劉韡 付紫碩 田陳
摘要:求解變系數(shù)非線性發(fā)展方程是數(shù)學(xué)、物理、力學(xué)等諸多自然科學(xué)研究的重要領(lǐng)域。文中創(chuàng)建輔助方程法,可求多種常系數(shù)與變系數(shù)非線性發(fā)展方程的精確解。以變系數(shù)非線性KdV方程組為例,在僅要求變系數(shù)可積的情形下,獲得了一系列新的精確解。
關(guān)鍵詞:輔助方程法;變系數(shù)KdV方程組;精確解
中圖分類號:O175.29
DOI:10.16152/j.cnki.xdxbzr.2020-06-011
The exact solutions to coupled KdV equations with
variable coefficients by auxiliary equation method
LIU Wei,? FU Zishuo, TIAN Chen
(School of Science, Xi′an University of Architecture and Technology, Xi′an 710055, China)
Abstract: Solving nonlinear evolution equations with variable coefficients is an important field in mathematics, physics, mechanics and many other fields in natural sciences. An auxiliary equation method is proposed, which can be used to solve many kinds of nonlinear evolution equations with constant and variable coefficients. Taking the coupled KdV equations with variable coefficients as an example, a series of new exact solutions are obtained under the condition that only variable coefficients are required to be integrals.
Key words: auxiliary equation method; KdV equations with variable coefficients; exact solution
非線性發(fā)展方程在數(shù)學(xué)、物理、流體力學(xué)等許多領(lǐng)域中有廣泛的應(yīng)用,是當(dāng)前學(xué)術(shù)界非常關(guān)注的研究課題。在求解非線性發(fā)展方程問題中,眾多學(xué)者在常系數(shù)方面做了大量的工作,形成了一系列行之有效的方法[1-9]。也有一些學(xué)者對變系數(shù)非線性發(fā)展方程展開研究,同樣取得了良好的成果[10-13]。
4 結(jié)論
本文創(chuàng)建輔助方程,借助二項(xiàng)微分式的有關(guān)性質(zhì),應(yīng)用到含變系數(shù)非線性偏微分方程組的求解中。以變系數(shù)非線性KdV方程組為例,在對變系數(shù)f (t)、g(t)僅要求可積又各自獨(dú)立的情形下,而未如文獻(xiàn)[15]或文獻(xiàn)[16]所要求g (t)=c f (t),c為常數(shù),或類似條件,獲得一系列新的精確解。本文所創(chuàng)建的方法方便簡潔,適用性強(qiáng),對多種常系數(shù)與變系數(shù)非線性方程適用,如KP 方程、薛定諤方程等。
參考文獻(xiàn):
[1] 莫嘉琪. 一類擾動非線性發(fā)展方程的孤立子同倫映射行波漸近解[J]. 安徽師范大學(xué)學(xué)報(bào)(自然科學(xué)版), 2017, 40(3): 205-209.
MO J Q. The travelling wave asymptotic solution of soliton for homotopic mapping to a class of disturbed nonlinear evolution equation [J].Journal of Anhui Normal University (Natural Science), 2017, 40(3):205-209.
[2] FENG Y H, WU Q K, XU Y H, et al. The singularly perturbed problems for nonlinear nonlocal disturbed evolution equations with two parameters[J].Chinese Journal of Engineering Mathematics, 2016, 33(4): 419-427.
[3] 馮依虎, 陳賢峰, 莫嘉琪. 一類非線性雙曲型發(fā)展方程的孤子解[J]. 應(yīng)用數(shù)學(xué)和力學(xué), 2015,36(10): 1076-1084.
FENG Y H, CHEN X F, MO J Q. The soliton solutions to a class of nonlinear hyperbolic evolution equations[J].Applied Mathematics and Mechanics, 2015, 36(10): 1076-1084.
[4] 杜增吉, 莫嘉琪. 一類擾動發(fā)展方程近似解[J]. 物理學(xué)報(bào), 2012, 61(15): 338-342.
DU Z J, MO J Q. Approximate solution for a class of the disturbed evolution equation [J]. Acta Physica Sinica, 2012, 61(15): 338-342.
[5] HEREMAN W, BANERJEE P P, KORPEL A, et al. Exact solitary wave solutions of nonlinear evolution and wave equations using a direct algebraic method [J]. Journal of Physics A: Mathematical and General,1986, 19(5):607-628.
[6] PARKES E J, DUFFY B R, ABBOTT P C. The Jacobi elliptic-function method for finding periodic-wave solutions to nonlinear evolution equations[J].Physics Letters A, 2002, 295(5/6):280-286.
[7] HU X B, WANG D L, QIAN X M. Soliton solutions and symmetries of the 2+1 dimensional Kaup-Kupershmidt equation[J]. Physics Letters A, 1999, 262(6):409-415.
[8] FU Z T, LIU S K, LIU S D, et al. New Jacobi elliptic function expansion and new periodic solutions of nonlinear wave equations[J].Physics Letters A, 2001, 290(1/2):72-76.
[9] 徐桂瓊, 李志斌. 構(gòu)造非線性發(fā)展方程孤波解的混合指數(shù)方法[J]. 物理學(xué)報(bào), 2002, 51(5): 946-950.
XU G Q, LI Z B. Solitary wave solutions of a nonlinear evolution equation using mixed exponential method [J]. Acta Physica Sinica, 2002, 51(5):946-950.
[10]劉式適, 付遵濤, 劉式達(dá), 等. 變系數(shù)非線性方程的Jacobi 橢圓函數(shù)展開解[J]. 物理學(xué)報(bào), 2002, 51(9): 1923-1926.
LIU S K, FU Z T, LIU S D, et al. Jacobi elliptic function expansion solution to the variable coefficient nonlinear equations[J]. Acta Physica Sinica, 2002, 51(9): 1923-1926.
[11]文雙春,徐文成,郭旗,等.變系數(shù)非線性Schrdinger方程孤子的演化[J].中國科學(xué)(A輯),1997, 27(10): 949-953.
WEN S C, XU W C, GUO Q, et al. The soliton evolution to the variable coefficient nonlinear Schrdinger equation[J]. Science in China (Series A), 1997, 27(10): 949-953.
[12]阮航宇,陳一新. 尋找變系數(shù)非線性方程精確解的新方法[J]. 物理學(xué)報(bào), 2000, 49(2): 177-180.
RUAN H Y, CHEN Y X. A new method to solve nonlinear variable coefficient equation[J]. Acta Physica Sinica, 2000, 49(2): 177-180.
[13]YAN Z Y, ZHANG H Q. Similarity reductions for 2+1-dimensional variable coefficient generalized kadomtsev-petviashvili equation[J].Applied Mathematics and Mechanics (English Edition),2000,21(6):645-650.
[14]張解放,陳芳躍. 截?cái)嗾归_方法和廣義變系數(shù)KdV方程新的精確類孤子解[J]. 物理學(xué)報(bào), 2001, 50(9): 1648-1650.
ZHANG J F, CHEN F Y. Truncated expansion method and new exact soliton-like solution of the general variable coefficient KdV equation[J].Acta Physica Sinica, 2001, 50(9): 1648-1650.
[15]張金良, 胡曉敏, 王明亮. 變系數(shù)KdV方程組的Bcklund變換及其精確解[J]. 杭州電子工業(yè)學(xué)院學(xué)報(bào),2002, 22(1): 59-61.
ZHANG J L, HU X M, WANG M L. Bcklund transformations and solitary wave exact solutions with variable velocity to coupled KdV equations with variable coefficients[J]. Journal of Hangzhou Institute of Electronic Engineering, 2002, 22(1): 59-61.
[16]XU G Q, LI Z B. Explicit solutions to the coupled KdV equations with variable coefficients[J].Applied Mathematics and Mechanics, 2005, 26(1): 101-107.
(編 輯 張 歡)