模塊之間可以發(fā)生各種構(gòu)象變化,可以與3 000個潛在的轉(zhuǎn)錄因子相互作用,幾乎參與細(xì)胞中的所有基因轉(zhuǎn)錄,因此理解這種大分子機(jī)制是分子生物學(xué)中的巨大挑戰(zhàn)之一。中介體復(fù)合物在轉(zhuǎn)錄中具有突出的作用,不僅穩(wěn)定起始復(fù)合物,還參與DNA折疊和染色質(zhì)相關(guān)的DNA重塑等[3]。近年來中介體復(fù)合物的功能及對疾病的影響備受關(guān)注,它在酵母、植物和人體的多種信號轉(zhuǎn)導(dǎo)途徑中發(fā)揮重要作用。本文重點(diǎn)論述中介體復(fù)合物的亞基組成和結(jié)構(gòu),試圖歸納其參與的轉(zhuǎn)錄調(diào)節(jié)過程及功能,以期為研究中介體復(fù)合物提供理論依據(jù)。
1? 中介體的組成和結(jié)構(gòu)
中介體復(fù)合物是一個由多亞基組成的生物大分子,在哺乳動物中大小約2 MDa。由于其具有異質(zhì)性、內(nèi)在靈活性,并且尺寸較大,存在亞基多,純化產(chǎn)率較低,中介體復(fù)合物的研究一度受到技術(shù)和方法限制[4]。近年來,通過體外生化試驗(yàn)和冷凍電鏡技術(shù)等先進(jìn)手段,中介體的研究取得了較大的突破,中介體復(fù)合物的組成結(jié)構(gòu)得到了體外重建[4-7]。
1.1? 酵母中介體復(fù)合物的組成和結(jié)構(gòu)
酵母中介體復(fù)合物(Mediator of RNA polymerase II transcription subunit,MED)由25個亞基組成(圖1A),大小約1.4 MDa,其中MED1、MED4、MED7、MED9、MED10、MED19、MED21和MED31構(gòu)成中介體的頭部模塊,MED6、MED8、MED11、MED14、MED17、MED18、MED20及MED22構(gòu)成中部模塊,頭部模塊和中部模塊是中介體復(fù)合物的核心,與RNA聚合酶Ⅱ(RNA polymerase Ⅱ,Pol Ⅱ)相互作用參與轉(zhuǎn)錄過程[8]。酵母中介體15個核心亞基復(fù)合物的晶體結(jié)構(gòu)已被報道(不含MED1)[5]。MED2、MED3、MED5、MED15和MED16組成尾部模塊,主要通過與轉(zhuǎn)錄因子相互作用以調(diào)控轉(zhuǎn)錄,MED12、MED13、CycC同CDK8構(gòu)成細(xì)胞周期素依賴性激酶8(Cyclin-dependent kinase 8,CDK8)模塊,該模塊與中介體的其余部分可逆性結(jié)合以調(diào)節(jié)轉(zhuǎn)錄過程[4,9,10]。MED14連接中介體頭部、中部和尾部模塊[11,12]。在體外對頭部和中部模塊進(jìn)行重組時發(fā)現(xiàn),頭部和中部模塊可以彼此穩(wěn)定結(jié)合,但得到的復(fù)合物在轉(zhuǎn)錄中是無活性的,在此基礎(chǔ)上加入MED14可恢復(fù)轉(zhuǎn)錄活性并顯著增強(qiáng)復(fù)合物與Pol Ⅱ的相互作用。同時還發(fā)現(xiàn)MED14添加到復(fù)合物中顯著增強(qiáng)了與Pol Ⅱ的相互作用[4]。
1.2? 哺乳動物中介體復(fù)合物的組成和結(jié)構(gòu)
哺乳動物中的中介體復(fù)合物由30個蛋白亞基組成,與酵母中介體類似可以分成不同的模塊。從單細(xì)胞生物到后生動物的進(jìn)化過程中,中介體的組成和結(jié)構(gòu)高度保守[4](圖1B),酵母中介體復(fù)合物的亞基模塊與哺乳動物的亞基模塊存在廣泛同源性。在后生動物中介體中,MED24、MED27和MED29分別與酵母中的MED5、MED3和MED2直系同源[10]。但隨著生物的進(jìn)化,轉(zhuǎn)錄的基因數(shù)目和復(fù)雜性不斷增加,導(dǎo)致中介體復(fù)合物的亞基數(shù)也在增加。例如人中介體亞基MED23、MED25、MED26、MED28和MED30在酵母中介體復(fù)合物中不存在,本文中這5個組分的模塊分配方式是預(yù)測的結(jié)果。
1.3? 中介體復(fù)合物的構(gòu)象變化及三維結(jié)構(gòu)
中介體復(fù)合物在轉(zhuǎn)錄中的作用涉及多種機(jī)制,其中構(gòu)象改變在功能調(diào)節(jié)中發(fā)揮關(guān)鍵作用[13]。中介體的較大體積和表面積有助于與多種分子及蛋白發(fā)生相互作用,使其構(gòu)象發(fā)生變化,已經(jīng)證明中介體復(fù)合物能夠與多種轉(zhuǎn)錄因子結(jié)合,并與轉(zhuǎn)錄起始復(fù)合物(Preinitiation complex,PIC)相互作用形成前延伸復(fù)合物(Pre-elongation complex,PEC)[14],中介體復(fù)合物的結(jié)構(gòu)變化可能導(dǎo)致PEC的結(jié)構(gòu)和功能發(fā)生改變。研究發(fā)現(xiàn)中介體復(fù)合物的不同亞基與轉(zhuǎn)錄因子p53相互作用會導(dǎo)致構(gòu)象發(fā)生不同的變化,并顯著影響PIC的活性[15]。此外,在其他轉(zhuǎn)錄因子結(jié)合中介體時也觀察到類似的構(gòu)象變化,說明轉(zhuǎn)錄因子可能通過改變中介體復(fù)合物的構(gòu)象去調(diào)節(jié)PIC活性,從而調(diào)節(jié)下游基因表達(dá)[16]。中介體復(fù)合物與Pol Ⅱ相互作用時,核心模塊(core Mediator,cMED)發(fā)揮主要作用,cMED的結(jié)構(gòu)(圖2)包含15個亞基,不含MED1,原因可能是在結(jié)晶過程中發(fā)生了解離[5]。該結(jié)構(gòu)揭示了頭部模塊和中部模塊的亞基結(jié)構(gòu),也顯示了兩個模塊間的相互作用方式,為功能的研究提供了分子機(jī)制和理論基礎(chǔ)。
2? 中介體復(fù)合物在基因表達(dá)調(diào)控中的分子機(jī)制及功能
中介體復(fù)合物幾乎參與了所有的基因轉(zhuǎn)錄,而基因的轉(zhuǎn)錄調(diào)控是一個非常復(fù)雜的過程,先前研究的轉(zhuǎn)錄控制模型對基因調(diào)控原理提供了重要的見解,揭示了中介體如何將上游眾多信號通路的信息正確地傳遞至基因啟動子上的轉(zhuǎn)錄裝置,從而精確地控制下游基因的表達(dá)[17],以下結(jié)合近年來對中介體的研究,對中介體復(fù)合物在基因表達(dá)調(diào)控中的分子機(jī)制及功能作詳細(xì)描述。
2.1? 增強(qiáng)子招募中介體
中介體在轉(zhuǎn)錄激活中起作用的關(guān)鍵是被增強(qiáng)子招募,然后與不同啟動子相對應(yīng)的轉(zhuǎn)錄起始復(fù)合物(Preinitiation complex,PIC)相互作用,以調(diào)節(jié)轉(zhuǎn)錄。中介體復(fù)合物并不與DNA直接結(jié)合,而是與轉(zhuǎn)錄因子(Transcription factors,TFs)相互作用招募至增強(qiáng)子處。不同亞基與對應(yīng)TF的這種相互作用是靶基因活化的必要條件,所以特定亞基的缺失可以在不同程度上阻止對應(yīng)TF調(diào)節(jié)的基因表達(dá),酵母和低等后生動物的遺傳研究已經(jīng)證明了這一點(diǎn),并在哺乳動物中也有發(fā)現(xiàn)[18]。例如,亞基MED1是核受體的共同靶標(biāo),研究發(fā)現(xiàn)敲除小鼠胚胎成纖維細(xì)胞中的MED1會導(dǎo)致核受體依賴性基因表達(dá)缺陷,而與其他亞基相互作用的TF的激活未受到負(fù)面影響[19],敲除小鼠細(xì)胞中MED23會致使轉(zhuǎn)錄因子ELK-1或E1A的失活,但并不影響轉(zhuǎn)錄因子VP16和p53的活化[20]。中介體復(fù)合物主要通過尾部模塊與IF相互作用[8],其他的亞基也有參與,中介體亞基與不同轉(zhuǎn)錄因子相互作用及相關(guān)功能詳見表1。
2.2? 中介體復(fù)合物與PIC相互作用促進(jìn)PIC的形成
中介體被招募到增強(qiáng)子區(qū)域后,為協(xié)助PIC裝配,被傳送至在核啟動子形成的PIC處[107,108]。增強(qiáng)子結(jié)合IF后招募共轉(zhuǎn)錄激活因子以修飾和重塑染色質(zhì),用于改變?nèi)旧|(zhì)結(jié)構(gòu)并使其更易獲得其他因子,其中中介體就是共轉(zhuǎn)錄激活因子之一,然后招募更多的共激活因子組裝PIC,包括Pol Ⅱ(含12個亞基)、通用轉(zhuǎn)錄因子(General transcription factors,GTFs)、轉(zhuǎn)錄起始因子(Transcription initiation factor,TIF)ⅡA、TIFⅡB、TIFⅡD、TIFⅡE、TIFⅡF和TIFⅡH[109]。中介體復(fù)合物能夠與PIC直接相互作用,不同于被增強(qiáng)子招募時中介體包含所有模塊,與核心啟動子相互作用時不含Cdk8激酶模塊,頭部和中部模塊發(fā)揮主要作用。招募后的Pol Ⅱ、TFs和中介體復(fù)合物參與構(gòu)成轉(zhuǎn)錄起始的全酶,Pol Ⅱ的羧基末端結(jié)構(gòu)域(Carboxyl terminal domain,CTD)區(qū)域是中介體復(fù)合物與之結(jié)合的重要位點(diǎn),包括解旋酶活性和激酶活性等多種酶活性的TF IIH,能夠幫助打開DNA雙鏈,磷酸化Pol Ⅱ CTD,以促使轉(zhuǎn)錄起始。經(jīng)典理論認(rèn)為中介體復(fù)合物在全酶中的作用是短暫的,在Pol Ⅱ完成轉(zhuǎn)錄起始并即將轉(zhuǎn)錄延伸時,中介體復(fù)合物將與Pol Ⅱ分離,分離的過程與CTD的磷酸化有關(guān)。有報道稱CTD的磷酸化與中介體復(fù)合物的Cdk8激酶模塊有關(guān),并認(rèn)為Cdk8激酶模塊通過磷酸化CTD抑制轉(zhuǎn)錄過程[110]。這一定程度上與中介體復(fù)合物和PIC相互作用時不包含Cdk8激酶模塊的結(jié)論一致。
2.3? 中介體復(fù)合物的“招募后”功能
越來越多的證據(jù)表明,中介體不僅在招募Pol Ⅱ裝配PIC中起關(guān)鍵作用,也參與招募后的諸多功能,以使靶基因的轉(zhuǎn)錄從多方面得到調(diào)控,達(dá)到精確的效果。
中介體復(fù)合物參與轉(zhuǎn)錄延伸。構(gòu)成核心正相關(guān)因子(Positive transcriptional elongation factor b,P-TEFb)的cyclinT1/Cdk9異二聚體通常被認(rèn)為是刺激RNA聚合酶Ⅱ延伸的轉(zhuǎn)錄活性形式,大約一半的細(xì)胞P-TEFb存在于具有7SK snRNA和HEXIM1蛋白的無活性復(fù)合物中,剩余的一半與溴結(jié)構(gòu)域蛋白Brd4相互作用,與Brd4的結(jié)合使P-TEFb 具有轉(zhuǎn)錄活性。哺乳動物Brd4屬于BET家族,基于其他BET蛋白在轉(zhuǎn)錄中的作用,Brd4被認(rèn)為可能也參與了轉(zhuǎn)錄,人轉(zhuǎn)錄介體復(fù)合物被報道含有Brd4或Brd4類似蛋白[111,112]。除此之外,有研究發(fā)現(xiàn)中介體復(fù)合物與P-TEFb有直接的物理相互作用[113]。在酵母中還發(fā)現(xiàn)中介體復(fù)合物能與延伸因子TFIIS相互作用,進(jìn)一步影響延伸因子DSlF,從而調(diào)節(jié)轉(zhuǎn)錄延伸過程[114]。
中介體復(fù)合物參與mRNA的輸出。成熟的mRNA形成之后,需要通過核孔復(fù)合物(Nuclear pore complexes,NPCs)輸出到細(xì)胞質(zhì)中,保守的轉(zhuǎn)錄偶聯(lián)輸出(Conserved transcription-coupled export,TREX2)復(fù)合物與NPC結(jié)合并參與轉(zhuǎn)錄和mRNA輸出[115,116]。最近的一項(xiàng)研究發(fā)現(xiàn)在酵母中中介體與TREX2復(fù)合物之間有直接相互作用,這表明由中介體協(xié)調(diào)的轉(zhuǎn)錄調(diào)節(jié)與NPC介導(dǎo)的mRNA輸出有關(guān)[117]。通過一系列試驗(yàn)進(jìn)一步揭示了TREX2復(fù)合物直接與中介體的中間模塊相互作用。TREX2復(fù)合物與中介體的相互作用被認(rèn)為參與轉(zhuǎn)錄和mRNA轉(zhuǎn)運(yùn)的復(fù)雜調(diào)節(jié)[118]。
中介體復(fù)合物在選擇性剪切過程中起重要作用[119];中介體是酵母基因組中負(fù)責(zé)高級染色質(zhì)折疊的關(guān)鍵復(fù)合物之一;中介體復(fù)合物與轉(zhuǎn)錄記憶有關(guān),已在酵母和人體中證實(shí)了這種功能[118]。中介體參與轉(zhuǎn)錄絕大部分過程,上述只是其中小部分,更多的功能需要被發(fā)現(xiàn)和補(bǔ)充。
3? 小結(jié)與展望
中介體復(fù)合物在酵母中的組成和結(jié)構(gòu)研究已經(jīng)相對成熟,但核心結(jié)構(gòu)中不包括MED1,這個結(jié)果并未得到清晰的解釋。隨著生物的不斷進(jìn)化,中介體復(fù)合物的復(fù)雜性也提高,在高級的物種例如人體中,中介體的結(jié)構(gòu)尚未解析,組成成分及分布需要進(jìn)一步確定。中介體復(fù)合物幾乎參與真核細(xì)胞的所有轉(zhuǎn)錄過程,中介體功能的異常與許多癌癥有關(guān),例如MED29調(diào)節(jié)胰腺癌的關(guān)鍵細(xì)胞功能,包括致癌和抑制腫瘤的功能[101],MED15在睪丸生殖細(xì)胞腫瘤中差異表達(dá)[120]等。中介體亞基已經(jīng)被作為治療癌癥的靶標(biāo),其中中介體復(fù)合物亞基MED15的敲低抑制了泌尿道上皮膀胱癌細(xì)胞的惡性腫瘤;MED1作為ER關(guān)鍵的共激活因子,在ER依賴的基因表達(dá)和雌激素依賴的乳腺癌生長過程中起到關(guān)鍵性作用,而且參與了另一類內(nèi)分泌治療藥物Tamoxifen的耐藥形成過程,與乳腺癌患者的不良預(yù)后有著高度相關(guān);siRNA介導(dǎo)的CDK8沉默抑制乳腺癌細(xì)胞的增殖和生長[121]。還有研究表明中介體復(fù)合物與真菌感染等有關(guān),有望成為更多疾病的治療靶標(biāo)。目前對它與癌癥等疾病的研究大多數(shù)處于理論階段,將其應(yīng)用于臨床研究更加迫切。
參考文獻(xiàn):
[1] BOUBE M,F(xiàn)AUCHER C,JOULIA L,et al. Drosophila homologs of transcriptional mediator complex subunits are required for adult cell and segment identity specification[J].Genes Dev,2000, 14(22):2906-2917.
[2] JIANG Y W,VESCHAMBRE P,ERDJUMENT-BROMAGE H,et al. Mammalian mediator of transcriptional regulation and its possible role as an end-point of signal transduction pathways[J].Proc Natl Acad Sci USA,1998,95(15):8538-8543.
[3] SIERECKI E. The Mediator complex and the role of protein-protein interactions in the gene regulation machinery[J].Semin Cell Dev Biol,2018,(in press).
[4] CEVHER M A,SHI Y,LI D,et al. Reconstitution of active human core Mediator complex reveals a critical role of the MED14 subunit[J].Nature structural & molecular biology,2014,21(12):1028-1034.
[5] NOZAWA K,SCHNEIDER T R,CRAMER P. Core Mediator structure at 3.4 ?魡 extends model of transcription initiation complex[J].Nature,2017,545(7653):248-251.
[6] WANG X,SUN Q,DING Z,et al. Redefining the modular organization of the core Mediator complex[J].Cell Res,2014,24(7):796-808.
[7] TSAI K L,SATO C T,SATO S,et al. Subunit architecture and functional modular rearrangements of the transcriptional mediator complex[J].Cell,2014,157(2):1430-1444.
[8] SOUTOURINA J. Transcription regulation by the Mediator complex[J].Nature reviews molecular cell biology,2017,19(4):262-274.
[9] PLASCHKA C,LARIVI?魬RE L,WENZECK L, et al. Architecture of the RNA polymerase II-Mediator core initiation complex[J].Nature,2015,518(7539):376-380.
[10] SOUTOURINA J. Transcription regulation by the Mediator complex[J].Nature reviews molecular cell biology,2017,19(4):262-274.
[11] TSAI K,YU X,GOPALAN S,et al. Mediator structure and rearrangements required for holoenzyme formation[J].Nature,2017,544(7649):196-201.
[12] ROBINSON P J,TRNKA M J,PELLARIN R,et al. Molecular architecture of the yeast Mediator complex[J].eLife,2015,4.e08719.
[13] ROBINSON P J,TRNKA M J,BUSHNELL D A,et al. Structure of a complete Mediator-RNA polymerase II Pre-Initiation complex[J].Cell,2016,166(6):1411-1422.
[14] LARIVIERE L,SEIZL M,CRAMER P. A structural perspective on Mediator function[J].Curr Opin Cell Biol,2012,24(3):305-313.
[15] MEYER K D,LIN S C,BERNECKY C,et al. p53 activates transcription by directing structural shifts in Mediator[J].Nat Struct Mol Biol,2010,17(6):753-760.
[16] LIN J J,LEHMANN L W,BONORA G,et al. Mediator coordinates PIC assembly with recruitment of CHD1[J].Genes Dev,2011,25(20):2198-2209.
[17] POSS Z C,EBMEIER C C,TAATJES D J. The Mediator complex and transcription regulation[J].Crit Rev Biochem Mol Biol,2013,48(6):575-608.
[18] VAN ESSEN D,ENGIST B,NATOLI G,et al. Two modes of transcriptional activation at native promoters by NF-kappaB p65[J].PLoS Biol,2009,7(3):e73.
[19] ITO M,YUAN C X,MALIK S,et al. Identity between TRAP and SMCC complexes indicates novel pathways for the function of nuclear receptors and diverse mammalian activators[J].Mol Cell,1999,3(3):361-370.
[20] STEVENS J L,CANTIN G T,WANG G,et al. Transcription control by E1A and MAP kinase pathway via Sur2 mediator subunit[J].Science,2002,296(5568):755-758.
[21] FONDELL J D,GE H,ROEDER R G. Ligand induction of a transcriptionally active thyroid hormone receptor coactivator complex[J].Proc Natl Acad Sci USA,1996,93(16):8329-8333.
[22] RACHEZ C,LEMON B D,SULDAN Z,et al. Ligand-dependent transcription activation by nuclear receptors requires the DRIP complex[J].Nature,1999,398-824.
[23] GE K,CHO Y W,GUO H,et al. Alternative mechanisms by which mediator subunit MED1/TRAP220 regulates peroxisome proliferator-activated receptor gamma-stimulated adipogenesis and target gene expression[J].Mol Cell Biol,2008,28(3):1081-1091.
[24] GE K,GUERMAH M,YUAN C,et al. Transcription coactivator TRAP220 is required for PPARγ2-stimulated adipogenesis[J]. Nature,2002,417-563.
[25] MALIK S,WALLBERG A E,KANG Y K,et al. TRAP/SMCC/mediator-dependent transcriptional activation from DNA and chromatin templates by orphan nuclear receptor hepatocyte nuclear factor 4[J].Mol Cell Biol,2002,22(15):5626-5637.
[26] HITTELMAN A B,BURAKOV D,INIGUEZ-LLUHI J A,et al. Differential regulation of glucocorticoid receptor transcriptional activation via AF-1-associated proteins[J].EMBO J,1999,18(19):5380-5388.
[27] KANG Y K,GUERMAH M,YUAN C X,et al. The TRAP/Mediator coactivator complex interacts directly with estrogen receptors? alpha and beta through the TRAP220 subunit and directly enhances estrogen receptor function in vitro[J].Proc Natl Acad Sci USA,2002,99(5):2642-2647.
[28] YUAN C X,ITO M,F(xiàn)ONDELL J D,et al. The TRAP220 component of a thyroid hormone receptor-associated protein (TRAP) coactivator complex interacts directly with nuclear receptors in a ligand-dependent fashion[J].Proc Natl Acad Sci USA,1998, 95(14):7939-7944.
[29] ZHU Y,QI C,JAIN S,et al. Isolation and characterization of PBP,a protein that interacts with peroxisome proliferator-activated receptor[J].J Biol Chem,1997,272(41):25500-25506.
[30] MEYER K D,LIN S C,BERNECKY C,et al. p53 activates transcription by directing structural shifts in Mediator[J].Nat Struct Mol Biol,2010,17(6):753-760.
[31] WADA O,OISHI H,TAKADA I,et al. BRCA1 function mediates a TRAP/DRIP complex through direct interaction with TRAP220[J].Oncogene,2004,23(35):6000-6005.
[32] WANSA K D,MUSCAT G E. TRAP220 is modulated by the antineoplastic agent 6-Mercaptopurine,and mediates the activation of the NR4A subgroup of nuclear receptors[J].J Mol Endocrinol,2005,34(3):835-848.
[33] PINEDA T I,F(xiàn)REEDMAN L P,GARABEDIAN M J. Identification of DRIP205 as a coactivator for the Farnesoid X receptor[J].J Biol Chem,2004,279(35):36184-36191.
[34] ATKINS G B,HU X,GUENTHER M G,et al. Coactivators for the orphan nuclear receptor RORalpha[J].Mol Endocrinol,1999, 13(9):1550-1557.
[35] WANG S,GE K,ROEDER R G,et al. Role of mediator in transcriptional activation by the aryl hydrocarbon receptor[J].J Biol Chem,2004,279(14):13593-13600.
[36] STUMPF M,WASKOW C,KROTSCHEL M,et al. The mediator complex functions as a coactivator for GATA-1 in erythropoiesis via? subunit Med1/TRAP220[J].Proc Natl Acad Sci USA,2006,103(49):18504-18509.
[37] GORDON D F,TUCKER E A,TUNDWAL K,et al. MED220/thyroid receptor-associated protein 220 functions as a transcriptional coactivator with Pit-1 and GATA-2 on the thyrotropin-beta promoter in thyrotropes[J].Mol Endocrinol,2006, 20(5):1073-1089.
[38] UDAYAKUMAR T S,BELAKAVADI M,CHOI K H,et al. Regulation of Aurora-A kinase gene expression via GABP recruitment of TRAP220/MED1[J].J Biol Chem,2006,281(21):14691-14699.
[39] LIU X,VORONTCHIKHINA M,WANG Y L,et al. STAGA recruits Mediator to the MYC oncoprotein to stimulate transcription and cell proliferation[J].Mol Cell Biol,2008,28(1):108-121.
[40] ZILLIACUS J,HOLTER E,WAKUI H,et al. Regulation of glucocorticoid receptor activity by 14--3-3-dependent intracellular relocalization of the corepressor RIP140[J].Mol Endocrinol,2001, 15(4):501-511.
[41] WALLBERG A E,YAMAMURA S,MALIK S,et al. Coordination of p300-mediated chromatin remodeling and TRAP/mediator function through coactivator PGC-1alpha[J].Mol Cell,2003, 12(5):1137-1149.
[42] LI H,GADE P,NALLAR S C,et al. The Med1 subunit of transcriptional mediator plays a central role in regulating CCAAT/enhancer-binding protein-beta-driven transcription in response to interferon-gamma[J].J Biol Chem,2008,283(19):13077-13086.
[43] JIA Y,VISWAKARMA N,REDDY J K. Med1 subunit of the mediator complex in nuclear receptor-regulated energy metabolism,liver regeneration,and hepatocarcinogenesis[J].Gene Expr,2014,16(2):63-75.
[44] NATARAJAN K,JACKSON B M,ZHOU H,et al. Transcriptional activation by Gcn4p involves independent interactions with the SWI/SNF complex and the SRB/mediator[J].Mol Cell,1999,4(4):657-664.
[45] ZHANG F,SUMIBCAY L,HINNEBUSCH A G,et al. A triad of subunits from the Gal11/tail domain of Srb mediator is an in vivo target of transcriptional activator Gcn4p[J].Mol Cell Biol,2004,24(15):6871-6886.
[46] MEHTA S,MIKLOS I,SIPICZKI M,et al. The Med8 mediator subunit interacts with the Rpb4 subunit of RNA polymerase II and Ace2 transcriptional activator in Schizosaccharomyces pombe[J].FEBS Lett,2009,583(19):3115-3120.
[47] LI X,YANG R,CHEN H. The Arabidopsis thaliana Mediator subunit MED8 regulates plant immunity to Botrytis Cinerea through interacting with the basic helix-loop-helix (bHLH) transcription factor FAMA[J].PLoS One,2018,13(3):e193458.
[48] WANG F,WEI H,TONG Z,et al. Knockdown of NtMed8, a Med8-like gene,causes abnormal development of vegetative? and floral organs in tobacco (Nicotiana tabacum L.)[J].Plant Cell Rep,2011,30(11):2117-2129.
[49] GWACK Y,BAEK H J,NAKAMURA H,et al. Principal role of TRAP/mediator and SWI/SNF complexes in Kaposi's sarcoma-associated herpesvirus RTA-mediated lytic reactivation[J].Mol Cell Biol,2003,23(6):2055-2067.
[50] RAU M J,F(xiàn)ISCHER S,NEUMANN C J. Zebrafish Trap230/Med12 is required as a coactivator for Sox9-dependent neural crest,cartilage and ear development[J].Dev Biol,2006,296(1):83-93.
[51] TUTTER A V,KOWALSKI M P,BALTUS G A,et al. Role for Med12 in Regulation of Nanog and Nanog Target Genes[J].Journal of biological chemistry,2009,284(6):3709-3718.
[52] KIM S,XU X,HECHT A,et al. Mediator is a transducer of Wnt/beta-catenin signaling[J].J Biol Chem,2006,281(20):14066-14075.
[53] DING N,ZHOU H,ESTEVE P,et al. Mediator Links Epigenetic Silencing of Neuronal Gene Expression with X-Linked Mental Retardation[J].Molecular cell,2008,31(3):347-359.
[54] DING N,ZHOU H,ESTEVE P O,et al. Mediator links epigenetic silencing of neuronal gene expression with x-linked mental retardation[J].Mol Cell,2008,31(3):347-359.
[55] ZHOU H,KIM S,ISHII S,et al. Mediator modulates Gli3-dependent Sonic hedgehog signaling[J].Mol Cell Biol,2006,26(23):8667-8682.
[56] CARRERA I,JANODY F,LEEDS N,et al. Pygopus activates Wingless target gene transcription through the mediator complex subunits Med12 and Med13[J].Proc Natl Acad Sci USA,2008,105(18):6644-6649.
[57] XU X,ZHOU H,BOYER T G. Mediator is a transducer of amyloid-precursor-protein-dependent nuclear signalling[J].EMBO Rep,2011,12(3):216-222.
[58] CHEN W,ROGATSKY I,GARABEDIAN M J. MED14 and MED1 differentially regulate target-specific gene activation by the glucocorticoid receptor[J].Mol Endocrinol,2006,20(3):560-572.
[59] LAU J F,NUSINZON I,BURAKOV D,et al. Role of metazoan mediator proteins in interferon-responsive transcription[J].Mol Cell Biol,2003,23(2):620-628.
[60] LEE J E,KIM K,SACCHETTINI J C,et al. DRIP150 coactivation of estrogen receptor alpha in ZR-75 breast cancer cells is independent of LXXLL motifs[J].J Biol Chem,2005,280(10):8819-8830.
[61] GRONTVED L,MADSEN M S,BOERGESEN M,et al. MED14 tethers mediator to the N-terminal domain of peroxisome proliferator-activated receptor gamma and is required for full transcriptional activity and adipogenesis[J].Mol Cell Biol,2010,30(9):2155-2169.
[62] TOTH J I,DATTA S,ATHANIKAR J N,et al. Selective coactivator interactions in gene activation by SREBP-1a and -1c[J].Mol Cell Biol,2004,24(18):8288-8300.
[63] WANG C,DU X,MOU Z. The Mediator Complex Subunits MED14,MED15,and MED16 Are Involved in Defense Signaling Crosstalk in Arabidopsis[J].Front Plant Sci,2016,7:1947.
[64] LIN X,RINALDO L,F(xiàn)AZLY A F,et al. Depletion of Med10 enhances Wnt and suppresses Nodal signaling during zebrafish embryogenesis[J].Dev Biol,2007,303(2):536-548.
[65] KATO Y,HABAS R,KATSUYAMA Y,et al. A component of the ARC/Mediator complex required for TGF beta/Nodal signalling[J].Nature,2002,418(6898):641-646.
[80] DING N,TOMOMORI-SATO C,SATO S,et al. MED19 and MED26 are synergistic functional targets of the RE1 silencing transcription factor in epigenetic silencing of neuronal gene expression[J].J Biol Chem,2009,284(5):2648-2656.
[81] ZHAO Y,MENG Q,GAO X,et al. Down-regulation of mediator complex subunit 19 (Med19) induces apoptosis in human laryngocarcinoma HEp2 cells in an Apaf-1-dependent pathway[J].Am J Transl Res,2017,9(2):755-761.
[82] ZHANG X,F(xiàn)AN Y,LIU B,et al. Med19 promotes breast cancer cell proliferation by regulating CBFA2T3/HEB expression[J].Breast Cancer,2017,24(3):433-441.
[83] NEVADO J,TENBAUM S P,ARANDA A. hSrb7,an essential human Mediator component,acts as a coactivator for the thyroid hormone receptor[J].Mol Cell Endocrinol,2004,222(1-2):41-51.
[84] HALLBERG M,HU G Z,TRONNERSJO S,et al. Functional and physical interactions within the middle domain of the yeast mediator[J].Mol Genet Genomics,2006,276(2):197-210.
[85] SATO S,TOMOMORI-SATO C,TSAI K L,et al. Role for the MED21-MED7 Hinge in Assembly of the Mediator-RNA Polymerase II Holoenzyme[J].J Biol Chem,2016,291(52):26886-26898.
[86] MO X,KOWENZ-LEUTZ E,XU H,et al. Ras induces mediator complex exchange on C/EBP beta[J].Mol Cell,2004,13(2):241-250.
[87] SHIMOGAWA H,KWON Y,MAO Q,et al. A wrench-shaped synthetic molecule that modulates a transcription factor-coactivator interaction[J].J Am Chem Soc,2004,126(11):3461-3471.
[88] WANG G,BALAMOTIS M A,STEVENS J L,et al. Mediator Requirement for Both Recruitment and Postrecruitment Steps in Transcription Initiation[J].Molecular Cell,2005,17(5):683-694.
[89] GRIFFITHS S J,KOEGL M,BOUTELL C,et al. A systematic analysis of host factors reveals a Med23-interferon-lambda regulatory axis against herpes simplex virus type 1 replication[J].PLoS Pathog,2013,9(8):e1003514.
[90] LIU Z,YAO X,YAN G,et al. Mediator MED23 cooperates with RUNX2 to drive osteoblast differentiation and bone development[J].Nat Commun,2016,7:11149.
[91] CHU Y,GOMEZ R L,HUANG P,et al. Liver Med23 ablation improves glucose and lipid metabolism through modulating FOXO1 activity[J].Cell Res,2014,24(10):1250-1265.
[92] HASEGAWA N,SUMITOMO A,F(xiàn)UJITA A,et al. Mediator subunits MED1 and MED24 cooperatively contribute to pubertal mammary gland development and growth of breast carcinoma cells[J].Mol Cell Biol,2012,32(8):1483-1495.
[93] LEE H K,PARK U H,KIM E J,et al. MED25 is distinct from TRAP220/MED1 in cooperating with CBP for retinoid receptor activation[J].EMBO J,2007,26(15):3545-3557.
[94] RANA R,SURAPUREDDI S,KAM W,et al. Med25 is required for RNA polymerase II recruitment to specific promoters,thus regulating xenobiotic and lipid metabolism in human liver[J].Mol Cell Biol,2011,31(3):466-481.
[95] VERGER A,BAERT J L,VERREMAN K,et al. The Mediator complex subunit MED25 is targeted by the N-terminal transactivation? domain of the PEA3 group members[J].Nucleic Acids Res,2013,41(9):4847-4859.
[96] NAKAMURA Y,YAMAMOTO K,HE X,et al. Wwp2 is essential for palatogenesis mediated by the interaction between Sox9 and? mediator subunit 25[J].Nat Commun,2011,2:251.
[97] SELA D,CONKRIGHT J J,CHEN L,et al. Role for human mediator subunit MED25 in recruitment of mediator to promoters by endoplasmic reticulum stress-responsive transcription factor ATF6alpha[J].J Biol Chem,2013,288(36):26179-26187.
[98] WIEDERHOLD T,LEE M F,JAMES M,et al. Magicin,a novel cytoskeletal protein associates with the NF2 tumor suppressor merlin and Grb2[J].Oncogene,2004,23(54):8815-8825.
[99] GARRETT-ENGELE C M,SIEGAL M L,MANOLI D S,et al. intersex,a gene required for female sexual development in Drosophila,is expressed in both sexes and functions together with doublesex to regulate terminal differentiation[J].Development,2002,129(20):4661-4675.
[100] SATO S,TOMOMORI-SATO C,BANKS C A,et al. A mammalian homolog of Drosophila melanogaster transcriptional coactivator intersex is a subunit of the mammalian Mediator complex[J].J Biol Chem,2003,278(50):49671-49674.
[101] KUUSELO R,SAVINAINEN K,SANDSTROM S,et al. MED29,a component of the mediator complex,possesses both oncogenic and tumor suppressive characteristics in pancreatic cancer[J].Int J Cancer,2011,129(11):2553-2565.
[102] BEADLE E P,STRAUB J A,BUNNELL B A,et al. MED31 involved in regulating self-renewal and adipogenesis of human mesenchymal stem cells[J].Mol Biol Rep,2018.45(5):1545-1550.
[103] ZHANG X,ZHOU W,CHEN Q,et al. Mediator subunit MED31 is required for radial patterning of Arabidopsis roots[J].Proc Natl Acad Sci USA,2018,115(24):E5624-E5633.
[104] EBERHARDY S R,F(xiàn)ARNHAM P J. Myc recruits P-TEFb to mediate the final step in the transcriptional activation of the cad promoter[J].J Biol Chem,2002,277(42):40156-40162.
[105] PARK J M,WERNER J,KIM J M,et al. Mediator, not holoenzyme,is directly recruited to the heat shock promoter by HSF upon heat shock[J].Mol Cell,2001,8(1):9-19.
[106] YERGIYEV O,GARIB G,SCHOEDEL K,et al. CDK8 Expression in Extrauterine Leiomyosarcoma Correlates With Tumor Stage and Progression[J].Appl Immunohistochem Mol Morphol,2018,26(3):161-164.
[107] KOLESKE A J,BURATOWSKI S,NONET M, et al. A novel transcription factor reveals a functional link between the RNA polymerase II CTD and TFIID[J].Cell,1992,69(5):883-894.
[108] RANISH J A,YUDKOVSKY N,HAHN S. Intermediates in formation and activity of the RNA polymerase II preinitiation complex:holoenzyme recruitment and a postrecruitment role for the TATA box and TFIIB[J].Genes Dev,1999,13(1):49-63.
[109] EYCHENNE T,NOVIKOVA E,BARRAULT M B,et al. Functional interplay between Mediator and TFIIB in preinitiation complex assembly in relation to promoter architecture[J].Genes Dev,2016,30(18):2119-2132.
[110] AKOULITCHEV S,CHUIKOV S,REINBERG D. TFIIH is negatively regulated by cdk8-containing mediator complexes[J].Nature,2000,407(6800):102-106.
[111] JANG M K,MOCHIZUKI K,ZHOU M,et al. The bromodomain protein Brd4 is a positive regulatory component of P-TEFb and stimulates RNA polymerase II-dependent transcription[J].Molecular cell,2005,19(4):523-534.
[112] YANG Z,YIK J H N,CHEN R,et al. Recruitment of P-TEFb for stimulation of transcriptional elongation by the bromodomain protein Brd4[J].Molecular cell,2005,19(4):535-545.
[113] DONNER A J,EBMEIER C C,TAATJES D J,et al. CDK8 is a positive regulator of transcriptional elongation within the serum response network[J].Nat Struct Mol Biol,2010,17(2):194-201.
[114] GUGLIELMI B,SOUTOURINA J,ESNAULT C,et al. TFIIS elongation factor and Mediator act in conjunction during transcription initiation in vivo[J].Proc Natl Acad Sci USA,2007, 104(41):16062-16067.
[115] BENTLEY D L.Coupling mRNA processing with transcription in time and space[J].Nat Rev Genet,2014,15(3):163-175.
[116] BEN-YISHAY R,ASHKENAZY A J,SHAV-TAL Y. Dynamic encounters of genes and transcripts with the nuclear pore[J].Trends genet,2016,32(7):419-431.
[117] SCHNEIDER M,HELLERSCHMIED D,SCHUBERT T,et al. The nuclear pore-associated TREX-2 complex employs mediator to regulate gene expression[J].Cell,2015,162(5):1016-1028.
[118] SOUTOURINA J. Transcription regulation by the Mediator complex[J].Nature reviews molecular cell biology,2017,19(4):262-274.
[119] 汪? 煒,尹景雯,劉艾潔,等.中介體復(fù)合物——真核轉(zhuǎn)錄調(diào)控中的中央控制器[J].中國細(xì)胞生物學(xué)學(xué)報,2011(6):597-607.
[120] KLUMPER N,SYRING I,OFFERMANN A,et al. Differential expression of Mediator complex subunit MED15 in testicular germ cell tumors[J].Diagn Pathol,2015,10:165.
[121] siRNA-mediated silencing of CDK8 inhibits proliferation and growth in breast cancer cells[Retraction][J].Int J Clin Exp Pathol,2018,11(3):1836.
收稿日期:2019-01-06
基金項(xiàng)目:國家自然科學(xué)基金項(xiàng)目(31470731)
作者簡介:王? 雯(1993-),女,山西長子人,在讀碩士研究生,研究方向?yàn)樯锘瘜W(xué)與分子生物學(xué),(電話)18202278662(電子信箱)18202278662@163.com。