蘇妮爾 沈海龍 丁佩軍 鐘兆華 徐惠德 楊玲
摘 要:? 以黑龍江省佳木斯市孟家崗林場(chǎng)43 a紅皮云杉人工林為研究對(duì)象,測(cè)定不同坡位紅皮云杉的生長(zhǎng)狀況和林下土壤理化性質(zhì),分析不同坡位紅皮云杉人工林林木生長(zhǎng)狀況和土壤肥沃程度的差異,為建立紅皮云杉大徑材培育技術(shù)提供參考依據(jù)。分別在人工林南坡的上、中、下3個(gè)坡位上設(shè)置樣地,調(diào)查紅皮云杉的樹(shù)高、胸徑、冠幅、活枝下高、單株材積、單位面積蓄積量和單位面積胸高斷面積,五點(diǎn)法收集樣地不同土層的土壤樣品,測(cè)定土壤pH和土壤養(yǎng)分(全碳、全氮、全磷、全鉀、銨態(tài)氮、硝態(tài)氮、有效磷和速效鉀)含量。對(duì)林木生長(zhǎng)狀況調(diào)查發(fā)現(xiàn):不同坡位之間,下坡位的林木生長(zhǎng)狀況最佳,其樹(shù)高、胸徑、冠幅、活枝下高和單株材積均最大。不同坡位之間,樹(shù)高、冠幅、活枝下高和單株材積的比較由小到大排序?yàn)樯掀挛?、中坡位、下坡?胸徑和單株材積的比較由小到大排序?yàn)椋褐衅挛?、上坡位、下坡?單位面積蓄積量和單位面積胸高斷面積的比較由小到大排列為:上坡位、下坡位、中坡位。對(duì)土壤理化性質(zhì)分析結(jié)果表明,土壤pH隨著坡位下降呈增加趨勢(shì)。不同坡位之間,下坡位的土壤養(yǎng)分含量最高。除了全鉀和速效鉀的養(yǎng)分含量變化趨勢(shì)由小到大為:中坡位、上坡位、下坡位外,其余養(yǎng)分含量依次由小到大排列為:上坡位、中坡位、下坡位。對(duì)相同坡位土壤養(yǎng)分空間分布的比較發(fā)現(xiàn),林下表層(0~20 cm)土壤養(yǎng)分含量高于較深處(>20~40 cm)土壤。下坡位更有利于紅皮云杉林木生長(zhǎng)和土壤養(yǎng)分積累,是適合紅皮云杉大徑材林木培育的有利坡位條件。
關(guān)鍵詞: 紅皮云杉;大徑材培育;坡位;林木生長(zhǎng);土壤養(yǎng)分
中圖分類號(hào) :S723.1??? ?文獻(xiàn)標(biāo)識(shí)碼 :A?? ?文章編號(hào) :1006-8023(2020)02-0006-06
Comparison of Tree Growth and Soil Physical and Chemical Properties
of ?Picea koraiensis ?Plantation at Different Slope Positions
SONOR1,SHEN Hailong1,DING Peijun2,ZHONG Zhaohua2,XU Huide2,YANG Ling1*
(1.School of forestry, Northeast Forestry University, Harbin 150040, China;
2.Mengjiagang Forest Farm of Jiamusi of Heilongjiang Province,Jiamusi 154000, China)
Abstract: Taking the 43a Picea koraiensis plantation in Mengjiagang Forest Farm of Jiamusi of Heilongjiang Province as the research object, tree growth and forest soil physical and chemical properties were measured. The differences of growth shape and soil fertility artificial trees at different slope positions were analyzed to provide reference for the establishment of large-sized round wood cultivation technology of P. koraiensis.The sample plots were set up at the upper, middle and lower slopes on the south slope of plantation to investigate the tree height, diameter in breast high of trees (DBH), crown width and living branch height, and the soil samples from different soil layers were collected at five points to determine the soil pH and soil nutrient content (such as total carbon, total nitrogen, total phosphorus, total potassium, ammonium nitrogen, nitrate nitrogen, available phosphorus and available potassium). According to the survey, the trees growth on the downhill slope position was the best among different slope positions, and the tree height, DBH, crown width, living branch height and individual volume ?were the highest, respectively. Among the different slope positions, the comparison of tree height, crown width, living branch height and individual volume was ranked from small to large as uphill slope position, mid-slope position and downhill slope position. The comparison of breast diameter and individual volume were ranked from small to large as mid-slope position, uphill slope position, downhill slope position. The comparison of the unit area accumulation and the unit area of the chest height area was ranked from small to larege as uphill slope position, downhill position and middle? slope position. The results of soil physical and chemical properties analysis showed that the pH value increased with the decrease of? slope positions. The soil nutrient
content of the downhill slope position was the highest among different slope positions. In addition to the change trend of nutrient content of total potassium and available potassium was ranked from small to large as mid-slope position, uphill slope position and downhill slope position. The other nutrient contents were ranked from small to large as uphill slope position, mid-slope position and downhill slope position. Comparing the spatial distribution of soil nutrients on the same slopes, it was found that the soil nutrient content in the lower layer (0-20 cm) was higher than that in the deeper (>20-40 cm).The downhill slope position is more favorable for the tree growth of P. koraiensis and soil nutrient accumulation, which is suitable for the cultivation of P. koraiensis trees with large-sized round wood cultivation.
Keywords: Picea koraiensis; large-sized round wood cultivation; slope position; tree growth; soil nutrients
0 引言
在森林生態(tài)系統(tǒng)中,地形是決定土壤與環(huán)境進(jìn)行物質(zhì)循環(huán)的重要因子[1]。在同一地區(qū)的不同坡位會(huì)使土壤肥力和土壤水分產(chǎn)生生態(tài)梯度變化,且不同坡位土壤養(yǎng)分以及水分分布的差異主要由大氣作用、土壤性質(zhì)和降雨過(guò)程中養(yǎng)分流失造成[2]。從20世紀(jì)開(kāi)始,研究者們開(kāi)始了地形因子對(duì)土壤肥力、林木生長(zhǎng)、林木根系形態(tài)的研究[3-4]。鄧?yán)^峰等[5]研究發(fā)現(xiàn),油松(Pinus tabuliformis)和樟子松(Pinus sylvestrisvar)林下土壤養(yǎng)分會(huì)集中于坡位相對(duì)較低處的現(xiàn)象,表明低坡位能積累林木生長(zhǎng)所需的養(yǎng)分。韋建宏等[6]研究表明土壤養(yǎng)分在上中下坡位的含量排列由大到小依次為:下坡位、中坡位、上坡位。從土壤的空間垂直分布上來(lái)說(shuō),隨著土層加深土壤養(yǎng)分會(huì)有下降趨勢(shì),是由于凋落物淋洗和分 解過(guò)程中為表層輸入了很多養(yǎng)分[7-8]。通過(guò)對(duì)土壤養(yǎng)分相關(guān)性分析發(fā)現(xiàn),土壤全量養(yǎng)分和速效養(yǎng)分均呈顯著正相關(guān)關(guān)系。說(shuō)明土壤養(yǎng)分在相同的環(huán)境條件下具有較強(qiáng)的空間相關(guān)性,各養(yǎng)分之間隨著含量和組合的改變而出現(xiàn)變化[9]。土壤是林木生長(zhǎng)所需物質(zhì)的提供者,不同的養(yǎng)分組成和含量都會(huì)對(duì)林木的生長(zhǎng)帶來(lái)不同的影響[10]。有很多研究指出林木的生長(zhǎng)會(huì)在米級(jí)差異上表現(xiàn)不同[11-12]。Hoylman等[13]得出30 m以下的針葉樹(shù)在不同坡位上的年生長(zhǎng)量有顯著差異,這是由于上坡位與下坡位相比對(duì)于大氣的需求要大,但風(fēng)的作用會(huì)使上坡位水分短缺,從而導(dǎo)致在上坡位位置樹(shù)木年生長(zhǎng)率會(huì)相對(duì)于下坡位低。
紅皮云杉(Picea koraiensis)是我國(guó)東北營(yíng)造速生豐產(chǎn)林的珍貴樹(shù)種,有耐陰、耐旱和耐貧瘠的特征。立地條件可顯著影響紅皮云杉林木的生長(zhǎng)。人們研究發(fā)現(xiàn),紅皮云杉在氮、磷和鉀含量高且水分充足,但沒(méi)有積水的立地條件下會(huì)有更大生長(zhǎng)空間[14],但在向陽(yáng)和山頂位置則生長(zhǎng)緩慢[15]。本研究以黑龍江省佳木斯市孟家崗林場(chǎng)的43 a紅皮云杉人工林為研究對(duì)象,調(diào)查不同坡位紅皮云杉的生長(zhǎng)狀況和土壤養(yǎng)分的空間特征差異,以篩選出適合紅皮云杉大徑材林木培育的適宜坡位條件,為建立紅皮云杉大徑材培育技術(shù)提供科學(xué)依據(jù)。
1 研究地概況與研究方法
1.1 研究地概況
研究地點(diǎn)位于黑龍江省佳木斯市孟家崗林場(chǎng) (130°32″42′~130°52″36′E,46°20″16′~46°30″50′N), 海拔170~575 m,土壤類型主要為暗棕壤,屬于中溫帶大陸性季風(fēng)氣候,年均氣溫為2.7 ℃,最高氣溫達(dá)35.6 ℃, 最低溫度達(dá)-38.6 ℃,年均降雨量為550 mm,無(wú)霜期為120 d左右,全年日照時(shí)數(shù)為1 955 h。
1.2 樣地設(shè)置與調(diào)查
2018年5月分別在坡度為7°~8°的43 a紅皮云杉人工林南坡的上、中、下位置隨機(jī)設(shè)置50 m×50 m的樣方,每個(gè)坡位重復(fù)3個(gè)樣方。上、中、下坡位的海拔分別為305、287、270 m,樣地內(nèi)郁閉度為0.9,上中下坡位林分密度分別為592、1 164、560株/hm2。 上、中、下坡位共有的優(yōu)勢(shì)樹(shù)種有紅皮云杉(Picea koraiensis)、色木槭(Acer mono)、水曲柳(Fraxinus mandshurica)、蒙古櫟(Quercus mongolica)和胡桃楸(Juglans mandshurica)。坡中特有的樹(shù)種有白樺(Betula platyphylla)和黑樺(Betula dahurica);坡下特有的樹(shù)種有榛子(Corylus heterophylla)和榆樹(shù)(Ulmus pumila)。在所有樣地里主要灌木層樹(shù)種有刺五加(Acanthopanax senticosus)、忍冬(Lonicera japonica)、平榛(Corylus heterophylla)、接骨木(Sambucus williamsii)和暴馬丁香(Syringa amurensis);草本有堇菜(Viola verecunda)、問(wèn)荊(Equisetum arvense)、鈴蘭(Convallaria majalis)、薔薇(Rosa spp.)、苔草(Carex spp.)和蚊子草(Filipendula Palmata)等。
1.3 土壤理化性質(zhì)的測(cè)定
采用五點(diǎn)法用土鉆取出0~20 cm層和20~40 cm層的 土壤樣品并用四分法將樣品分成兩份,一份放進(jìn)4 ℃冰箱保鮮,用連續(xù)流動(dòng)分析儀進(jìn)行銨態(tài)氮和硝態(tài)氮含量的測(cè)定。另一份自然風(fēng)干后測(cè)定土壤全碳含量、全氮含量、全磷含量、全鉀含量、有效磷含量、速效鉀含量和土壤的pH。其中,全碳含量和全氮含量采用Vario Macro元素分析儀測(cè)定;全磷含量和全鉀含量用高氯酸和濃硫酸消煮后分別用鉬銻抗比色法和火焰光度計(jì)法測(cè)定;有效磷含量用雙酸提取后采用鉬銻抗比色法測(cè)定;速效鉀含量用中性醋酸銨浸提后用火焰光度計(jì)測(cè)定,pH采用電位測(cè)定法(水土質(zhì)量比為2.5∶ 1)[16-17]。
1.4 統(tǒng)計(jì)方法
用Microsoft Excel 2010進(jìn)行數(shù)據(jù)處理,IBM SPSS Statistics 21 統(tǒng)計(jì)分析軟件進(jìn)行單因素方差分析,SigmaPlot 12.5 軟件進(jìn)行(SYSTAT公司)繪圖。
2 結(jié)果與分析
2.1 不同坡位紅皮云杉生長(zhǎng)狀況比較
由表1可知,不同坡位對(duì)紅皮云杉林木生長(zhǎng)的影響有較大差異。不同坡位上紅皮云杉生長(zhǎng)狀況總體趨勢(shì)從大到小依次為:下坡位、中坡位、上坡位。樹(shù)高、活枝下高和冠幅均隨著坡位下降而增加。林木胸徑和單株材積在下坡位最大,在中坡位最小。下坡位的樹(shù)高分別比上坡位和中坡位的高出20.90%和5.11%,胸徑分別高出21.55%和23.20%,東西冠幅分別高出31.60%和31.25%,南北冠幅分別高出36.94%和35.64%,活枝下高分別高出50.62%和13.22%,單株材積分別高出57.89%和87.50%。單位面積蓄積量和單位面積胸高斷面積在中坡位最高,在上坡位最低,中坡位單位面積蓄積量分別高出上坡位和下坡位63.58%和14.85%,單位面積胸高斷面積分別高出上坡位和下坡位76.99%和33.85%%。從方差分析和多重比較結(jié)果可知,不同坡位之間樹(shù)高、胸徑、活枝下高、單株材積、單位面積蓄積量和單位面積胸高斷面積差異顯著(P<0.05),下坡位東西和南北冠幅顯著高于上坡位和中坡位(P<0.05)。
2.2 不同坡位土壤pH與土壤養(yǎng)分的空間變化
由圖1可知,不同坡位的土壤pH平均值均呈弱酸性,數(shù)值范圍為5.80~6.46。不同坡位相同土層的土壤pH由大到小排序?yàn)椋合缕挛?、中坡位、上坡位。在相同坡位上土壤pH表現(xiàn)為0~20 cm土層的低于>20~40 cm土層。從方差分析和多重比 較結(jié)果可知,下坡位0~20 cm土層和>20~40 cm土層的土壤pH顯著高于中坡位和上坡位(P<0.05)。
不同坡位土壤全量養(yǎng)分空間變化見(jiàn)表2和圖2。由表2和圖2可知,不同坡位之間土壤全量養(yǎng)分含量有較大區(qū)別,下坡位的養(yǎng)分含量比上坡位和中坡位的高。 在兩個(gè)土層中,不同坡位的全碳、全氮和全磷 含量由大到小依次為:下坡位、中坡位、上坡位,而全鉀含量在下坡位最高,中坡 位最小。從相同坡位不同土層 的全量養(yǎng)分 含量來(lái)看,0~20 cm土層的均高于>20~40 cm土層。下坡位兩個(gè)土層中全碳含量比上坡位和中坡位分別高出 61.50%、232%和33.60%、116.00%(P<0.05);全氮含量高出上坡位和中坡位47.20%、208.30%和29.30%、105.60%(P<0.05),全磷含量高出上坡位和中坡位135.20%、211.40%和121.90%、174.00%(P<0.05),全鉀顯著高出上坡位和中坡位31.90%、29.30%和32.80%、51.50%(P<0.05)。
由表3可知,不同坡位相同土層的速效養(yǎng)分含量與全量養(yǎng)分含量具有相同的變化趨勢(shì),依次由大到小排列為:下坡位、中坡位、上坡位,同一坡位不 同土層的速效養(yǎng)分含量均為上層(0~20 cm)土壤養(yǎng)分含量高于下層的(>20~40 cm)。在上、中、下坡位中,0~20 cm土層的銨態(tài)氮含量比>20~40 cm 土層的分別高出16.90%、18.50%、71.50%,硝態(tài)氮含量比>20~40 cm土層的分別高出30.20%、43.90%、28.70%,有效磷含量比>20~40 cm土層的分別高出268.00%、 217.00%、308.00%,速效鉀含量比>20~40 cm土層的分別高出3.90%、3.11%、0.90%。兩種速效氮的含量相比較,不同坡位和不同土層中的硝態(tài)氮含量均顯著高于銨態(tài)氮含量(P<0.05)。
3 討論與結(jié)論
3.1 不同坡位紅皮云杉生長(zhǎng)狀況
紅皮云杉易成活易成林,有較強(qiáng)的適應(yīng)不同立地條件的能力,但在不同立地和氣候條件下會(huì)有不同的生長(zhǎng)速度和產(chǎn)量[18]。這與紅皮云杉自身的生物學(xué)特性相關(guān),在平坦、土壤肥厚、無(wú)過(guò)多積水、土層深厚和濕潤(rùn)溫和的條件下生長(zhǎng)迅速且豐產(chǎn)[19]。盡管紅皮云杉適應(yīng)性強(qiáng),但在不同的坡向和坡位上生長(zhǎng)狀況會(huì)有很大差異[20-21]。朱虹等[14]研究發(fā)現(xiàn)坡位是僅次于土壤因素的第二關(guān)鍵因子。由于不同地形所處的光照和溫度有差異,會(huì)使其徑向生長(zhǎng)產(chǎn)生不同的趨勢(shì)。本次研究中坡位紅皮云杉林木胸徑生長(zhǎng)低于上坡位是由于中坡位林分密度高于上坡位,導(dǎo)致其胸徑低于上坡位的狀況。雖林分密度大可以提高單株材積和單位面積蓄積量,但林分過(guò)密限制了紅皮云杉的徑向生長(zhǎng),不利于大徑材培育;低坡位結(jié)合適宜的林分密度可以促進(jìn)紅皮云杉林木胸徑生長(zhǎng),其樹(shù)高、活枝下高和冠幅也有相同的增加趨勢(shì)。
3.2 不同坡位土壤pH與土壤養(yǎng)分的空間變化
立地條件、環(huán)境、水分以及樹(shù)種間相互競(jìng)爭(zhēng)均可影響生態(tài)系統(tǒng)中能量流動(dòng)和物質(zhì)循環(huán)。pH的高低會(huì)反映土壤的肥沃程度和支配養(yǎng)分的能力,隨著土層深度增加,土壤pH會(huì)有酸性減弱的趨勢(shì),且減弱程度會(huì)加強(qiáng)[22-23]。在不同坡位上pH會(huì)表現(xiàn)出近似或由大到小排列依次為:下坡位、中坡位、上坡位[6]。
本研究發(fā)現(xiàn),紅皮云杉人工林不同坡位或相同坡位不同土層的土壤養(yǎng)分含量呈現(xiàn)一定的變化規(guī)律(圖2、表2和表3),即土壤養(yǎng)分在坡位高的地方較難積累,而在低坡位土壤全量養(yǎng)分含量和速效養(yǎng)分含量得到積累和增加。紅皮云杉人工林土壤養(yǎng)分含量隨坡位變化的規(guī)律說(shuō)明坡位是影響紅皮云杉人工林土壤養(yǎng)分的重要結(jié)構(gòu)性因素。氮元素和磷元素是反映枝條和針葉生長(zhǎng)的關(guān)鍵因子,氮含量和磷含量揭示著土壤的肥力狀況,較高的全氮和全磷含量可顯著增加林木的生物量[24-27]。本研究發(fā)現(xiàn),紅皮云杉人工林土壤中的全氮含量和全磷含量在不同坡位之間差異較大,下坡位顯著高于上坡位和中坡位。在相同的坡位上,紅皮云杉人工林土壤養(yǎng)分含量隨著土壤深度的加深而減少,這與謝紅花等[28]研究結(jié)果相同。
不同坡位條件下紅皮云杉的生長(zhǎng)和林下土壤肥沃程度存在差異。坡位對(duì)紅皮云杉的生長(zhǎng)產(chǎn)生了影響,在下坡位其樹(shù)高、胸徑、活枝下高和冠幅等生長(zhǎng)指標(biāo)高于中坡位和上坡位。不同坡位土壤養(yǎng)分含量以下坡位最高,中坡位次之,上坡位最少。因此認(rèn)為,下坡位置更適合紅皮云杉林木徑向生長(zhǎng),林木在下坡位置可獲得更多生長(zhǎng)所需的養(yǎng)分。因此,以紅皮云杉大徑材培育為目的進(jìn)行造林時(shí)應(yīng)該選擇低坡位和養(yǎng)分含量高的立地條件,下坡位是適合紅皮云杉大徑材培育的適宜坡位條件。
【參 考 文 獻(xiàn)】
[1]? SCHWANGHART W, JARMER T. Linking spatial patterns of soil organic carbon to topography: a case study from south-eastern Spain[J]. Geomorphology, 2011, 126(1/2): 252-263.
[2]?? MEI X M, ZHU Q K, MA L, et al. Effect of stand origin and slope position on infiltration pattern and preferential flow on a Loess hillslope[J]. Land Degradation & Development, 2018, 29(5): 1353-1365.
[3]? SMITH L A, EISSENSTAT D M, KAYE M W. Variability in aboveground carbon driven by slope aspect and curvature in an eastern deciduous forest, USA [J]. Canadian Journal of Forest Research, 2017, 47(2):149-157.
[4]? JOURGHOLAMI M, RAMINEH A, ZAHEDI AMIRI G, et al. The influence of slope positions on the recovery response of compacted soil properties and enzyme activity in an oriental beech stand in the Hyrcanian forests, Iran[J]. Sustainability, 2019, 11(7): 1940.
[5]? 鄧?yán)^峰,李景浩,宋依璇.等.油松和樟子松人工林不同坡位土壤養(yǎng)分特征及其與生長(zhǎng)性狀的關(guān)系-以遼東地區(qū)為例[J].沈陽(yáng)農(nóng)業(yè)大學(xué)學(xué)報(bào),2017,48(5):522-529.
DENG J F, LI J H, SONG Y X, et al. Characteristics of soil nutrients and relations with stand growth of Pinus tabulaeformis and Pinus sylvestnis var. mongolica plantations under different slopes in low mountains and hill district of eastern Liaoning Province[J]. Journal of Shenyang Agricultural University, 2017, 48(5): 522-529.
[6]? 韋建宏,侯敏,韋添露,等.不同坡位桉樹(shù)人工林生長(zhǎng)和土壤理化性質(zhì)比較[J].安徽農(nóng)業(yè)科學(xué),2017,45(5):167-169.
WEI J H, HOU M, WEI T L, et al. Comparison on Eucalyptus spp plantation growth and soil physicochemical properties in different slope position[J]. Journal of Anhui Agricultural Sciences, 2017, 45(5): 167-169.
[7]? 馮云,馬克明,張育新.等.坡位對(duì)北京東靈山遼東櫟林物種多度分布的影響[J].生態(tài)學(xué)雜志,2011,30(10):2137-2144.
FENG Y, MA K M, ZHANG Y X, et al. Effects of slope position on species abundance distribution of Quercus wutaishanica community in Dongling Mountain of Beijing [J]. Chinese Journal of Ecology 2011,30(10): 2137-2144.
[8]? 李雯靖,王立,趙維俊.等.祁連山青海云杉林土壤養(yǎng)分特征[J].甘肅農(nóng)業(yè)大學(xué)學(xué)報(bào),2016,51(5):88-94.
LI W J, WANG L, ZHAO W J, et al. Soil nutrient characteristics of Picea crassifolia forest in Qilian Mountains [J]. Journal of Gansu Agricultural University, 2016, 51(5):88-94.
[9]? 李奕,滿秀玲,蔡體久.等.大興安嶺山地樟子松天然林不同坡位土壤養(yǎng)分特征及相關(guān)性研究[J].安徽農(nóng)業(yè)科學(xué),2014,42(5):1413-1416.
LI Y, MAN X L, CAI T J, et al. Research on soil nutrient characteristic and correlation in different slope position of scotch pine forest in Da Hinggan Mountains[J]. Journal of Anhui Agri Sci, 2014,42(5):1413-1416.
[10]? 張少康,劉海威,焦峰.黃土丘陵區(qū)微地形梯度下草地群落及土壤對(duì)氮、磷添加的響應(yīng)[J].水土保持研究,2018,25(1):75-83.
ZHANG S K, LIU H W, JIAO F. Responses of grassland communities and soil to nitrogen and phosphorus additions in Micro-topography of the hilly Loess Plateau region[J]. Research of Soil and Water Conservation, 2018, 25(1): 76-83.
[11]? HAWTHORNE S, MINIAT C F. Topography may mitigate drought effects on vegetation along a hillslope gradient[J]. Ecohydrology, 2017, 11(1):1-11.
[12]?? APPELS W M, GRAHAM C B, FREER J E, et al. Factors affecting the spatial pattern of bedrock groundwater recharge at the hillslope scale[J]. Hydrological Processes, 2015, 29(21): 4594-4610.
[13]? HOYLMAN Z H, JENCSO K G, HU J, et al. Hillslope topography mediates spatial patterns of ecosystem sensitivity to climate[J]. Journal of Geophysical Research: Biogeosciences, 2018, 123(2): 353-371.
[14]? 朱虹,楊凱.紅皮云杉人工林立地分類與質(zhì)量評(píng)價(jià)[J].東北林業(yè)大學(xué)學(xué)報(bào),2008,36(5):4-6.
ZHU H, YANG K. Site classification and quality appraisal of Picea koraiensis plantations[J]. Journal of Northeast Forestry University, 2008, 36(5): 4-6.
[15]?? 王建宇, 王慶貴, 閆國(guó)永, 等. 原始云冷杉、紅松林樹(shù)木生長(zhǎng)對(duì)氮沉降的響應(yīng)[J]. 北京林業(yè)大學(xué)學(xué)報(bào), 2017, 39(4): 21-28.
WANG J Y, WANG Q G, YAN G Y, et al. Response of tree growth to nitrogen deposition in spruce-fir-Korean pine virgin forest in Lesser Khingan Mountains in northeastern China[J]. Journal of Beijing Forestry University, 2017, 39(4): 21-28.
[16]? 陸遠(yuǎn)鴻,曹昀,許令明.等.鄱陽(yáng)湖沙化土地植物-凋落物-土壤化學(xué)計(jì)量特征[J].生態(tài)學(xué)雜志,2019,38(2): 329-335.
LU Y H, CAO Y, XU L M, et al. Stoichiometric characteristics of plants, litter and soils in desertification area of Poyang Lake[J]. Chinese Journal of Ecology, 2019, 38(2): 329-335.
[17]?? 黃慶陽(yáng),曹宏杰,王立民.等.五大連池火山熔巖臺(tái)地植物多樣性與土壤養(yǎng)分的關(guān)系[J].浙江農(nóng)林大學(xué)學(xué)報(bào),2019,36(1):80-87.
HUANG Q Y, CAO H J, WANG L M, et al. Species diversity and soil nutrients in lava platforms of Wudalianchi Volcanoes, China[J]. Journal of Zhejiang A & F University, 2019, 36(1): 80-87.
[18]?? 姚啟超,王曉春,肖興威,等.小興安嶺紅皮云杉年輪-氣候關(guān)系及其衰退原因[J].應(yīng)用生態(tài)學(xué)報(bào),2015,26(7):1935-1944.
YAO Q C, WANG X C, XIAO X W, et al. Climate-growth relationships of Picea koraiensis and causes of its recent decline in Xiaoxingan Mountains, China[J]. Chinese Journal of Applied Ecology, 2015, 26(7):1935-1944.
[19]? 周磊,王樹(shù)力.樹(shù)種混交對(duì)紅皮云杉人工林土壤養(yǎng)分的影響[J].東北林業(yè)大學(xué)學(xué)報(bào),2019,47(2):39-43.
ZHOU L, WANG S L. Effects of mixed tree species on soil nutrients in Picea koraiensis plantations[J]. Journal of Northeast Forestry University, 2019, 47(2): 37-41.
[20]? 袁景榮,尚艷文.嫩江云杉與紅皮云杉幼苗生長(zhǎng)及物候期觀測(cè)[J].東北林業(yè)大學(xué)學(xué)報(bào),2008,36(5):13-14.
YUAN J R, SHANG Y W. Growth and phenological observation of Picea koraiensis and Picea koraiensis var. nenjiangensis[J]. Journal of Northeast Forestry University, 2008, 36(5): 13-14.
[21]? 王福德,翁海龍,周顯昌.紅皮云杉優(yōu)良家系選擇方法的研究[J].林業(yè)科技,2017,42(1):30-31.
WANG F D, WENG H L, ZHOU X C. Study on the selection method of fine family of red spruce[J]. Forestry Science & Technology, 2017, 42(1):30-31.
[22]? 江未來(lái).岳麓山坡面林下土壤有機(jī)質(zhì)分布特征研究[J].邵陽(yáng)學(xué)院學(xué)報(bào)(自然科學(xué)版),2018,15(3):82-87.
JIANG W L. Reseach on distribution characteristics of soil organic matter on woodland slope of Yuelu Mountain[J]. Journal of Shaoyang University(Natural Science Edition), 2018, 15(3): 82-87.
[23]? 郭漢清,張勇,李特.等.關(guān)帝山典型針葉林土壤理化性狀研究[J].山西農(nóng)業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版),2014,34(2):162-167.
GUO H Q, ZHANG Y, LI T, et al. Study on the soil physicochemical properties of coniferous forests in Guandi Mountain[J]. Journal of Shanxi Agricultural University(Natural Science Edition), 2014, 34(2): 162-167.
[24]? 陳彩虹,田大倫,方晰.等.城郊4種人工林林下植被物種多樣性、生物量與土壤養(yǎng)分相關(guān)性[J].水土保持學(xué)報(bào),2010,24(6):213-217.
CHEN C H, TIAN D L, FANG X, et al. Correlativity between undergrowth vegetation species diversity/biomass and soil fertility of four types planted forest in suburbs[J]. Journal of Soil and Water Conservation, 2010, 24(6):213-217.
[25]? 李慧,王百田,曹遠(yuǎn)博.等.呂梁山區(qū)3種人工林植被、凋落物生物量差異特征及其與土壤養(yǎng)分的關(guān)系[J].植物研究,2016,36(4):573-580.
LI H, WANG B T, CAO Y B, et al. Difference feature of planted vegetation biomass and litter biomass for three plantations and their relationship with soil nutrients in Lvliang Mountainous region[J]. Bulletin of Botanical Research, 2016, 36(4): 573-580.
[26]? TU L H, PENG Y, CHEN G, et al. Direct and indirect effects of nitrogen additions on fine root decomposition in a subtropical bamboo forest[J]. Plant and Soil, 2015, 389(1/2): 273-288.
[27]?? 張揚(yáng),裴亞蒙,任昊曄,等.模擬氮沉降對(duì)長(zhǎng)白山興安落葉松林土壤有機(jī)碳庫(kù)的短期影響[J].林業(yè)科技,2019,44(3):22-25.
ZHANG Y,PEI Y M, REN H Y,et al. Response of soil total organic carbon and its fractions to short-term simulated nitrogen deposition in a Larix gmelinii plantation in Changbai Mountains[J]. Forestry Science & Technology, 2019, 44(3): 22-25.
[28]? 謝紅花,李超,錢曄.等.云南烏蒙山區(qū)土壤養(yǎng)分空間變異及海拔梯度分布規(guī)律[J].中國(guó)農(nóng)學(xué)通報(bào),2018,35(8):52-58.
XIE H H, LI C, QIAN Y, et al. Spatial variability and altitudinal gradient distribution pattern of soil nutrients in Wumeng Mountainous region, Yunnan[J]. Chinese Agricultural Science Bulletin, 2018, 35(8): 52-58.