鄭佳秋 吳永成 王薇薇 梅燚 祖艷俠 郭軍 劉云芬
摘要:植物長鏈非編碼RNA(long non-coding RNA,lncRNA)是一類廣泛存在的長度大于200 nt的非編碼RNA調(diào)控分子,通過目標(biāo)模擬、轉(zhuǎn)錄干擾、甲基化等機(jī)制調(diào)控真核生物基因表達(dá)。植物體內(nèi)的許多l(xiāng)ncRNA受外界脅迫的誘導(dǎo)或抑制,并作用于逆境相關(guān)基因,影響植物形態(tài)和生理生化進(jìn)而產(chǎn)生對脅迫的應(yīng)答。從植物lncRNA的合成、分子水平的作用方式、與植物生物和非生物脅迫逆境的響應(yīng)機(jī)制等方面闡述了長鏈非編碼RNA參與調(diào)控植物的抗逆機(jī)制,并提出了今后的研究方向,以期為植物逆境應(yīng)對及抗逆新品種選育提供理論依據(jù)。
關(guān)鍵詞:lncRNA;植物形態(tài);生物脅迫;非生物脅迫
中圖分類號(hào): Q943.2文獻(xiàn)標(biāo)志碼: A
文章編號(hào):1002-1302(2020)04-0019-04
長鏈非編碼RNA(long non-coding RNA,lncRNA)是一類非編碼的內(nèi)源RNA分子,在植物中普遍轉(zhuǎn)錄,成熟的lncRNA長度大于200 nt[1-2]。在對小鼠的測序分析中首次被提出[3]。目前在擬南芥、玉米、水稻、小麥等植物中已鑒定了大量lncRNA[4-5],隨著植物lncRNA數(shù)量的增加,相關(guān)的數(shù)據(jù)庫也增多,其中NONCODE數(shù)據(jù)庫中提供了大量的植物lncRNA的詳細(xì)信息[6]。相較于哺乳動(dòng)物,植物lncRNAs方面的研究才剛剛起步,但已有研究發(fā)現(xiàn),lncRNAs參與植物的生殖發(fā)育和環(huán)境脅迫響應(yīng)。如低溫脅迫誘導(dǎo)反義轉(zhuǎn)錄本COOLAIR表達(dá)量的增加,增加的COOLAIR會(huì)抑制FLC基因的表達(dá),進(jìn)而參與擬南芥的春化過程[7-8]。在干旱和鹽分等逆境脅迫下擬南芥中的lncRNA表達(dá)量明顯改變,進(jìn)一步證實(shí)lncRNAs參與了環(huán)境脅迫的應(yīng)答[9]。本文通過總結(jié)國內(nèi)外植物lncRNAs的相關(guān)研究進(jìn)展,以期通過lncRNA的作用機(jī)制來探索蔬菜抗逆的研究思路,以期為抗逆新品種選育和改良提供理論指導(dǎo)。
1?lncRNA的合成與作用方式
1.1?lncRNA的合成
植物中l(wèi)ncRNAs主要由RNA聚合酶Ⅱ和聚合酶Ⅲ轉(zhuǎn)錄形成,還有一部分通過RNA聚合酶Ⅳ和聚合酶Ⅴ轉(zhuǎn)錄形成,主要定位在細(xì)胞核中[10]。大多數(shù)lncRNA具有5′帽子和3′poly(A)尾巴存在可變剪接位點(diǎn)[11-12],因此可用轉(zhuǎn)錄組測序(RNA-seq)技術(shù)來大量篩選lncRNA。除了以上lncRNA合成經(jīng)典模式外,lncRNA還可以通過以下途徑合成[13]:(1)在基因組中插入1個(gè)轉(zhuǎn)座原件或通過編碼蛋白基因插入1次框后與前一編碼序列合并可以產(chǎn)生有功能的lncRNA;(2)外顯子lncRNA可以在染色體重排后,由原來距離較遠(yuǎn)的非轉(zhuǎn)錄片段串聯(lián)產(chǎn)生。目前這些非經(jīng)典合成途徑在動(dòng)物中報(bào)道的較多,但也不排除植物中也有類似途徑。然而,lncRNA選擇合成途徑的不同是否會(huì)導(dǎo)致與靶基因的協(xié)同表達(dá)模式的不同進(jìn)而產(chǎn)生其他生物學(xué)意義還有待進(jìn)一步研究。
1.2?lncRNA的作用方式
lncRNA廣泛存在于真核生物中,其作用機(jī)制與功能多種多樣。lncRNA可以作為誘餌分子結(jié)合miRNA,調(diào)控mRNA的表達(dá);結(jié)合DNA發(fā)揮反式引導(dǎo)分子作用;也可以結(jié)合多個(gè)蛋白質(zhì)發(fā)揮支架作用[14-15]。目前l(fā)ncRNA在分子水平的作用機(jī)制可歸納為以下4種方式:(1)lncRNA通過抑制RNA聚合酶Ⅱ[16]或者結(jié)合mRNA后與Dicer酶共同作用[17]以及在蛋白編碼基因上游區(qū)域進(jìn)行轉(zhuǎn)錄等方式來影響基因的表達(dá);(2)lncRNA可作為miRNA、siRNA等小RNA的生物合成前體;(3)通過影響mRNA產(chǎn)生不同的剪切形式來產(chǎn)生作用;(4)結(jié)合特定蛋白質(zhì)調(diào)節(jié)其活性進(jìn)而改變細(xì)胞質(zhì)定位。
2?植物lncRNAs與逆境響應(yīng)
植物在逆境下自身代謝、生理和生長會(huì)產(chǎn)生不同的變化進(jìn)而來響應(yīng)脅迫。植物lncRNAs在逆境脅迫中起調(diào)節(jié)因子的作用,通過模擬靶標(biāo)、干擾轉(zhuǎn)錄和DNA甲基化等機(jī)制來影響基因表達(dá)。已有研究發(fā)現(xiàn),擬南芥在低氧[18]、光[19]、高溫[20]和低磷[21]的脅迫下,小麥在高溫[22]逆境下,狐尾草[23]、香蕉[24]、白楊[25]和玉米[26]在干旱脅迫下,毛地黃[27]和土豆[28]在低溫逆境以及苜蓿[29]在鹽脅迫下,均有l(wèi)ncRNAs參與脅迫響應(yīng),表明植物中的lncRNA廣泛參與非生物脅迫。在小麥感染白粉病和熱脅迫下也發(fā)現(xiàn)了125個(gè)lncRNAs[22],說明植物lncRNAs在病原菌感染和脅迫中能夠作出應(yīng)答。然而生物互作的存在導(dǎo)致致病機(jī)制不清晰,使得lncRNA響應(yīng)生物脅迫和病菌的研究結(jié)果相對較少。
2.1?植物lncRNAs與非生物脅迫逆境
植物在非生物脅迫下會(huì)啟動(dòng)一系列的信號(hào)通路來改變形態(tài)和生理生化。在逆境脅迫下,lncRNAs的表達(dá)可能比編碼蛋白質(zhì)的mRNA更加活躍[30-31]。在干旱和鹽脅迫下,lncRNA表達(dá)量會(huì)迅速增加[31],調(diào)節(jié)植物適應(yīng)不同環(huán)境。lncRNA IPS1和AT4在磷脅迫下誘導(dǎo)表達(dá),通過影響miRNA399的活性,來調(diào)節(jié)磷酸含量的動(dòng)態(tài)平衡[32]。
擬南芥在干旱、低溫和鹽等脅迫處理后,有1 832 個(gè)lncRNAs的表達(dá)發(fā)生了明顯變化[9]。lncRNA-At5NC056820過表達(dá)轉(zhuǎn)入擬南芥中,轉(zhuǎn)基因植株能夠在一定程度上提高擬南芥的耐旱性[33]。通過高通量測序發(fā)現(xiàn),苜蓿中存在大量的響應(yīng)滲透、鹽脅迫的lncRNAs,它們與蛋白質(zhì)編碼基因共同作用來調(diào)節(jié)逆境脅迫[34]?;谌蚪M在木薯中鑒定到了響應(yīng)低溫和干旱脅迫的lncRNAs[35]。劉偉婳在野生蕉低溫脅迫過程中獲得了12 462條lncRNAs,同時(shí)發(fā)現(xiàn)在脅迫過程中l(wèi)ncRNAs對差異表達(dá)基因的調(diào)控起重要作用[36]。野生蕉lncRNAs與其靶基因之間存在復(fù)雜的調(diào)控關(guān)系,既有正調(diào)控,也有負(fù)調(diào)控。擬南芥中Npc536是一種天然反義轉(zhuǎn)錄物(NATs lncRNA),在干旱、鹽和冷害等脅迫環(huán)境中會(huì)產(chǎn)生一系列的變化,如鹽脅迫下過表達(dá)植株主根和側(cè)根生長明顯加快,在缺磷環(huán)境下,Npc536表達(dá)量會(huì)增加[37]。
2.2?植物lncRNAs與生物脅迫逆境
植物lncRNAs不僅廣泛參與非生物脅迫應(yīng)答還參與生物脅迫的響應(yīng)過程。高通量測序結(jié)果表明,植物體內(nèi)大多數(shù)lncRNAs受到外界生物脅迫的誘導(dǎo)或抑制,如番茄中l(wèi)ncRNA16397可以通過減少活性氧的積累保護(hù)膜損傷進(jìn)而來增強(qiáng)對疫霉病的抗性[38]。基于轉(zhuǎn)錄組數(shù)據(jù)分析土豆感病和抗病品種時(shí)發(fā)現(xiàn),有559個(gè)長基因間非編碼RNA(lincRNAs)對軟腐病菌有響應(yīng)[39]。已報(bào)道在甘藍(lán)型油菜[40]和擬南芥中[41]分別發(fā)現(xiàn)響應(yīng)核盤菌菌核病和響應(yīng)尖孢鐮刀菌的lncRNA。Wang等在獼猴桃研究中發(fā)現(xiàn),lncRNAs可能會(huì)影響獼猴桃感染假單胞菌,推測在蛋白編碼區(qū)域和非編碼區(qū)域能夠調(diào)控獼猴桃對假單胞菌的感染[42]。在感染小麥條銹病的小麥中鑒定出4個(gè)lncRNAs(Tal-ncRNA18、Tal-ncRNA73、Tal-ncRNA106、Tal-ncRNA108),通過表達(dá)分析發(fā)現(xiàn)它們可能在調(diào)整或沉默蛋白編碼基因進(jìn)入病原體防御反應(yīng)中起作用[43];Zhang等通過沉默棉花中的GhlncNAT-ANX2和GhlncNAT-RLP7來增強(qiáng)植株對棉花黃萎病病菌和灰霉病病菌的抗性[44]。
3?結(jié)語與展望
隨著高通量測序技術(shù)的快速發(fā)展,越來越多植物中的lncRNAs正在被發(fā)現(xiàn)。目前,在草本植物如向日葵[45]、草莓[46]、白菜[47]、豆科類[48]、黃瓜[49]等,以及木本植物如茶[50]、葡萄[51]、毛白楊[52]等植物中都進(jìn)行了大量的lncRNAs鑒定和表達(dá)分析。然而,目前的研究大多集中在lncRNAs的初歩鑒定和功能方面,其轉(zhuǎn)錄調(diào)節(jié)機(jī)制方面的研究還未見報(bào)到。現(xiàn)已明確lncRNA具有保守性差、表達(dá)量低但組織特異性強(qiáng)的特點(diǎn),如對茄科植物lncRNAs的序列分析發(fā)現(xiàn),不同物種之間lncRNAs的序列保守性很低,如lncRNA-314在普通番茄和醋栗番茄中特異表達(dá),而在潘那利番茄(Solanum pennellii)中則不表達(dá)[53]。在全基因組范圍內(nèi)進(jìn)行水稻lncRNA的鑒定和分析發(fā)現(xiàn),這些lncRNAs與哺乳動(dòng)物的lncRNAs相比具有很高的組織特異或階段特異表達(dá)性[5]?;谌蚪M進(jìn)行黃瓜lincRNAs研究,lincRNAs和mRNAs之間的共表達(dá)分析表明它們參與應(yīng)激響應(yīng)和多個(gè)生物學(xué)過程,分子進(jìn)化的研究發(fā)現(xiàn),至少有16個(gè)lincRNAs受自然選擇作用,其中一部分受正選擇和平衡選擇作用[50]。由于lncRNAs表達(dá)水平低,為探索其在轉(zhuǎn)錄和轉(zhuǎn)錄后水平上的調(diào)控基因表達(dá)的作用機(jī)制可通過干擾lncRNAs的表達(dá)模式來進(jìn)行[54-56]。
lncRNAs在動(dòng)物中表現(xiàn)出的多種功能使研究者更加重視lncRNAs的研究。近年來植物lncRNAs的相關(guān)研究也逐漸加快,已證實(shí)植物lncRNAs參與植物成花轉(zhuǎn)變、花粉發(fā)育、逆境脅迫以及其他多個(gè)生物學(xué)過程,但與哺乳動(dòng)物相比,研究者對lncRNAs參與植物生長發(fā)育全過程的轉(zhuǎn)錄調(diào)控和分子進(jìn)化機(jī)制還知之甚少。通過梳理近年來研究過的植物lncRNAs發(fā)現(xiàn),植物在結(jié)構(gòu)、起源及分子功能上,都與動(dòng)物具有一定的相似性,并逐漸顯示出一些其特有的規(guī)律性[57]。目前植物lncRNAs的研究空間還很大,因此關(guān)于lncRNAs參與調(diào)控逆境機(jī)制的研究今后可以從以下2個(gè)方面入手:(1)利用現(xiàn)代較為成熟的高通量測序技術(shù),基于全基因組,從轉(zhuǎn)錄組水平進(jìn)行植物抗逆相關(guān)的lncRNAs大規(guī)模挖掘;(2)利用生物信息學(xué)分析技術(shù)對已獲得的lncRNAs進(jìn)行靴基因預(yù)測、與mRNAs的共表達(dá)分析及模擬miRNA內(nèi)源偽靶基因的辨析,為深入的lncRNA功能性鑒定提供基礎(chǔ)。
參考文獻(xiàn):
[1]Laurent S G,Wahlestedt C,Kapranov P. The landscape of long noncoding RNA classification[J]. Trends in Genetics,2015,31(5):239-251.
[2]Kornienko A E,Guenzl P M,Barlow D P,et al. Gene regulation by the act of long non-coding RNA transcription[J]. BMC Biology,2013,11:59.
[3]Okazaki Y,F(xiàn)uruno M,Kasukawa T,et al. Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs[J]. Nature,2002,420(6915):563-573.
[4]Li L,Eichten S R,Shimizu R,et al. Genome-wide discovery and characterization of maize long non-coding RNAs[J]. Genome Biology,2014,15:R40.
[5]Zhang Y C,Liao J Y,Li Z Y,et al. Genome-wide screening and functional analysis identify a large number of long noncoding RNAs involved in the sexual reproduction of rice[J]. Genome Biology,2014,15:512.
[6]Zhao Y,Li H,F(xiàn)ang S S,et al. NONCODE 2016:an informative and valuable data source of long non-coding RNAs[J]. Nucleic Acids Research,2016,44(D1):D203-D208.
[7]Zhu Q Q,Li Z A,He Y X,et al. Research progress on epigenetic and flowering-time regulation[J]. Acta Horticulturae Sinica,2013,40(9):1787-1794.
[8]Swiezewski S,Liu F Q,Magusin A,et al. Cold-induced silencing by long antisense transcripts of an Arabidopsis Polycomb target[J]. Nature,2009,462(7274):799-802.
[9]Liu J,Jung C,Xu J,et al. Genome-wide analysis uncovers regulation of long intergenic noncoding RNAs in Arabidopsis[J]. Plant Cell,2012,24(11):4333-4345.
[10]Rowley M J,Bhmdorfer G,Wierzbicki A T. Analysis of long non-coding RNAs produced by a specialized RNA polymerase in Arabidopsis thaliana[J]. Methods,2013,63(2):160-169.
[11]Bardou F,Ariel F,Simpson C G,et al. Long noncoding RNA modulates alternative splicing regulators in Arabidopsis[J]. Developmental Cell,2014,30(2):166-176.
[12]Plewka P,Thompson A,Szymanski M,et al. A stable tRNA-like molecule is generated from the long noncoding RNA GUT15 in Arabidopsis[J]. RNA Biology,2018,15(6):726-738.
[13]Ponting C P,Oliver P L,Reik W. Evolution and functions of long noncoding RNAs[J]. Cell,2009,136(4):629-641.
[14]Wang K C,Chang H Y. Molecular mechanisms of long noncoding RNAs[J]. Molecular Cell,2011,43(6):904-914.
[15]Guttman M,Rinn J L. Modular regulatory principles of large non-coding RNAs[J]. Nature,2012,482(7385):339-346.
[16]Novikova I V,Hennelly S P,Sanbonmatsu K Y. Structural architecture of the human long non-coding RNA,steroid receptor RNA activator[J]. Nucleic Acids Research,2012,40(11):5034-5051.
[17]Yang J R,Zhang J. Human long noncoding RNAs are substantially less folded than messenger RNAs[J]. Molecular Biology and Evolution,2015,32(4):970-977.
[18]Wu J,Okada T,F(xiàn)ukushima T,et al. A novel hypoxic stress-responsive long non-coding RNA transcribed by RNA polymerase Ⅲ in Arabidopsis[J]. RNA Biology,2012,9(3):302-313.
[19]Wang H,Chung P J,Liu J,et al. Genome-wide identification of long noncoding natural antisense transcripts and their responses to light in Arabidopsis[J]. Genome Research,2014,24(3):444-453.
[20]Wunderlich M,Gross-Hardt R,Schffl F. Heat shock factor HSFB2a involved in gametophyte development of Arabidopsis thaliana and its expression is controlled by a heat-inducible long non-coding antisense RNA[J]. Plant Molecular Biology,2014,85(6):541-550.
[21]Yuan J P,Zhang Y,Dong J S,et al. Systematic characterization of novel lncRNAs responding to phosphate sarvation in Arabidopsis thaliana[J]. BMC Genomics,2016,17:655.
[22]Xin M M,Wang Y,Yao Y Y,et al. Identification and characterization of wheat long non-protein coding RNAs responsive to powdery mildew infection and heat stress by using microarray analysis and SBS sequencing[J]. BMC Plant Biology,2011,11:61.
[23]Qi X,Xie S J,Liu Y W,et al. Genome-wide annotation of genes and noncoding RNAs of foxtail millet in response to simulated drought stress by deep sequencing[J]. Plant Molecular Biology,2013,83(4/5):459-473.
[24]Muthusamy M,Uma S,Backiyarani S,et al. Genome-wide screening for novel,drought stress-responsive long non-coding RNAs in drought-stressed leaf transcriptome of drought-tolerant and -susceptible banana (Musa spp.) cultivars using Illuminahigh-throughput sequencing[J]. Plant Biotechnology Reports,2015,9(5):279-286.
[25]Shuai P,Liang D,Tang S,et al. Genome-wide identification and functional prediction of novel and drought-responsive lincRNAs in Populus trichocarpa[J]. Journal of Experimental Botany,2014,65(17):4975-4983.
[26]Zhang W,Han Z X,Guo Q L,et al. Identification of maize longnon-coding RNAs responsive to drought stress[J]. PLoS One,2014,9(6):e98958.
[27]Wu B,Li Y,Yan H X,et al. Comprehensive transcriptome analysis reveals novel genes involved in cardiac glycoside biosynthesis and mlncRNAs associated with secondary metabolism and stress response in Digitalis purpurea[J]. BMC Genomics,2012,13:15.
[28]Aversano R,Contaldi F,Ercolano M R,et al. The Solanum commersonii genome sequence provides insights into adaptation to stress conditions and genome evolution of wild potato relatives[J]. Plant Cell,2015,27(4):954-968.
[29]Postnikova O A,Nemchinov L G. Natural antisense transcripts associated with salinity response in alfalfa[J]. The Plant Genome,2015,8(2):1-5.
[30]Xu Q,Song Z H,Zhu C Y,et al. Systematic comparison of lncRNAs with protein coding mRNAs in population expression and their response to environmental change[J]. BMC Plant Biology,2017,17:42.
[31]Qin T,Zhao H,Cui P,et al. A nucleus-localized long non-coding RNA enhances drought and salt strss tolerance[J]. Plant Physiology,2017,175(3):1321-1336.
[32]Franco-Zorrilla J M,Valli A,Todesco M,et al. Target mimicry provides a new mechanism for regulation of microRNA activity[J]. Nature Genetics,2007,39(8):1033-1037.
[33]毋若楠,王?紅,楊成成,等. 擬南芥lncRNA-At5NC056820過表達(dá)載體構(gòu)建及其轉(zhuǎn)基因植株的抗旱性研究[J]. 西北植物學(xué)報(bào),2017,37(10):1904-1909.
[34]Wang T Z,Liu M,Zhao M G,et al. Identification and characterization of long non-coding RNAs involved in osmotic and salt stress in Medicago truncatula,using genome-wide high-througput sequencing[J]. BMC Plant Biology,2015,15:131.
[35]Li S X,Yu X,Lei N,et al.Genome-wide identification and functional prediction of cold and/or drought- responsive lncRNAs in cassava[J]. Scientific Reports,2017,7:46795.
[36]劉偉婳.基于全轉(zhuǎn)錄組學(xué)的野生蕉(Musa itinerans)低溫脅迫響應(yīng)機(jī)制研究[D]. 福州:福建農(nóng)林大學(xué),2018.
[37]Ben Amor B,Wirth S,Merchan F,et al. Novel long non-protein coding RNAs involved in Arabidopsis differentiation and stress responses[J]. Genome Research,2009,19(1):57-69.
[38]Cui J,Luan Y S,Jiang N,et al. Comparative transcriptome analysis between resistant and susceptible tomato allows the identification of lncRNA16397 conferring resistance to Phytophthora infestans byco-expressing glutaredoxin[J]. Plant Journal,2017,89(3):577-589.
[39]Kwenda S,Brich P R J,Moleleki L N. Genome-wide identification of potato long intergenic noncoding RNAs responsive to Pectobacterium carotovorum subspecies brasiliense infection[J]. BMC Genomics,2016,17:614.
[40]Joshi R K,Megha S,Basu U,et al. Genome wide identification and functional prediction of long non-coding RNAs responsive to Sclerotinia sclerotiorum infection in Brassica napus[J]. PLoS One,2016,11(7):e0158784.
[41]Zhu Q H,Stephen S,Taylor J,et al. Long noncoding RNAs responsive to Fusarium oxysporum infection in Arabidopsis thaliana[J]. New Phytologist,2014,201(2):574-584.
[42]Wang Z P,Liu Y F,Li L,et al. Whole transcriptome sequencing of Pseudomonas syringae pv. actinidiae-infected kiwifruit plants reveals species-specific interaction between long non-coding RNA and coding genes[J]. Scientific Reports,2017,7(1):4910.
[43]Zhang H,Chen X E,Wang C Y,et al. Long non-coding genes implicated in response to stripe rust pathogen stress in wheat (Triticum aestivum L.)[J]. Molecular Biology Reports,2013,40(11):6245-6253.
[44]Zhang L,Wang M J,Li N N,et al. Long noncoding RNAs involve in resistance to Verticillium dahliae,a fungal disease in cotton[J]. Plant Biotechnology Journal,2018,16(6):1172-1185.
[45]Flórez-Zapata N M V,Reyes-Valdés M H,Martínez O. Longnon-coding RNAs are major contributors to transcriptome changes in sunflower meiocytes with different recombination rates[J]. BMC Genomics,2016,17:490.
[46]Kang C Y,Liu Z C. Global identification and analysis of long non-coding RNAs in diploid strawberry Fragaria vesca during flower and fruit development[J]. BMC Genomics,2015,16:815.
[47]Song X M,Liu G F,Huang Z N,et al. Temperature expression patterns of genes and their co-expression with LncRNAs revealed by RNA-Seq in non-heading Chinese cabbage[J]. BMC Genomics,2016,17:297.
[48]Kerr S C,Gaiti F,Beveridge C A,et al. De novo transcriptome assembly reveals high transcriptional complexity in Pisum sativum axillary buds and shows rapid changes in expression of diurnally regulated genes[J]. BMC Genomics,2017,18(1):221.
[49]Hao Z Q,F(xiàn)an C Y,Cheng T,et al. Genome-wide identification,characterization and evolutionary analysis of long intergenic noncoding RNAs in cucumber[J]. PLoS One,2015,10(3):e0121800.
[50]Lin J K,Wilson I W,Ge G P,et al . Whole transcriptome analysis of three leaf stages in two cultivars and one of their F1 hybrid of Camellia sinensis L. with differing EGCG content[J]. Tree Genetics & Genomes,2017,13:13.
[51]Vitulo N,F(xiàn)orcato C,Carpinelli E C,et al. A deep survey of alternative splicing in grape reveals changes in the splicing machinery related to tissue,stress condition and genotype[J]. BMC Plant Biology,2014,14:99.
[52]Chen J H,Quan M Y,Zhang D Q. Genome-wide identification of novel long non-coding RNAs in Populus tomentosa tension wood,opposite wood and normal wood xylem by RNA-seq[J]. Planta,2015,241(1):125-143.
[53]Wang X,Ai G,Zhang C L,et al. Expression and diversification analysis reveals transposable elements play important roles in the origin of Lycopersicon-specific lncRNAs in tomato[J]. New Phytologist,2016,209(4):1442-1455.
[54]Mercer T R,Dinger M E,Mattick J S. Long non-coding RNAs:insights into functions[J]. Nature Reviews Genetics,2009,10(3):155-159.
[55]Zhu Q H,Wang M B. Molecular functions of long non-coding RNAs in plants[J]. Genes,2012,3(1):176-190.
[56]Rinn J L,Chang H Y. Genome regulation by long noncoding RNAs[J]. Annual Review of Biochemistry,2012,81:145-166.
[57]Au P C,Zhu Q H,Dennis E S,et al. Long non-coding RNA-mediated mechanisms Independent of the RNAi pathway in animals and plants[J]. RNA Biology,2011,8(3):404-414.