駱娟
摘要 總結(jié)前人研究成果,選取了目前針對(duì)凋落物分解研究相對(duì)較多的幾個(gè)方向進(jìn)行總結(jié),圍繞凋落物組成、外源氮添加、季節(jié)和溫度變化等常見因素在凋落物分解過程中對(duì)微生物群落的影響進(jìn)行了比較分析,為未來進(jìn)一步深入研究凋落物分解過程與土壤微生物互作關(guān)系提供理論依據(jù)。
關(guān)鍵詞 森林凋落物;土壤微生物;環(huán)境因子
中圖分類號(hào) S714 ?文獻(xiàn)標(biāo)識(shí)碼 A
文章編號(hào) 0517-6611(2020)05-0025-03
doi:10.3969/j.issn.0517-6611.2020.05.007
開放科學(xué)(資源服務(wù))標(biāo)識(shí)碼(OSID):
Abstract Based on summing up the previous studies,this paper selected four common directions which are the litter composition,external nitrogen additions,seasonal and temperature variation to summarize and compare the effects on soil microbial community in litter decomposition,which provided theoretical basis for the further research of the interactions between litter decomposition and soil microorganisms.
Key words Forest litter;Soil microorganism;Influence factors
森林土壤為森林植物提供生長(zhǎng)所需的營養(yǎng)物質(zhì)和生長(zhǎng)基質(zhì),同時(shí)森林植物在生長(zhǎng)過程中又不斷以凋落物形式把養(yǎng)分返還土壤,補(bǔ)充并改善土壤肥力及土質(zhì)結(jié)構(gòu),促進(jìn)森林生態(tài)系統(tǒng)的良性循環(huán)。森林凋落物是生態(tài)系統(tǒng)的重要組成部分,是森林地上、地下生態(tài)系統(tǒng)物質(zhì)和能量流動(dòng)的關(guān)鍵環(huán)節(jié)[1-4]。據(jù)統(tǒng)計(jì),每年凋落物總量約占地球生物量的90%以上[5],森林植被通過凋落物形式分解并釋放有機(jī)質(zhì)和其他養(yǎng)分,促進(jìn)養(yǎng)分返還土壤并提升林區(qū)土壤肥力水平,為維持森林生態(tài)系統(tǒng)的養(yǎng)分平衡和正常的物質(zhì)循環(huán)發(fā)揮著重要功能[6-7]。因此,凋落物分解被認(rèn)為是森林生態(tài)系統(tǒng)中碳、氮及其他養(yǎng)分循環(huán)的關(guān)鍵步驟。而土壤微生物在森林生態(tài)循環(huán)系統(tǒng)中承擔(dān)著森林凋落物分解、促進(jìn)養(yǎng)分轉(zhuǎn)化與循環(huán)等功能[8]。森林凋落物分解過程的主要參與者是土壤微生物,有研究證明,土壤中微生物量的90%以上為細(xì)菌和真菌,它們?cè)诘蚵湮锓纸廪D(zhuǎn)化過程中發(fā)揮著主要作用,在凋落物分解過程中微生物把有機(jī)化合物等大分子物質(zhì)分解為能夠被植物吸收利用的小分子物質(zhì),對(duì)植物的生長(zhǎng)以及土壤的形成與改良,甚至溫室氣體排放等方面發(fā)揮著積極作用[9-11],并影響和控制植被群落的演替和養(yǎng)分循環(huán)過程[12]。反過來,森林凋落物也為微生物提供了豐富的能量和營養(yǎng)物質(zhì)來源,促進(jìn)微生物群落生長(zhǎng)繁殖[13]。因此,微生物在森林凋落物分解過程中的具體功能以及微生物群落特征與凋落物分解過程的關(guān)系等內(nèi)容成為當(dāng)前森林生態(tài)學(xué)領(lǐng)域研究的重點(diǎn)內(nèi)容[14]。
1 凋落物多樣性對(duì)微生物的影響
森林凋落物分解產(chǎn)物是土壤養(yǎng)分的主要來源,是森林土壤環(huán)境營養(yǎng)物質(zhì)及碳循環(huán)的關(guān)鍵環(huán)節(jié)。作為主要的外源有機(jī)物,森林凋落物主要由糖類、淀粉、脂肪等易分解的成分和木質(zhì)素、多酚、腐殖酸等難分解的成分組成[15],不同植物品種凋落物的組成成分及生物量也會(huì)存在差異。作為森林凋落物最主要的分解者,微生物群落多樣性和數(shù)量與凋落物品質(zhì)關(guān)系密切[16-18]。
植物群落結(jié)構(gòu)和物種組成發(fā)生變化會(huì)導(dǎo)致凋落物基質(zhì)數(shù)量和質(zhì)量隨之改變,進(jìn)而影響微生物群落的變化,并進(jìn)一步改變物質(zhì)養(yǎng)分生態(tài)循環(huán)進(jìn)程。大量相關(guān)研究已經(jīng)證實(shí)凋落物數(shù)量和組成多樣性的變化會(huì)對(duì)微生物群落產(chǎn)生顯著影響,總結(jié)前人研究主要集中在凋落物類型對(duì)土壤微生物的數(shù)量、群落組成以及碳代謝等方面[19-25]。如宿曉琳等[26]分別對(duì)比了單個(gè)物種、兩個(gè)物種、四個(gè)物種和八個(gè)物種等4種不同凋落物多樣性組合分解過程中微生物群落的變化特征,結(jié)果顯示凋落物多樣性對(duì)土壤微生物群落的影響顯著,特別是在生態(tài)系統(tǒng)演替初期凋落物理化指標(biāo)能揭示微生物群落結(jié)構(gòu)變異的12.3%。陳法霖等[25]也研究發(fā)現(xiàn)與單一針葉林相比,針葉、闊葉混合凋落物分解提高了土壤微生物群落碳代謝強(qiáng)度,通過改變凋落物組成能顯著影響微生物群落的代謝多樣性。而Waring等[27]對(duì)比了5種熱帶地區(qū)的植物凋落物分解試驗(yàn),結(jié)果發(fā)現(xiàn)分解速率與葉片養(yǎng)分含量顯著相關(guān),凋落物組成直接影響到真菌群落組成。Bending等[28]研究認(rèn)為樹種特性和多樣性能夠?qū)ν寥牢⑸锏娜郝浣Y(jié)構(gòu)產(chǎn)生關(guān)鍵影響,混合凋落物比單一凋落物含有類型更豐富多樣的碳源和其他養(yǎng)分物質(zhì),更利于微生物繁殖及其多樣性的增加,也有研究認(rèn)為由于針葉林凋落物含有大量不易被分解的木質(zhì)素和腐殖酸類物質(zhì),因此,土壤中以能夠分解結(jié)構(gòu)復(fù)雜的有機(jī)碳為主的微生物為主導(dǎo),微生物類群較為單一[29]。而闊葉林中細(xì)菌豐度顯著高于針葉林,如鐘哲科等[20]對(duì)比楊樹和水杉葉子的分解過程發(fā)現(xiàn)楊樹葉子的分解速率及微生物數(shù)量顯著高于水杉葉片。相關(guān)分析認(rèn)為闊葉林凋落物在分解過程中引入土壤的碳含量和碳種類高于針葉林,直接導(dǎo)致了微生物類群的變化,因此,可以通過向針葉林凋落物中混入闊葉林凋落物來增加土壤微生物量并增加土壤微生物碳代謝強(qiáng)度。陳法霖等[25]認(rèn)為凋落物混合后改變了有機(jī)物元素的組成結(jié)構(gòu),如碳氮比、木質(zhì)素與氮磷比等,進(jìn)而影響微生物碳代謝的多樣性。
凋落物的多樣性與土壤微生物多樣性呈正相關(guān)關(guān)系,不同凋落物混合后會(huì)產(chǎn)生交互作用,導(dǎo)致其分解速率增加或減慢,應(yīng)通過合理控制凋落物碳氮比來調(diào)控其分解速率[30-31]。林開敏等[32]通過對(duì)杉木及其伴生植物混合后分解情況進(jìn)行研究,發(fā)現(xiàn)凋落物混合后分解會(huì)發(fā)生交互影響,營養(yǎng)含量較高的凋落物分解過程中會(huì)促進(jìn)養(yǎng)分含量較低的凋落物的分解,凋落物混合并利于促進(jìn)碳氮循環(huán)的速率與分解速度[33]。然而也有研究者有不同意見,王春陽等[34]對(duì)比了黃土區(qū)6種植物凋落物分解過程認(rèn)為多種枯落物混合后土壤微生物碳、氮含量及比值并為發(fā)生顯著變化,其原因可能與不同凋落物化學(xué)組成的差異性相關(guān)[35]。因?yàn)榛旌系蚵湮锏闹参锓N類、數(shù)量和比例不同,分解物之間會(huì)發(fā)生或協(xié)同、或拮抗等作用,導(dǎo)致分解速率發(fā)生變化。不同類型凋落物混合后也會(huì)引起微生境的改變,進(jìn)而引起微生物活性和多樣性的變化[22,36-40]。
[2]MAGUIRE D A.Branch mortality and potential litterfall from Douglasfir trees in stands of varying density[J]. Forest ecology & management,1994,70(1/2/3):41-53.
[3]WITKAMP M.Microbial populations of leaf litter in relation to environmental conditions and decomposition[J]. Ecology,1963,44(2):370-377.
[4]WARDLE A D.Ecological linkages between aboveground and belowground biota[J]. Science,2004,304(5677):1629-1633.
[5]CEBRIAN J.Patterns in the fate of production in plant communities[J]. American naturalist,1999,154(4):449-468.
[6]劉穎,韓士杰,林鹿.長(zhǎng)白山四種森林類型凋落物動(dòng)態(tài)特征[J].生態(tài)學(xué)雜志,2009,28(1):7-11.
[7]薛立,何躍君,屈明,等.華南典型人工林凋落物的持水特性[J].植物生態(tài)學(xué)報(bào),2005,29(3):415-421.
[8]周建斌,陳竹君,李生秀.土壤微生物量氮含量、礦化特性及其供氮作用[J].生態(tài)學(xué)報(bào),2001,21(10):1718-1725.
[9]POTTHOFF M,DYCKMANS J,F(xiàn)LESSA H,et al.Decomposition of maize residues after manipulation of colonization and its contribution to the soil microbial biomass[J].Biology & fertility of soils,2008,44(6):891-895.
[10]許湘琴,林植華,陳慧麗.凋落物分解對(duì)土壤生物的影響[J].生態(tài)學(xué)雜志,2011,30(6):1258-1264.
[11]CROWTHER T W,STANTON D W G,THOMAS S M,et al.Topdown control of soil fungal community composition by a globally distributed keystone consumer[J].Ecology,2013,94(11):2518-2528.
[12]BERG B,LASKOWSKI R.Decomposers:Soil microorganisms and animals[J].Advances in ecological research,2005,38:73-100.
[13]NEVINS C J,NAKATSU C,ARMSTRONG S.Characterization of microbial community response to cover crop residue decomposition[J].Soil biology and biochemistry,2018,127:39-49.
[14]SCHEIBE A,STEFFENS C,SEVEN J,et al.Effects of tree identity dominate over tree diversity on the soil microbial community structure[J].Soil biology & biochemistry,2015,81:219-227.
[15]強(qiáng)學(xué)彩,袁紅莉,高旺盛.秸稈還田量對(duì)土壤CO2釋放和土壤微生物量的影響[J].應(yīng)用生態(tài)學(xué)報(bào),2004,15(3):469-472.
[16]CRIQUET S,F(xiàn)ERRE E,F(xiàn)ARNET A M,et al.Annual dynamics of phosphatase activities in an evergreen oak litter:Influence of biotic and abiotic factors[J].Soil biology & biochemistry,2004,36(7):1111-1118.
[17]季曉燕,江洪,洪江華,等.模擬酸雨對(duì)亞熱帶三個(gè)樹種凋落葉分解速率及分解酶活性的影響[J].環(huán)境科學(xué)學(xué)報(bào),2013,33(7):2027-2035.
[18]KUBARTOV A,MOUKOUMI J,BGUIRISTAIN T,et al.Microbial diversity during cellulose decomposition in different forest stands:I. Microbial communities and environmental conditions[J].Microbial ecology,2007,54(3):393-405.
[19]李茜.黃土高原不同樹種枯落葉混合分解對(duì)土壤性質(zhì)的影響[D].楊凌:西北農(nóng)林科技大學(xué),2013.
[20]鐘哲科,高智慧.楊樹、水杉林帶枯落物對(duì)土壤微生物C、N的影響[J].林業(yè)科學(xué),2003,39(2):153-157.
[21]王春陽,周建斌,夏志敏,等.黃土高原區(qū)不同植物凋落物搭配對(duì)土壤微生物量碳、氮的影響[J].生態(tài)學(xué)報(bào),2011,31(8):2139-2147.
[22]胡亞林,汪思龍,黃宇,等.凋落物化學(xué)組成對(duì)土壤微生物學(xué)性狀及土壤酶活性的影響[J].生態(tài)學(xué)報(bào),2005,25(10):2662-2668.
[23]彭琳.改變凋落物的輸入方式對(duì)慈竹林土壤有機(jī)碳和酶活性的影響[D].雅安:四川農(nóng)業(yè)大學(xué),2012.
[24]王銳萍,劉強(qiáng),彭少麟,等.尖峰嶺不同樹種枯落物分解過程中微生物動(dòng)態(tài)[J].浙江林學(xué)院學(xué)報(bào),2006,23(3):255-258.
[25]陳法霖,鄭華,陽柏蘇,等.中亞熱帶幾種針、闊葉樹種凋落物混合分解對(duì)土壤微生物群落碳代謝多樣性的影響[J].生態(tài)學(xué)報(bào),2011,31(11):3027-3035.
[26]宿曉琳,李英濱,楊波,等.植物多樣性對(duì)亞熱帶森林土壤微生物群落的影響[J].生態(tài)學(xué)雜志,2018,37(8):2254-2261.
[27]WARING G B.Exploring relationships between enzyme activities and leaf litter decomposition in a wet tropical forest[J].Soil biology & biochemistry,2013,64(9):89-95.
[28]BENDING G D,TURNER M K,JONES J E.Interactions between crop residue and soil organic matter quality and the functional diversity of soil microbial communities[J].Soil biology & biochemistry,2002,34(8):1073-1082.
[29]SWIFT M J,HEAL O W,ANDERSON J M.Decomposition in terrestrial ecosystems[J].Studies in ecology,1979,5(14):2772-2774.
[30]BLAIR J M,PARMELEE R W,BEARE M H.Decay rates,nitrogen fluxes,and decomposer communiies of singleand mixedspecies foliar litter[J].Ecology,1990,71(5):1976-1985.
[31]BRIONES M J I,INESON P.Decomposition of eucalyptus leaves in litter mixtures[J].Soil biology & biochemistry,1996,28(10/11):1381-1388.
[32]林開敏,洪偉,俞新妥,等.杉木與伴生植物凋落物混合分解的相互作用研究[J].應(yīng)用生態(tài)學(xué)報(bào),2001,12(3):321-325.
[33]HANDA I T,AERTS R,BERENDSE F,et al.Consequences of biodiversity loss for litter decomposition across biomes[J].Nature,2014,509(7499):218-221.
[34]王春陽,周建斌,董燕婕,等.黃土區(qū)六種植物凋落物與不同形態(tài)氮素對(duì)土壤微生物量碳氮含量的影響[J].生態(tài)學(xué)報(bào),2010,30(24):7092-7100.
[35]WRIGHT M S,COVICH A P.Relative importance of bacteria and fungi in a tropical headwater stream:Leaf decomposition and invertebrate feeding preference[J].Microbial ecology,2005,49(4):536-546.
[36]GE X G,ZENG L X,XIAO W F,et al.Effect of litter substrate quality and soil nutrients on forest litter decomposition:A review[J].Acta ecologica sinica,2013,33(2):102-108.
[37]陳法霖,鄭華,歐陽志云,等.土壤微生物群落結(jié)構(gòu)對(duì)凋落物組成變化的響應(yīng)[J].土壤學(xué)報(bào),2011,48(3):603-611.
[38]HATTENSCHWILER S,TIUNOV A V,SCHEU S.Biodiversity and litter decomposition in terrestrial ecosystems[J].Annual review of ecology evolution & systematics,2005,36:191-218.
[39]KUBARTOV A,RANGER J,BERTHELIN J,et al.Diversity and decomposing ability of saprophytic fungi from temperate forest litter[J].Microbial ecology,2009,58(1):98-107.
[40]WARDLE D A,NILSSON M C,ZACKRISSON O,et al.Determinants of litter mixing effects in a Swedish boreal forest[J].Soil biology & biochemistry,2003,35(6):827-835.
[41]宋蒙亞,李忠佩,劉明,等.不同林地凋落物組合對(duì)土壤速效養(yǎng)分和微生物群落功能多樣性的影響[J].生態(tài)學(xué)雜志,2014,33(9):2454-2461.
[42]毛佳,徐仁扣,黎星輝.氮形態(tài)轉(zhuǎn)化對(duì)豆科植物物料改良茶園土壤酸度的影響[J].生態(tài)與農(nóng)村環(huán)境學(xué)報(bào),2009,25(4):42-45,99.
[43]陳冬梅,柯文輝,陳蘭蘭,等.連作對(duì)白肋煙根際土壤細(xì)菌群落多樣性的影響[J].應(yīng)用生態(tài)學(xué)報(bào),2010,21(7):1751-1758.
[44]GALLOWAY J N,TOWNSEND A R,ERISMAN J W,et al.Transformation of the nitrogen cycle:Recent trends,questions,and potential solutions[J].Science,2008,320(5878):889-892.
[45]STRENGBOM J,WALHEIM M,NSHOLM T,et al.Regional differences in the occurrence of understorey species reflect nitrogen deposition in swedish forests[J].Ambio,2003,32(2):91-97.
[46]SAIYACORK K R,SINSABAUGH R L,ZAK D R.The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil[J].Soil biology & biochemistry,2002,34(9):1309-1315.
[47]COMPTON J E,WATRUD L S,PORTEOUS L A,et al.Response of soil microbial biomass and community composition to chronic nitrogen additions at Harvard forest[J].Forest ecology & management,2004,196(1):143-158.
[48]CUSACK D F,SILVER W L,TORN M S,et al.Changes in microbial community characteristics and soil organic matter with nitrogen additions in two tropical forests[J].Ecology,2011,92(3):621-632.
[49]袁穎紅,樊后保,王強(qiáng),等.模擬氮沉降對(duì)杉木人工林土壤有效養(yǎng)分的影響[J].浙江農(nóng)林大學(xué)學(xué)報(bào),2007,24(4):437-444.
[50]劉蔚秋,劉濱揚(yáng),王江,等.不同環(huán)境條件下土壤微生物對(duì)模擬大氣氮沉降的響應(yīng)[J].生態(tài)學(xué)報(bào),2010,30(7):1691-1698.
[51]趙超,張文文,徐長(zhǎng)柏,等.模擬氮沉降對(duì)楊樹人工林土壤微生物群落結(jié)構(gòu)的影響[J].生態(tài)學(xué)雜志,2015,34(2):360-366.
[52]FREY S D,KNORR M,PARRENT J L,et al.Chronic nitrogen enrichment affects the structure and function of the soil microbial community in temperate hardwood and pine forests[J].Forest ecology & management,2004,196(1):159-171.
[53]劉爽,王傳寬.五種溫帶森林土壤微生物生物量碳氮的時(shí)空格局[J].生態(tài)學(xué)報(bào),2010,30(12):3135-3143.
[54]劉純,劉延坤,金光澤.小興安嶺6種森林類型土壤微生物量的季節(jié)變化特征[J].生態(tài)學(xué)報(bào),2014,34(2):451-459.
[55]EDWARDS K A,MCCULLOCH J,KERSHAW G P,et al.Soil microbial and nutrient dynamics in a wet Arctic sedge meadow in late winter and early spring[J].Soil biology & biochemistry,2010,38(9):2843-2851.
[56]EDWARDS K A,JEFFERIES R L.Interannual and seasonal dynamics of soil microbial biomass and nutrients in wet and dry lowArctic sedge meadows[J].Soil biology & biochemistry,2013,57(3):83-90.
[57]ALLISON S D,VITOUSEK P M.Extracellular enzyme activities and carbon chemistry as drivers of tropical plant litter decomposition[J].Biotropica,2010,36(3):285-296.
[58]DESLIPPE J R,HARTMANN M,SIMARD S W,et al.Longterm warming alters the composition of arctic soil microbial communities[J].FEMS Microbiology Ecology,2012,82(2):303-315.
[59]RINNAN R,MICHELSEN A,BTH E.Longterm warming of a subarctic heath decreases soil bacterial community growth but has no effects on its temperature adaptation[J].Applied soil ecology,2011,47(3):217-220.
[60]BRADFORD M A,DAVIES C A,F(xiàn)REY S D,et al.Thermal adaptation of soil microbial respiration to elevated temperature[J].Ecology letters,2010,11(12):1316-1327.
[61] PETTERSSON M,BTH E.Temperaturedependent changes in the soil bacterial community in limed and unlimed soil[J].FEMS Microbiology Ecology,2003,45(1):13-21.
[62] 鄭海峰,陳亞梅,楊林,等.高山林線土壤微生物群落結(jié)構(gòu)對(duì)模擬增溫的響應(yīng)[J].應(yīng)用生態(tài)學(xué)報(bào) 2017,28(9):2840-2848.
[63] RINNAN R,MICHELSEN A,BTH E,et al.Mineralization and carbon turnover in subarctic heath soil as affected by warming and additional litter[J].Soil biology & biochemistry,2007,39(12):3014-3023.
[64] RINNAN R,MICHELSEN A,BTH E,et al.Fifteen years of climate change manipulations alter soil microbial communities in a subarctic heath ecosystem[J].Global change biology,2010,13(1):28-39.
[65] VAN MEETEREN M J M,TIETEMA A,VAN LOON E E,et al.Microbial dynamics and litter decomposition under a changed climate in a dutch heathland[J].Applied soil ecology,2008,38(2):119-127.
[66] INUBUSHI K,CHENG W,MIZUNO T,et al.Microbial biomass carbon and methane oxidation influenced by rice cultivars and elevated CO2 in a Japanese paddy soil[J].European journal of soil science,2011,62(1):69-73.
[67] GUTKNECHT J L M.Exploring longterm microbial responses to simulated global change[D].Madison:University of WisconsinMadison,2007.
[68] RINNAN R,STARK S,TOLVANEN A.Responses of vegetation and soil microbial communities to warming and simulated herbivory in a subarctic heath[J].Journal of ecology,2009,97(4):788-800.
[69] SCHIMEL J,BALSER TC,WALLENSTEIN M.Microbial stressresponse physiology and its implications for ecosystem function[J].Ecology,2007,88(6):1386-1394.
[70] HYVNEN R,GREN G I,DALIAS P.Analysing temperature response of decomposition of organic matter[J].Global change biology,2010,11(5):770-778.