陳雪,王瑞,井付鈺,張勝森,賈樂(lè)東,段謀正,吳宇
基于二代測(cè)序的甘藍(lán)型油菜白花基因候選區(qū)間定位及連鎖標(biāo)記驗(yàn)證
陳雪,王瑞,井付鈺,張勝森,賈樂(lè)東,段謀正,吳宇
(西南大學(xué)農(nóng)學(xué)與生物科技學(xué)院,重慶 400715)
【目的】近幾年隨著觀光農(nóng)業(yè)的興起,花色的選育和改良已成為甘藍(lán)型油菜種質(zhì)資源鑒定和材料創(chuàng)制的重要研究方向。以甘藍(lán)型油菜黃白花分離F2群體為研究對(duì)象,通過(guò)二代測(cè)序技術(shù),對(duì)白花性狀基因候選區(qū)間定位,開(kāi)發(fā)與白花性狀連鎖的分子標(biāo)記,為定位白花候選基因和選育白花新材料提供新思路?!痉椒ā恳愿仕{(lán)型油菜DH純系黃花Y05和甘藍(lán)型油菜純系白花W01雜交,觀察F1和F2群體的花色分離,分析白花性狀遺傳模式。在F2群體中選取30株純白花和30株純黃花構(gòu)建DNA葉片子代池和RNA花瓣子代池,對(duì)親本和DNA葉片子代池進(jìn)行30×重測(cè)序,對(duì)RNA花瓣子代池進(jìn)行5×測(cè)序。以法國(guó)甘藍(lán)型油菜Darmor-bzh、中雙11、Darmor、Tapidor為參考序列,重測(cè)序QTL-seq分析流程計(jì)算2個(gè)DNA子代池的SNP-index和delta(SNP-index)。利用R包畫(huà)出SNP-index和delta(SNP-index)滑窗分析圖,鑒定候選區(qū)間。轉(zhuǎn)錄組MMAPPR分析流程以法國(guó)甘藍(lán)型油菜Darmor-bzh為參考序列,計(jì)算SNP頻率,ED4(Loess fit)檢測(cè)峰值和鑒定候選區(qū)間。利用MISA進(jìn)行重復(fù)序列鑒定,使用Prime3在候選區(qū)間進(jìn)行SSR引物設(shè)計(jì),在F2群體中采用聚丙烯酰胺凝膠電泳方法對(duì)SSR引物進(jìn)行篩選?!窘Y(jié)果】甘藍(lán)型油菜黃花與白花雜交F2群體中,白花和黃花性狀分離比符合3﹕1,暗示白花性狀受1對(duì)顯性主效基因控制。全基因組重測(cè)序區(qū)間定位結(jié)果顯示,白花性狀基因候選區(qū)間在Darmor-bzh C03染色體52—55 Mb。同時(shí)以甘藍(lán)型油菜中雙11、Darmor、Tapidor分別為參考序列,均鑒定出白花基因候選區(qū)間在C03染色體上的一致性和穩(wěn)定性。轉(zhuǎn)錄組測(cè)序定位白花性狀基因位于Darmor-bzh C03染色體54—55 Mb。轉(zhuǎn)錄組測(cè)序和重測(cè)序定位染色體結(jié)果高度一致。在此區(qū)間內(nèi)MISA和Primer3結(jié)合設(shè)計(jì)SSR引物,聚丙烯酰胺凝膠電泳篩選到6個(gè)與白花性狀緊密連鎖共分離的SSR標(biāo)記。6個(gè)SSR標(biāo)記區(qū)間范圍在760 kb(52.81—53.57 Mb)。此候選區(qū)間與甘藍(lán)、白菜共線性分析,對(duì)應(yīng)白菜A02染色體56.76—57.40 Mb區(qū)間,對(duì)應(yīng)甘藍(lán)C03染色體10.99—11.28 Mb區(qū)間?!窘Y(jié)論】甘藍(lán)型油菜白花性狀由1對(duì)顯性主效基因控制。白花性狀基因候選區(qū)間在法國(guó)甘藍(lán)型油菜Darmor-bzh C03染色體52—55 Mb區(qū)間內(nèi)。此區(qū)間760 kb范圍內(nèi)篩選出6個(gè)與白花性狀基因緊密連鎖共分離的SSR標(biāo)記。
甘藍(lán)型油菜;白花;測(cè)序;候選區(qū)間;SSR
【研究意義】甘藍(lán)型油菜屬十字花科(Cruciferace)蕓薹屬()植物,是中國(guó)重要油料作物[1],可作為食用植物油、蛋白質(zhì)飼料和能源的原料作物。近幾年,隨著油菜不同花色品種示范與推廣,帶動(dòng)了鄉(xiāng)村觀光旅游,促進(jìn)了農(nóng)民增收。因此,加快選育創(chuàng)制不同遺傳背景的油菜花色新品種具有重要意義?!厩叭搜芯窟M(jìn)展】油菜白花花瓣不僅有觀賞和裝飾價(jià)值,還可以轉(zhuǎn)育不育系和恢復(fù)系,成為鑒定雜交種純度的指示性狀。油菜的白花性狀很早就有報(bào)道。PERSON等[2]發(fā)現(xiàn)一種白菜白色花突變體,證明白色是由單個(gè)顯性基因控制的。種間雜交也會(huì)產(chǎn)生白色花。CHEN等[3]、HENEEN等[4]、ZHANG等[5]利用白菜和甘藍(lán)人工雜交,獲得甘藍(lán)型油菜白花品系。通過(guò)多年對(duì)油菜白花遺傳模式和遺傳效應(yīng)研究,發(fā)現(xiàn)白花性狀為顯性并且沒(méi)有細(xì)胞質(zhì)效應(yīng)[6-7]。JAMBHULKAR等[8]在埃塞俄比亞芥中發(fā)現(xiàn)白花性狀是由1對(duì)不完全顯性基因控制。芥菜型油菜白花性狀是由2對(duì)基因互作影響[9-10]。多位學(xué)者研究甘藍(lán)型油菜白花由1對(duì)核基因控制,白花對(duì)黃花為顯性[11-13]。分子標(biāo)記輔助選擇是轉(zhuǎn)育質(zhì)量性狀的重要技術(shù)手段。LIU等[13]鑒定出白花性狀由5個(gè)QTL控制。HAN等[14]通過(guò)InDel標(biāo)記將甘藍(lán)白花性狀定位于C03染色體上。HUANG等[12]利用AFLP和SSR得到與白花基因連鎖的2個(gè)標(biāo)記,距離為3.0和3.2 cM。ZHANG等[11]構(gòu)建回交和DH群體,用AFLP和SSR標(biāo)記把甘藍(lán)型油菜白花定位到C03染色體上,再與甘藍(lán)參考組序列比對(duì),獲得白花候選基因CCD4。近年來(lái),基于二代測(cè)序的BSA分析技術(shù)為質(zhì)量性狀或主效基因快速準(zhǔn)確定位提供了強(qiáng)大工具。目前,已在水稻[15-17]、小麥[16]、大豆[18]、番茄[19]、黃瓜[20-22]等作物中用于對(duì)質(zhì)量性狀或主效基因進(jìn)行遺傳定位研究,快速篩選靶基因獲得緊密連鎖分子標(biāo)記。在利用BSA重測(cè)序定位油菜花色方面,YAO等[23]將甘藍(lán)型油菜橙色花性狀基因定位于C09染色體151 kb區(qū)間,在此區(qū)間開(kāi)發(fā)了連鎖SSR和InDel標(biāo)記。ZHANG等[24]利用BSA重測(cè)序?qū)⒔娌诵桶谆ㄐ誀疃ㄎ挥贐04染色體,區(qū)間為2.45 Mb,并開(kāi)發(fā)出SSR連鎖標(biāo)記?!颈狙芯壳腥朦c(diǎn)】迄今為止,已有多位作者運(yùn)用傳統(tǒng)分子標(biāo)記技術(shù)將白花相關(guān)基因定位到C03染色體,并開(kāi)發(fā)了緊密連鎖的分子標(biāo)記。但利用二代測(cè)序技術(shù)快速精準(zhǔn)定位甘藍(lán)型油菜白花基因候選區(qū)間仍鮮見(jiàn)報(bào)道?!緮M解決的關(guān)鍵問(wèn)題】本研究通過(guò)甘藍(lán)型油菜黃花DH系和白花DH系雜交,對(duì)獲得的F2代2個(gè)極端子代池開(kāi)展全基因組重測(cè)序和轉(zhuǎn)錄組測(cè)序,定位白花基因候選區(qū)間。在區(qū)間內(nèi)設(shè)計(jì)SSR引物,用SSR連鎖標(biāo)記驗(yàn)證候選區(qū)間定位的準(zhǔn)確性,為精細(xì)定位白花候選基因和分子標(biāo)記輔助選育甘藍(lán)型油菜白花新材料奠定基礎(chǔ)。
西南大學(xué)油菜生物學(xué)團(tuán)隊(duì)將甘藍(lán)型油菜和羽衣甘藍(lán)遠(yuǎn)緣雜交,在分離群體中,獲得白花突變體,再與甘藍(lán)型油菜多代回交獲得甘藍(lán)型白花油菜,同時(shí)小孢子加倍獲得甘藍(lán)型白花純系DH材料W01。DH純系黃花材料Y05是通過(guò)小孢子加倍選育的隱性純系臨保系。2016年用DH純系黃花Y05與純系白花W01雜交獲得F1,次年獲得F2。從F2分離群體中選取極端白花單株和極端黃花單株,構(gòu)建白花子代池和黃花子代池,用于白花基因候選區(qū)間定位。
2017年3月花期,F(xiàn)1單株自交獲得F2。2017年9月25日對(duì)親本和F2進(jìn)行小區(qū)育苗,10月將單株移栽到西南大學(xué)歇馬油菜基地試驗(yàn)田,行距為0.2 m,株距為0.2 m。2017年12月苗期對(duì)F2群體213個(gè)單株插牌編號(hào)。2018年3月初花期和盛花期對(duì)F2群體213個(gè)單株分別記錄花色。
2017年12月苗期,對(duì)親本Y05和W01以及F2群體每個(gè)單株按插牌編號(hào)取幼嫩葉0.2 g。2018年3月初花期和盛花期按苗期插牌編號(hào)記錄單株花色。選取極端純白花30株和極端純黃花30株,對(duì)應(yīng)到苗期編號(hào)取幼嫩葉。利用OMEGA HP Plant DNA試劑盒對(duì)2個(gè)親本和極端黃、白花的幼嫩葉提取DNA。將純白花幼嫩葉和純黃花幼嫩葉各30株的DNA等量混合,構(gòu)建白花DNA子代池和黃花DNA子代池。在F2群體處于初花期時(shí),選取純白花和純黃花各30株,取每株剛張開(kāi)的花瓣0.15 g,利用EZ-10 Total RNA Mini-Preps Kits試劑盒提取RNA。將極端純白花花瓣和極端純黃花花瓣各30株的RNA等量混合,構(gòu)建白花RNA子代池和黃花RNA子代池。2個(gè)DNA子代池和2個(gè)親本DNA建庫(kù)類(lèi)型為DNA-350 bp,以illumina HiSeq PE150方法測(cè)序,測(cè)序深度為30×。2個(gè)RNA子代池建庫(kù)類(lèi)型為DNA-300 bp,以illumina HiSeq PE125方法測(cè)序,測(cè)序深度為5×。
對(duì)DNA子代池和2個(gè)親本30×重測(cè)序的原始數(shù)據(jù)去除接頭和低質(zhì)量序列,得到分析數(shù)據(jù)。啟動(dòng)QTL-seq shell流程[25],F(xiàn)ASTX-TOOLKIT軟件過(guò)濾低質(zhì)量reads;將過(guò)濾后的親本reads與法國(guó)甘藍(lán)型油菜參考組Darmor-bzh Brassica_napus.v4.1.fa(http://www. genoscope.cns.fr/ brassicanapus/)比對(duì),并替換SNP,構(gòu)建親本參考組,再將親本reads重新與新構(gòu)建的親本參考基因組比對(duì),發(fā)現(xiàn)錯(cuò)配造成的SNP,用于后續(xù)的排除和過(guò)濾。將2個(gè)DNA子代池質(zhì)控過(guò)濾后的reads分別與親本參考基因組比對(duì)。使用Coval Refine對(duì)比對(duì)結(jié)果進(jìn)行過(guò)濾,Coval Call檢測(cè)變異位點(diǎn),排除由于錯(cuò)配導(dǎo)致的SNP位點(diǎn),計(jì)算2個(gè)DNA子代池的SNP-index以及2個(gè)子代池之間的delta(SNP-index)。利用R包畫(huà)出SNP-index和delta(SNP-index)滑窗分析圖,鑒定候選區(qū)間。
RNA子代池測(cè)序數(shù)據(jù)需要以下預(yù)處理:利用bwa軟件將白花RNA子代池和黃花RNA子代池測(cè)序數(shù)據(jù)與法國(guó)甘藍(lán)型油菜參考基因組Darmor-bzh比對(duì),對(duì)得出的sam文件進(jìn)行sort排序,去除PCR重復(fù),建立索引文件。GATK軟件再重新比對(duì)獲得白花子代池和黃花子代池bam文件,啟動(dòng)MMAPPR分析流程[26],計(jì)算SNP頻率,Loess fit of ED4檢測(cè)峰值和鑒定候選區(qū)間。
利用MISA(http://pgrc.ipk-gatersleben.de/misa/)進(jìn)行重復(fù)序列鑒定并使用Prime3在候選區(qū)間進(jìn)行SSR引物設(shè)計(jì),引物序列由上海生工生物工程技術(shù)服務(wù)有限公司合成。隨機(jī)選取F2群體極端黃花和極端白花各11株幼嫩葉DNA為模板,進(jìn)行PCR擴(kuò)增。PCR體系為2.2 μL模板DNA、0.25 μL 2.5 mmol·L-1dNTP、前后引物各0.36 μL、0.31 μL Taq酶(2.5 U·μL-1)、1.9 μL 10×PCR buffer(含Mg2+)。PCR程序?yàn)?4℃ 5 min;94℃ 30 s,52℃—60℃ 30 s,72℃ 30 s,共35個(gè)循環(huán);72℃ 5min;4℃保存。PCR擴(kuò)增產(chǎn)物經(jīng)8%變性聚丙烯酰胺凝膠電泳分離60min,用銀染法進(jìn)行顯影。
甘藍(lán)型油菜黃花DH純系Y05與白花純系W01雜交,F(xiàn)1均為白花,F(xiàn)2呈明顯主效基因分布特點(diǎn),白花對(duì)黃花為顯性性狀。F2群體中純白花和純黃花分離明顯(圖1)。
對(duì)2年田間試驗(yàn)數(shù)據(jù)進(jìn)行卡方測(cè)驗(yàn),結(jié)果表明,黃白花性狀分離比符合3﹕1的分離規(guī)律(表1),暗示白花性狀受1對(duì)顯性主效基因控制。
分別用已發(fā)表的法國(guó)甘藍(lán)型油菜[27]Brassica_ napus.v4.1.fa(http://www.genoscope.cns.fr/ brassicanapus/)、甘藍(lán)型油菜中雙11[28](http://ocri-genomics.org/Brassia_ napus_genome_ZS11/)、2個(gè)澳大利亞甘藍(lán)型油菜[29](Darmor、Tapidor(https://www.ncbi.nlm.nih.gov/bioproject/ 342383/;http://appliedbioinformatics.com.au/index.php/ Darmor_Tapidor/)為參考基因組序列。以2 Mb為窗口,50 kb步長(zhǎng)對(duì)delta(SNP-index)在19條染色體上作圖。以95%和99%作為置信區(qū)間,置信水平以上窗口作為候選區(qū)間(圖2)。區(qū)間定位結(jié)果顯示,白花性狀基因候選區(qū)間在Darmor-bzh C03染色體52— 55 Mb,在ZS11 C03染色體62Mb左右,在Tapidor C03染色體48 Mb左右,在Darmor C03染色體61 Mb附近。以這4個(gè)甘藍(lán)型油菜基因組序列為參考組,均鑒定出白花基因候選區(qū)間在C03染色體上的一致性和穩(wěn)定性。
A:黃花Y05;B:F2黃花;C:白花W01;D:F2白花
表1 黃花Y05與白花W01雜交F2花色分離比例
MMAPPR[26]分析白花花瓣和黃花花瓣2個(gè)轉(zhuǎn)錄組子代池時(shí),需要更改參考組Darmor-bzh基因序列染色體名稱(chēng)以符合流程要求。將chr.A01—chr.A10、chr.C01—chr.C09更改為chr.1—chr.19。MMAPPR方法以2個(gè)子代池SNP頻率為基礎(chǔ)計(jì)算出ED4(Loess fit)(圖3),以0.6為閾值,白花性狀基因定位于chr.13(C03)染色體54—55 Mb。轉(zhuǎn)錄組測(cè)序和重測(cè)序定位染色體結(jié)果高度一致,僅定位區(qū)間有細(xì)小差別,可能是轉(zhuǎn)錄組子代池比對(duì)分析時(shí),以法國(guó)甘藍(lán)型油菜Darmor-bzh為參考組,未利用親本信息,然后直接計(jì)算子代池SNP頻率所致。
依據(jù)法國(guó)甘藍(lán)型油菜Darmor-bzh參考序列,在C03染色體52—55 Mb區(qū)間運(yùn)用MISA和Primer3結(jié)合設(shè)計(jì)SSR引物(表2)。篩選到6個(gè)能明顯區(qū)分F2極端黃花單株和極端白花單株的SSR標(biāo)記(圖4)。6個(gè)標(biāo)記大約在760 kb范圍之內(nèi)。這6對(duì)SSR引物進(jìn)行單株驗(yàn)證均未檢測(cè)到交換株,推測(cè)控制白花性狀候選基因與這些SSR標(biāo)記緊密連鎖共分離。
6個(gè)SSR連鎖標(biāo)記范圍確定的區(qū)間(52.81—53.57 Mb)內(nèi)有80個(gè)注釋基因。利用https://gsthub.com/ tanghaibao/jcvi/Mcscan-(Python-version) python分析此候選區(qū)間基因與甘藍(lán)、白菜物種之間的共線性(圖5)。白菜A02染色體56.76—57.40 Mb區(qū)間有26個(gè)同源基因,甘藍(lán)C03染色體10.99—11.28 Mb區(qū)間有63個(gè)同源基因。甘藍(lán)與白菜種間雜交可人工合成甘藍(lán)型油菜,種間雜交合成的甘藍(lán)型油菜易出現(xiàn)白花性狀,共線性分析揭示了白花性狀相關(guān)同源基因由二倍體到四倍體物種的進(jìn)化關(guān)系,暗示甘藍(lán)型油菜白花基因來(lái)源于甘藍(lán)或白菜。
全基因組(A)和染色體Chr.13(C03)(B)上SNP頻率對(duì)應(yīng)的ED4(Loess fit)曲線
表2 SSR引物序列
A:SSR149;B:SSR154;C:SSR157;D:SSR161;E:SSR180;F:SSR222;M:20 bp ladder;1:親本Y05;2:親本W(wǎng)01;3—13:F2群體11個(gè)黃花單株;14—24:F2群體11個(gè)白花單株
圖5 甘藍(lán)型油菜與甘藍(lán)、白菜的白花基因候選區(qū)間線性比對(duì)
以往對(duì)蕓薹屬白花性狀的研究主要集中在孟德?tīng)栠z傳模式、遺傳圖譜構(gòu)建和連鎖分子標(biāo)記開(kāi)發(fā)以及輔助選擇。二代測(cè)序方法的迅速發(fā)展促進(jìn)了正向遺傳學(xué)性狀定位。目前,僅有ZHANG等[24]構(gòu)建了芥菜型白花性狀的回交群體,對(duì)分離后代黃白花子代池重測(cè)序,把白花性狀定位在B04染色體,區(qū)間約2.45 Mb。在此區(qū)間上設(shè)計(jì)SSR引物,用隱性單株群體把候選區(qū)間縮小至0.25 cM。而對(duì)甘藍(lán)型油菜白花性狀,利用二代測(cè)序方法快速精準(zhǔn)定位甘藍(lán)型油菜白花基因候選區(qū)間仍鮮見(jiàn)報(bào)道。XIAO等[30]構(gòu)建了甘藍(lán)型油菜黃花和白花的182株DH群體,利用黃白花各10株構(gòu)建混池方法,在全染色體篩選SSR引物,找到5個(gè)與白花性狀連鎖的SSR標(biāo)記,定位于C03染色體上。LIU等[31]再利用這5個(gè)與白花性狀連鎖最近的2個(gè)SSR標(biāo)記序列與甘藍(lán)參考組比對(duì),在甘藍(lán)對(duì)應(yīng)的區(qū)間內(nèi)又開(kāi)發(fā)了9個(gè)SSR連鎖標(biāo)記。ZHANG等[11]構(gòu)建了白花和黃花的BC5F2群體,選取1120株黃花隱性單株,繼續(xù)使用這14個(gè)SSR標(biāo)記進(jìn)行精細(xì)定位。將與白花性狀基因最近的兩端SSR標(biāo)記BoGMS3990和BoGMS3988序列與甘藍(lán)參考組和甘藍(lán)注釋文件比對(duì),推測(cè)出此區(qū)間包含24個(gè)基因,其中一個(gè)為。比對(duì)到甘藍(lán)參考組C03染色體48.6Mb附近。由于調(diào)控類(lèi)胡蘿卜素合成,暗示參與甘藍(lán)型油菜白花代謝調(diào)控。以上所述甘藍(lán)型油菜白花候選區(qū)間定位方法極為繁瑣并且成本昂貴。本研究結(jié)合使用QTL-seq和MMAPPR分析流程,以最新發(fā)布的法國(guó)甘藍(lán)型油菜Darmor-bzh序列為參考組[29],僅用甘藍(lán)型油菜黃×白F2小群體,二代方法重測(cè)序和轉(zhuǎn)錄組測(cè)序相互驗(yàn)證快速鑒定出甘藍(lán)型油菜白花性狀候選基因在C03染色體,物理區(qū)間為52—55 Mb。與ZHANG等[11]傳統(tǒng)方法相比,不需要構(gòu)建復(fù)雜的定位群體,不依賴(lài)遺傳圖譜和大量分子標(biāo)記,周期短效率高。白花性狀基因候選物理區(qū)間52—55Mb再通過(guò)與甘藍(lán)型油菜注釋文件區(qū)間比對(duì),發(fā)現(xiàn)此區(qū)間3個(gè)MYB蛋白基因(、和)和3個(gè)WD40重復(fù)蛋白基因(、和)。MYB轉(zhuǎn)錄因子和WD40轉(zhuǎn)錄因子均是通過(guò)調(diào)控類(lèi)黃酮代謝途徑,進(jìn)而影響到色素的合成。因而,本研究獲得的甘藍(lán)型油菜白花候選基因物理區(qū)間和區(qū)間內(nèi)有關(guān)色素基因與前人研究結(jié)果完全不同。
參考基因序列組裝質(zhì)量越好,信息越全,注釋文件信息也相對(duì)齊全,對(duì)于后續(xù)基因定位和候選基因注釋都會(huì)更加準(zhǔn)確,可以鎖定候選區(qū)間并估計(jì)候選區(qū)域的大小。由于法國(guó)甘藍(lán)型油菜Darmor-bzh序列組裝質(zhì)量和注釋文件版本不斷更新,有學(xué)術(shù)團(tuán)隊(duì)維護(hù)和發(fā)布最新版本,甘藍(lán)型油菜重測(cè)序和轉(zhuǎn)錄組分析流程中的參考組序列一般優(yōu)先選用法國(guó)甘藍(lán)型油菜Darmor-bzh。但Darmor-bzh與本文中所測(cè)材料遺傳背景差異大,用親本序列替換后構(gòu)建新參考組再進(jìn)行比對(duì),所獲結(jié)果就更加準(zhǔn)確。QTL-seq分析2個(gè)子代池和親本重測(cè)序數(shù)據(jù),親本reads與參考組Darmor-bzh序列進(jìn)行替換,構(gòu)建新的參考組提高比對(duì)率。以新參考組為參照比對(duì)2個(gè)子代池測(cè)序數(shù)據(jù),進(jìn)行SNP變異分析計(jì)算SNP-index和delta(SNP-index)。因而,本文設(shè)計(jì)SSR引物以QTL-seq流程利用Darmor-bzh參考組分析獲得的候選區(qū)間為依據(jù)。Darmor-bzh參考組52—55 Mb區(qū)間內(nèi),MISA軟件微衛(wèi)星和復(fù)合微衛(wèi)星識(shí)別,再使用Primer3進(jìn)行SSR引物設(shè)計(jì)。選取2個(gè)子代池相減最高頻率的2 Mb區(qū)間內(nèi)的20對(duì)SSR引物,用F2群體的極端白花單株和極端黃花單株驗(yàn)證,獲得6個(gè)與白花性狀緊密連鎖共分離的SSR標(biāo)記,這6個(gè)SSR標(biāo)記在760 kb范圍之內(nèi),其中SSR 222標(biāo)記與MYB蛋白基因物理距離小于16 kb。因此,下一步的工作需要擴(kuò)大F2種植群體,利用6個(gè)共分離SSR標(biāo)記同時(shí)開(kāi)發(fā)新SSR和InDel連鎖標(biāo)記對(duì)白花性狀基因進(jìn)行精細(xì)定位,縮小候選基因范圍,為甘藍(lán)型油菜白花性狀基因圖位克隆奠定工作基礎(chǔ)。
甘藍(lán)型油菜白花性狀基因在C03染色體52—55 Mb區(qū)間。在此區(qū)間760 kb范圍內(nèi)篩選出6個(gè)與白花性狀基因緊密連鎖共分離的SSR標(biāo)記。
[1] 王漢中, 殷艷. 我國(guó)油料產(chǎn)業(yè)形勢(shì)分析與發(fā)展對(duì)策建議. 中國(guó)油料作物學(xué)報(bào), 2014, 36(3): 414-421.
WANG H Z, YIN Y. Analysis and strategy for oil crop industry in China., 2014, 36(3): 414-421. (in Chinese)
[2] PEARSON O H. A Dominant white flower color inL.., 1929, 63: 561-565.
[3] CHEN B, HENEEN W, JONSSON R. Independent inheritance of erucic acid content and flower colour in the C-genome ofL.., 1988, 100: 147-149.
[4] HENEEN W, CHEN B, CHENG B, JONSSON A, SIMONSEN V, JORGENSEN R, DAVIK J. Characterization of the A and C genomes ofand., 1995, 123: 251-267.
[5] ZHANG B, LU C M, KAKIHARA F, KATO M. Effect of genome composition and cytoplasm on petal color in resynthesized amphidiploids and sesquidiploids derived from crosses betweenand., 2002, 121: 297-300.
[6] LEE S, LEE S C, BYUN D H, LEE D Y, PARK J Y, LEE J H, LEE H O, SUNG S H, YANG T J. Association of molecular markers derived from the BrCRTISO1 gene with prolycopene-enriched orange-colored leaves in.,2014, 127: 179-191.
[7] RAHMAN M H. Inheritance of petal colour and its independent segregation from seed colour in., 2001, 120: 197-200.
[8] JAMBHULKAR S, RAUT R. Inheritance of flower colour and leaf waxiness inA. Br., 1995, 17: 66-67.
[9] RAWAT D S, ANAND I J. Inheritance of flower colour in mustard mutant., 1986, 56: 206-208.
[10] SINGH K H, CHAUHAN J S. Genetics of flower colour in Indian mustard (L. Czern $ Coss)., 2011, 71: 377-378.
[11] ZHANG B, LIU C, WANG Y, YAO X, WANG F, WU J, KING G J, LIU K. Disruption of a CAROTENOID CLEAVAGE DIOXYGENASE 4 gene convents flower colour from white to yellow in., 2015, 206: 1513-1526.
[12] HUANGE Z, BAN Y Y, BAO R, ZHANG X X, XU A X, DING J. Inheritance and gene mapping of the white flower inL.., 2014, 42(2): 111-117.
[13] LIU X P, TU J X, CHEN B Y, FU T D. Identification of the linkage relationship between the flower colour and the content of erucic acid in the resynthesizedL.., 2004, 31: 357-362.
[14] HAN F Q, YANG C, FANG Z Y, YANG L M, ZHUANG M, LV H H, LIU Y M, LI Z S, LIU B, YU H L, LIU X P, ZHANGH Y Y. Inheritance and InDel markers closely linked to petal color gene (cpc-1) in., 2015, 35: 160.
[15] MITHRA S V A, KAR M K, MOHAPATRA T, ROBIN S, SARLA N, SESHASHAYEE M, SINGH K, SINGH N K, SHARMA R P. DBT propelled national effort in creating mutant resource for functional genomics in rice., 2016, 110(4): 543-548.
[16] HENRY I M, NAGALAKSHMI U, LIEBERMAN M C, NGO K J, KRASILEVA K V, VASQUEZ-GROSS H, AKHUNOVA A, AKUNOV E, DUBCOVSKY J, TAI T H, COMAI L. Efficient genome-wide detection and cataloging of EMS-induced mutations using exome capture and next-generation sequencing., 2014, 26(4): 1382-1397.
[17] WEI F J, DROC G, GUIDERDONI E, HSING Y I C. International consortium of rice mutagenesis: resources and beyond., 2013, 6(1): 39.
[18] TSUDA M, KAGA A, ANAI T, SHIMIZU T, SAYAMAT, TAKAGI K, MACHITA K, WATANABE S, NISHIMURA M, YAMADA N, MORI S, SASAKI H, KANAMORI H, KATAYOSEY, ISHIMOTO M. Construction of a high-density mutant library in soybean and development of a mutant retrieval method using amplicon sequencing., 2015, 16: 1014.
[19] JUST D, GARCIA V, FERNANDEZ L,BRES C, MAUXION J P, PETIT J, JORLY J, ASSALI J, BOURNONVILLE C, FERRAND C, BALDET P, LEMAIRE-CHAMLEY M, MORI K, OKABE Y, ARIIZUMI T, ASAMIZU E, EZURA H, ROTHAN C. Micro-Tom mutants for functional analysis of target genes and discovery of new alleles in tomato., 2013, 30(3): 225-231.
[20] LIN T, WANG S H,ZHONG Y, GAO D L, CUI Q Z, CHEN H M, ZHANG Z H, SHEN H L, WENG Y Q, HUANG S W. A truncated F-box protein confers the dwarfism in cucumber., 2016, 43(4): 223-226.
[21] LUN Y Y, WANG X, ZHANG C Z, YANG L, GAO D L, CHEN H M, HUANG S W. A CsYcf54 variant conferring light green coloration in cucumber., 2016, 208(3): 509-517.
[22] ZHOU Q, WANG S H, HU B W, CHEN H M, ZHANG Z H, HUANG S W. An ACCUMULATION AND REPLICATION OF CHLOROPLASTS 5 gene mutation confers light green peel in cucumber., 2015, 57(11): 936-942.
[23] YAO Y M, LI K X, LIU H D, DUNCAN R W, GUO S M, XIAO L, DU D Z. Whole-genome re-sequencing and fine mapping of an orange petal color gene () in springL. to a 151-kb region., 2017, 213: 165.
[24] ZHANG X X, LI R H, NIU S L, CHEN L, GAO J, WEN J, YI B, MA C Z, TH J X, FU T D, SHEN J X. Fine-mapping and candidate gene analysis of thewhite-flowered mutant Bjpc2 using the whole-genome resequencing., 2017, 293(2): 359-370.
[25] TAKAGI H, ABE A, YOSHIDA K, KOSUGI S, NATSUME S, MITSUOKA C, UEMURA A, UTSUSHI H, TAMIRU M, TAKUMO S, INNAN H, CANO L M, KAMOUN S, TERAUCHI R. QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations., 2013, 74(1): 174-183.
[26] JONATHON T H, BRADLEY L D, BRENT W B, BUSHRA G, YI C S, H J Y. MMAPPR: Mutation mapping analysis pipeline for pooled RNA-seq., 2013, 23: 687-697.
[27] CHALHOUB B, DENOEUD F, LIU S, PARKIN A P, TANG H, WANG X, CHIQUET J. Early allopolyploid evolution in the post- Neolithicoilseed genome., 2014, 345: 950-953.
[28] SUN F M, FAN G Y, HU Q, ZHOU Y M, GUAN M, TONG C B, LI J N, DU D Z, QI C K, JIANG L C,LIU W Q, HUANG S M, CHEN W B, YU J Y, MEI D S, MEN J L, ZENG P, SHI J Q, LIU K D, WANG X, WANG X F, LONG Y, LIANG X M, HU Z Y, HUANG G D, DONG C H, ZHANG H, LI J, ZHANG Y L, LI L W, SHI C C, WANG J H, MING-YUEN L S, GUAN C, XU X, LIU S Y, LIU X, CHALHOUB B, HUA W, WANG H Z. The high-quality genome ofcultivar ‘ZS11’ reveals the introgression history in seni-winter morphotype., 2017, 92: 452-468.
[29] BAYER P E, HURGOBIN B, GOLICZ A A, CHAN C K, YUAN Y X, LEE H T, RENTON M,MENG J L, LI R Y, LONG Y, ZOU J, BANCROFF L, CHALHOUB B, KING G J, BATLEY J,EDWARDS D. Assembly and comparison of two closely relatedgenomes., 2017, 15: 1602-1610.
[30] XIAO S, XU J, LI Y, ZHANG L, SHI S, SHI S, WU J, LIU K.Generation and mapping of SCAR and CAPS markers linked to the seed coat color gene inusing a genome-walking technique., 2007, 50(7): 611-618.
[31] LIU S Y, LIU Y M, YANG X H, TONG C B, EDWARDS D, PARKIN IA, ZHAO M X, MA J X, YU J Y, HUANG S M, WANG X Y, WANG Y J, LU K, FANG Z Y, BANCROFT L, YANG T, HU Q, WANG X F, YUE Z, LI H J, YANG L F, WU Q, WANG W X, KING G J, PIRES J, LU C X, WU Z Y, SAMPATH P, WANG Z, GUO H, PAN S K, YANG L M, MIN J M, ZHANG D, JIN D C, LI W S, BELCRAM H, TU J X, GUAN M, QI C K, DU D Z, LI J N, JIANG L C, BATELY J, SHARPE A G, PARK B, RUPERAO P, CHENG F, WAMINAL N E, HUANG Y, DONG C H, WANG L, LI J P, HU Z Y, LI Z Y, LI X, ZHANG J F, XIAO L, ZHOU Y M, LIU Z S, LIU X Q, QIN R, TANG X, LIU W B, WANG Y P, ZHANG Y Y, LEE J H, KIM H H, DENOEUD F, XU X, LIANG X M, HUA W, WANG X W, WANG J, CHALHOUB B, PATERSON A H. Thegenome reveals the asymmetrical evolution of polyploid genomes., 2014, 5: 3930.
Location and Linkage Markers for Candidate Interval of the White Petal Gene inL. by Next Generation Sequencing
CHEN Xue, WANG Rui, JING FuYu, ZHANG ShengSen, JIA LeDong, DUAN MouZheng, WU Yu
(College of Agronomy and Biotechnology, Southwest University, Chongqing 400715)
【Objective】Since the petal colour can be used for ornamental and landscaping purposes, the petal color has been one of the major goals of breeding and genetic research inL.. In this paper, Genetic analysis, candidate interval identification, linkage markers and synteny analysis were applied to elucidate the genetic control of the white petal inL.. 【Method】 To Map the white petal locus, an inbred line Y05, which has yellow flowers, was crossed with an inbred line W01, which has white flowers. The F1plants were self-crossed to develop F2mapping population. For BSA, parental and two pools with 30 yellow petal lines and 30 white petal lines of F2were constructed by mixing an equal amount of DNA or RNA respectively. 30× or 5× depth of genome-sequencing was conducted. Darmor-bzh, Zhongshuang11(ZS11), Darmor and Tapidor as the reference genome were aligned to sequence data from the 2 bulks and parents using QTL-seq workflow. The sliding window method with a window size of 2Mb and a step size of 50kb was used to present the SNP indexes of the whole genome. The difference between the SNP indexes of the two pools was calculated as the delta (SNP- index). Candidate regions for petal color were identified from the chromosomes with 95% confidence intervals. Mutation Mapping Analysis Pipeline for Pooled RNA-seq (MMAPPR) without parental strain information and requiring Darmor-bzh reference genome calculated allelic frequency by Euclidean distance followed by Loess regression analysis, and identified the region where the mutation lies, and generated a list of putative coding region mutations in the linked genomic segment. The SSR primers were designed by using MISA and Prime 3 for repeated sequence identification, and the SSR primers were screened by polyacrylamide gel electrophoresis in the F2population. 【Result】The segregation of white petal and yellow petal among F2population fitted the Mendelian segregation ratio of 3:1. This indicates that the white petal trait was controlled by a major gene and that white petal was dominant over yellow petal. The results of the candidate interval using whole-genome re-sequencing showed that a candidate interval (52-55 Mb) exceeding the threshold value was identified for the petal color on chromosome C03 when Darmor-bzh was used as reference genome. While ZS11, Darmor and Tapidor were aligned to sequence data, candidate intervals for white petal were all identified on chromosome C03. Linked region peaks (54-55 Mb) identified by MMAPPR for the petal color was on chromosome C03 of Darmor-bzh. Six SSR markers that were located in the interval (760 kb) were closely linked to the white flower gene. Synteny analysis showed that the interval 760 kb (52.81-53.57 Mb) was corresponding to chromosome A02 (56.76-57.40 Mb) ofand chromosome C03 (10.99-11.28 Mb) of【Conclusion】The white petal was controlled by a major gene which was dominant over yellow petal. Six SSR markers closely linked to the white petal gene were selected. A candidate interval for white petal gene was identified on chromosome C03 (52-55 Mb). The present study may facilitate cloning of the white petal gene as well as marker assisted selection.
L.; white petal; sequencing; candidate interval; SSR
2019-08-21;
2019-10-30
國(guó)家重點(diǎn)研發(fā)計(jì)劃“七大農(nóng)作物育種”(2016YFD0101300)
陳雪,Tel:15683993928;E-mail:cx_526@163.com。通信000作者王瑞,Tel:13883344308;E-mail:ruiwang71@163.com
(責(zé)任編輯 李莉)
中國(guó)農(nóng)業(yè)科學(xué)2020年6期