高百俊 張佳 繆龍
摘要:利用子群的幾乎m-嵌入性質(zhì)重新刻畫(huà)了p-冪零群和UΦ-超中心。以幾乎m-嵌入準(zhǔn)素子群為研究對(duì)象,采用局部化處理方法,將幾乎m-嵌入準(zhǔn)素子群分別局部化到Sylow p-子群的正規(guī)化子中和廣義Fitting子群中開(kāi)展研究。得到了一個(gè)刻畫(huà)p-冪零群的充分條件及3個(gè)描述UΦ-超中心結(jié)構(gòu)的3個(gè)充分條件。所得結(jié)論豐富了研究p-冪零群和UΦ-超中心結(jié)構(gòu)的手段。
關(guān)鍵詞:幾乎m-嵌入子群;p-冪零性;UΦ-超中心;準(zhǔn)素子群
中圖分類號(hào):O152
DOI:10.16152/j.cnki.xdxbzr.2020-02-013
A note on nearly m-embedded subgroups of finite groups
GAO Baijun1,2, ZHANG Jia1,3, MIAO Long1
Abstract:? p-nilpotent groups and? UΦ-h(huán)ypercentre were investigated by using nearly m-embedded property of subgroups. Nearly m-embedded primary subgroups was took as the research object and localized to the normalizer of Sylow p-subgroups and the generalized Fitting subgroup respectively by adopting localization method. A sufficient condition of p-nilpotent groups and three sufficient conditions on the construction of? UΦ-h(huán)ypercentre were obtained. The researching methods on the structure of? p-nilpotent groups and? UΦ-h(huán)ypercentre were enriched by the obtained results above.
Key words: nearly m-embedded subgroup; p-nilpotency; UΦ-h(huán)ypercentre; primary subgroup
本文討論的都是有限群,涉及的術(shù)語(yǔ)和符號(hào)可見(jiàn)文獻(xiàn)[1-2]。符號(hào)U和N表示超可解群系和冪零群系。
2009年,Shemetkov和Skiba[3]通過(guò)考慮有限群G的非Frattini主因子的G-超中心性質(zhì),定義了有限群G的FΦ-超中心,它不僅包含有限群G的F-超中心,而且是有限群G的F-超中心的自然推廣。2014年,湯菊萍和繆龍[4]利用給定階子群的M-可補(bǔ)性考察了有限群的FΦ-超中心構(gòu)造。2016年,張佳、繆龍和湯菊萍[5]利用子群的M*-可補(bǔ)性對(duì)有限群的UΦ-超中心的結(jié)構(gòu)進(jìn)行了研究。2011年,郭文彬和Skiba[6]引入了Σ-嵌入子群、幾乎m-嵌入的概念,并利用子群的幾乎m-嵌入性質(zhì)對(duì)有限群p-冪零性和相關(guān)群系做了一些研究。其他有關(guān)有限群的p-冪零性及群系的研究還可參考文獻(xiàn)[7-10]。
作為以上研究工作的繼續(xù),我們將利用準(zhǔn)素子群的幾乎m-嵌入性質(zhì)對(duì)有限群的p-冪零性及廣義超中心的結(jié)構(gòu)進(jìn)行研究,并將得到一些新的刻畫(huà)。
1 相關(guān)引理
參考文獻(xiàn):
[1]DOERK K,HAWKES T O. Finite Soluble Groups [M]. Berlin-New York: Walter de Gruyter,1992.
[2]徐明曜.有限群導(dǎo)引(上)Ⅱ[M]. 北京:科學(xué)出版社, 2007.
[3]SHEMETKOV L A, SKIBA A N. On the XΦ-h(huán)ypercentre of finite groups[J].Journal of Algebra,2009,322(6):2106-2117.
[4]TANG J P, MIAO L. On the FΦ-h(huán)ypercentre of finite groups [J]. Canadian Mathematical Bulletin,2014,57(3):648-657.
[5]ZHANG J, MIAO L, TANG J P.M*-supplemented subgroups of finite groups[J].Proceedings of the Indian Academy of Sciences-Mathematical sciences, 2016,126(2):187-197.
[6]GUO W B, SKIBA A N. Finite groups with systems of Σ-embedded subgroups[J].Science China Mathematics,2011,54(9):1909-1926.
[7]鮑宏偉,張佳.準(zhǔn)素子群的局部化性質(zhì)對(duì)群結(jié)構(gòu)的影響[J].華中師范大學(xué)學(xué)報(bào)(自然科學(xué)版) ,2015,49(1):21-24.
BAO H W,ZHANG J. The influence of localized properties of primary subgroups on the structure of finite groups[J].Journal of Huazhong Normal University(Natural Sciences),2015,49(1):21-24.
[8]TANG J P, MIAO L. A note on m-embedded subgroups of finite groups[J]. Turkish Journal of Mathematics,2015,39:501-506.
[9]張榮.Sylow子群的2-極大子群與p-冪零群[J].西北大學(xué)學(xué)報(bào)(自然科學(xué)版),1996,26(3):201-204.
ZHANG R.2-Maximal subgroups of Sylow subgroups and p-Nilpotent groups[J]. Journal of Northwest Normal University(Natural Science Edition),1996,26(3):201-204.
[10]ZHANG J, MIAO L. On Mp-embedded primary subgroups of finite groups[J].Studia Scientiarum Mathematicarum Hungarica,2016,53(4):429-439.
[11]GUO W B. The Theory of Classes of Groups[M].Berlin/New York/Dordrecht/Boston/London: Science Press-Kluwer Academic Publishers,2000.
[12]HUPPERT B,BLACKBURN N. Finite Groups III[M].Berlin-New York:Springer-Verlag, 1982.
[13]SKIBA A N.On weakly s-permutable subgroups of finite groups[J].Journal of Algebra,2007,315(1):192-209.
[14]LI Y M,WANG Y M.The influence of minimal subgroups on the structure of finite groups[J].Proceedings of the American Mathematical Society,2003,131(2):337-341.
[15]MIAO L,LEMPKEN W.On M-supplemented subgroups of finite groups[J].Journal of Group Theory,2009,12(2):271-287.
(編 輯 張 歡)
收稿日期:2020-01-10
基金項(xiàng)目:國(guó)家自然科學(xué)基金資助項(xiàng)目(11871062);新疆維吾爾自治區(qū)高校科研項(xiàng)目(XJEDU2017M034);西華師范大學(xué)博士科研啟動(dòng)項(xiàng)目(17E091)
作者簡(jiǎn)介:高百俊,女,河南扶溝人,博士,副教授,從事群論研究。
通信作者:繆龍,男,江蘇揚(yáng)州人,教授,博士生導(dǎo)師,從事群論研究。