国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

FliZ調(diào)控枯草芽孢桿菌Bs916生物膜形成及其對水稻紋枯病的防治效果

2020-02-27 03:51:28周華飛楊紅福姚克兵莊義慶束兆林陳志誼
中國農(nóng)業(yè)科學(xué) 2020年1期
關(guān)鍵詞:定殖游動紋枯病

周華飛,楊紅福,姚克兵,莊義慶,束兆林,陳志誼

FliZ調(diào)控枯草芽孢桿菌Bs916生物膜形成及其對水稻紋枯病的防治效果

周華飛1,2,楊紅福1,姚克兵1,莊義慶1,束兆林1,陳志誼3

(1江蘇丘陵地區(qū)鎮(zhèn)江農(nóng)業(yè)科學(xué)研究所,江蘇句容 212400;2南京農(nóng)業(yè)大學(xué)植物保護(hù)學(xué)院,南京 210095;3江蘇省農(nóng)業(yè)科學(xué)院植物保護(hù)研究所, 南京 210014)

【】發(fā)掘并鑒定枯草芽孢桿菌()Bs916生物膜形成調(diào)控新基因,檢測其對Bs916生物膜形成能力和對水稻紋枯病防治效果的影響。利用基因同源重組技術(shù)構(gòu)建基因位點的單敲除突變株,通過干重分析法來驗證其生物膜形成的缺陷;利用平板對峙試驗檢測突變株和Bs916對水稻紋枯病菌()的抑菌效果;利用高效液相色譜(HPLC)檢測突變株和Bs916中影響防治效果的3種脂肽類抗生素表面活性素、桿菌霉素L和泛革素的相對產(chǎn)量;利用綠色熒光標(biāo)記技術(shù)構(gòu)建Bs916與突變株的GFP標(biāo)記菌株,觀察兩者在水稻莖稈定殖能力變化;檢測突變株和Bs916對水稻紋枯病的防治效果。成功構(gòu)建了位點單敲除突變株,與對照組Bs916的三維立體結(jié)構(gòu)生物膜相比僅能形成平面二維結(jié)構(gòu)生物膜,呈現(xiàn)破碎狀態(tài),證明其生物膜形成存在顯著缺陷;對生物膜干重進(jìn)行定量分析發(fā)現(xiàn)突變株生物膜干重僅為對照組Bs916的23%,進(jìn)一步驗證了突變株生物膜形成能力顯著下降;游動性試驗發(fā)現(xiàn)突變株菌體擴展直徑僅為Bs916的32%,證明突變株的游動能力顯著下降;抑菌試驗顯示兩者抑菌帶寬基本一致,證明突變株對水稻紋枯病菌的抑菌能力與Bs916相比無顯著差異;成功檢測了突變株和Bs916合成的3種脂肽類抗生素表面活性素、桿菌霉素L和泛革素的相對產(chǎn)量,突變株中桿菌霉素L相對產(chǎn)量顯著增加1倍,而表面活性素和泛革素相對產(chǎn)量與Bs916相比無顯著差異;水稻莖稈定殖試驗發(fā)現(xiàn)突變株菌體數(shù)量顯著低于Bs916,在水稻紋枯病病斑附近不出現(xiàn)顯著的聚集效應(yīng),呈現(xiàn)無序分布狀態(tài),證明突變株與Bs916相比在水稻莖稈上的定殖能力顯著下降;對水稻紋枯病的田間防治效果試驗顯示,突變株第6—15天防治效果介于6.0%—20.7%,顯著低于Bs916的36.0%—57.6%,證明突變株對水稻紋枯病防治效果顯著下降。鑒定的Bs916生物膜新調(diào)控基因位于控制鞭毛運動的信號通路,直接作用于菌體的游動與擴張,顯著單一調(diào)控生物膜形成與對水稻紋枯病的防治效果。

枯草芽孢桿菌Bs916;調(diào)控基因;生物膜;脂肽抗生素;定殖;水稻紋枯?。环乐涡Ч?/p>

0 引言

【研究意義】由立枯絲核菌()引起的水稻紋枯?。╮ice sheath blight)已是影響稻米產(chǎn)量和品質(zhì)的三大主要病害之首[1-3],水稻不同生長時期均會受到該病危害,在我國長江流域地區(qū)發(fā)生尤為嚴(yán)重,降低水稻千粒重和產(chǎn)量,普遍減產(chǎn)15%—20%,嚴(yán)重減產(chǎn)最高可達(dá)50%[4]。選育抗病品種和使用藥劑是防治水稻紋枯病最有效的兩種手段。以芽孢桿菌()為代表的微生物農(nóng)藥在防治水稻紋枯病領(lǐng)域已有長足發(fā)展,同時防病抗病機制也逐步清晰[5-7]。除了產(chǎn)生可直接抑制病原菌擴展的抗生素之外,生物膜(biofilm)是影響芽孢桿菌等微生物菌株在寄主表面定殖的關(guān)鍵因子,進(jìn)而直接影響到對病害的防治效果[5,8-9]。芽孢桿菌生物膜基本構(gòu)成組分和骨架已十分清晰[10-13],但是其復(fù)雜的調(diào)控信號通路目前尚未形成框架圖[14]。因此,進(jìn)一步挖掘和鑒定芽孢桿菌生物膜調(diào)控新基因,完善生物膜調(diào)控網(wǎng)絡(luò),對應(yīng)用微生物菌株防治植物病害具有重要意義?!厩叭搜芯窟M(jìn)展】芽孢桿菌鞭毛形成主要由一級主調(diào)控操縱子及其控制的二級調(diào)控通路來完成其運動功能,已有報道揭示該二級通路又與生物膜形成與調(diào)控具有十分緊密的聯(lián)系,但具體作用機制不明確。Bischoff等[15]報道在枯草芽孢桿菌()中缺失表達(dá)FliZ蛋白不能形成完整的鞭毛控制單元,因而顯著降低其游動性;Xu等[16]研究發(fā)現(xiàn),假結(jié)核耶爾森菌()中缺失表達(dá)FliS蛋白顯著降低鞭毛的長度與菌體的游動能力,互補菌株則能夠恢復(fù)鞭毛正常的游動能力;Luo等[5]研究發(fā)現(xiàn),在Bs916中缺失表達(dá)脂肽抗生素桿菌霉素L(bacillomycin L)和表面活性素(surfactin)顯著降低菌體游動能力,同時顯著降低了生物膜形成強度,通過體外物質(zhì)回補方式也能夠恢復(fù)菌體游動性與生物膜形成能力;楊丙燁等[17]研究表明,在西瓜細(xì)菌性果斑病菌()中缺失表達(dá)FliS蛋白導(dǎo)致菌體游動性與菌膜(生物膜)形成和病原菌對西瓜果實致病能力均顯著下降,回補菌株則基本能夠恢復(fù)上述表型性狀,說明鞭毛介導(dǎo)的菌體游動能力與生物膜形成呈現(xiàn)正相關(guān)。生物膜的主要構(gòu)成組分是蛋白質(zhì)TasA、胞外多糖EPS及其他一些生物膜表層蛋白BslA(YuaB)等[10-13,18-21]。芽孢桿菌生物膜基因調(diào)控網(wǎng)絡(luò)極其復(fù)雜,目前報道的主要有Spo0A-KinA-E、SinR/SinI/SlrR、AbbA/AbrB和DegU/DegS等途徑,均為通過調(diào)控和操縱子的啟動子來控制生物膜形成的強弱。SinR可以分別與和操縱子結(jié)合來抑制生物膜基本組分的轉(zhuǎn)錄合成,進(jìn)而嚴(yán)重降低生物膜形成強度,SinI則能夠解除該種效應(yīng)[22-24]。AbrB結(jié)合在操縱子啟動區(qū)-133和-182位來實現(xiàn)抑制其轉(zhuǎn)錄表達(dá),進(jìn)而減弱生物膜形成強度[25-28]。Spo0A直接通過其磷酸化水平?jīng)Q定形成生物膜或芽孢,通過抑制負(fù)調(diào)控因子AbrB來增強生物膜的形成[25-26,29-32]?!颈狙芯壳腥朦c】筆者實驗室前期基礎(chǔ)研究以Bs916轉(zhuǎn)座子標(biāo)簽庫為出發(fā)點,以生物膜形成缺陷為篩選表型進(jìn)行篩庫試驗,獲得具有生物膜形成缺陷的突變株,進(jìn)行生物信息學(xué)分析獲取生物膜調(diào)控新基因(Gene ID:16551915),該基因位于芽孢桿菌控制鞭毛運動的信號通路中,被預(yù)測為鞭毛調(diào)控蛋白?!緮M解決的關(guān)鍵問題】采用定向敲除突變位點基因的方法驗證生物膜形成缺陷,檢測突變株脂肽類抗生素產(chǎn)量、對水稻紋枯病菌的抑菌能力及在水稻莖稈的定殖能力,探討該調(diào)控基因?qū)ι锬ば纬珊蛯λ炯y枯病防治效果的重要作用。

1 材料與方法

試驗于2016—2018年在江蘇丘陵地區(qū)鎮(zhèn)江農(nóng)業(yè)科學(xué)研究所和江蘇省農(nóng)業(yè)科學(xué)院植物保護(hù)研究所完成。

1.1 材料

1.1.1 細(xì)菌、病原菌及其生長條件 枯草芽孢桿菌Bs916由江蘇省農(nóng)業(yè)科學(xué)院植物保護(hù)研究所生防與稻病研究室提供,水稻紋枯病菌為江蘇丘陵地區(qū)鎮(zhèn)江農(nóng)業(yè)科學(xué)研究所植保研究室分離純化保存菌株。Bs916培養(yǎng)基為LB(Luria broth)培養(yǎng)基:10 g·L-1胰蛋白胨,5 g·L-1酵母提取物,10 g·L-1NaCl[14,33-34];水稻紋枯病菌培養(yǎng)基為PDA培養(yǎng)基:馬鈴薯塊200 g·L-1,葡萄糖20 g·L-1,瓊脂20 g·L-1[14,34];生物膜誘導(dǎo)培養(yǎng)基為MSgg培養(yǎng)基:5 mmol·L-1磷酸鉀(pH 7),100 mmol·L-1Mops(pH 7),2 mmol·L-1氯化鎂,700 μmol·L-1氯化鈣,50 μmol·L-1氯化錳,50 μmol·L-1氯化鐵,1 μmol·L-1氯化鋅,2 μmol·L-1維生素B1,0.5%甘油,0.5%谷氨酸,50 μg·mL-1色氨酸,50 μg·mL-1苯丙氨酸[14,20]。

1.1.2 供試引物 本試驗引物合成和序列測序均由上海生工生物工程有限公司完成,所用引物如表1所示。

表1 本試驗所用引物

1.2 fliZ目標(biāo)基因的獲取、定向敲除突變株的構(gòu)建、GFP標(biāo)記與生物膜表型缺陷的驗證

在實驗室前期工作基礎(chǔ)上(包含部分未發(fā)表數(shù)據(jù)[34])通過構(gòu)建轉(zhuǎn)座子隨機插入突變體庫,以生物膜形成表型缺陷作為篩庫標(biāo)準(zhǔn),篩選到突變株,經(jīng)Southern blot拷貝數(shù)檢測和PCR雙重驗證后確認(rèn)單插入位點位于。從質(zhì)粒pDG1728上擴增(SpecF,SpecR)得到由壯觀霉素啟動子和合成基因組成的基因盒,經(jīng)HI和RI酶切裝載入質(zhì)粒pUC19構(gòu)成新質(zhì)粒pUCSpec。從Bs916全基因組PCR擴增(FliZF,F(xiàn)liZR)部分片段(582 bp),片段純化經(jīng)HI和dIII雙切后裝載入質(zhì)粒pUCSpec構(gòu)成新質(zhì)粒pUCSpec-。質(zhì)粒pUCSpec-經(jīng)感受態(tài)轉(zhuǎn)化方式轉(zhuǎn)化進(jìn)入Bs916野生型菌株內(nèi)部,發(fā)生單交換-同源重組突變,在含有壯觀霉素的固體LB培養(yǎng)基中定向選取突變株并進(jìn)行PCR驗證,構(gòu)建定向敲除突變株Δ。

質(zhì)粒pRp22-gfp(江蘇省農(nóng)業(yè)科學(xué)院植物保護(hù)研究所保存)分別經(jīng)感受態(tài)轉(zhuǎn)化進(jìn)入突變株Δ和野生型菌株Bs916構(gòu)成攜帶綠色熒光標(biāo)記的突變株Δ-GFP和Bs916-GFP,用于定殖能力檢測。突變株Δ單菌落接種于含有100 μg·mL-1壯觀霉素的LB液體培養(yǎng)基37℃條件下200 r/min過夜培養(yǎng)12 h。4 mL含有終濃度20 μg·mL-1剛果紅和10 μg·mL-1考馬斯亮藍(lán)Msgg液體培養(yǎng)基加入12孔板中,上述過夜培養(yǎng)新鮮菌液200 μL加入上述MSgg培養(yǎng)基中誘導(dǎo)產(chǎn)生生物膜,分批次于2 mL離心管中離心去上清液倒置空干,37℃條件下烘干稱重分析[35]。每個處理重復(fù)3次。

1.3 ΔfliZ突變株和Bs916游動能力檢測

檢測Δ突變株和Bs916在LB游動性培養(yǎng)基上菌落直徑。在包含20 μg·mL-1剛果紅,10 μg·mL-1考馬斯亮藍(lán)和0.7%瓊脂粉的培養(yǎng)基上分別滴加1 μL過夜培養(yǎng)新鮮的Bs916和Δ菌液,30℃條件下倒置培養(yǎng)24 h,分別測量菌體直徑,3次重復(fù)。

1.4 ΔfliZ突變株和Bs916對水稻紋枯病菌抑菌能力與3種脂肽抗生素分泌量的檢測

挑取Δ突變株單菌落接種至含有100 μg·mL-1壯觀霉素LB液體培養(yǎng)基,Bs916單菌落接種至不含任何抗生素的LB培養(yǎng)基中,均于37℃過夜培養(yǎng)。分別取2 μL過夜培養(yǎng)新鮮菌液滴加在中央已接種水稻紋枯病菌菌餅的培養(yǎng)皿中,28℃條件靜置培養(yǎng)24—72 h,分別測量Bs916和Δ突變株抑菌圈直徑,每個處理重復(fù)3次。

分別接種上述過夜培養(yǎng)新鮮的Δ突變株和Bs916菌液10 μL于50 mL不含抗生素LB培養(yǎng)基的三角瓶中,200 r/min轉(zhuǎn)速37℃條件下?lián)u培48 h,10 000 r/min轉(zhuǎn)速離心20 min分別獲取上清液,使用HCl調(diào)節(jié)pH到2.0進(jìn)行靜置沉淀3 h,12 000 r/min轉(zhuǎn)速離心30 min獲取沉淀,自然干燥之后沉淀分別溶解于2 mL甲醇溶液,經(jīng)0.22 μm濾膜過濾去除雜質(zhì)用于高效液相色譜(HPLC)上樣檢測。采用安捷倫1200系HPLC和C18色譜柱(5 μm,4 mm×250 mm,F(xiàn)rankfurt,Germany)進(jìn)行分離3種脂肽類抗生素桿菌霉素L、表面活性素和泛革素(fengycin)的相對產(chǎn)量,流動相及檢測條件分別為桿菌霉素L(乙腈﹕水﹕三氟乙酸=40﹕60﹕0.5,V/V/V),表面活性素(乙腈﹕水﹕三氟乙酸=20﹕80﹕0.5,V/V/V)和泛革素(乙腈﹕水﹕三氟乙酸=50﹕50﹕0.5,V/V/V),檢測波長均為210 nm,流速為0.8 mL·min-1,柱溫為30℃。每個處理重復(fù)3次。

1.5 ΔfliZ突變株和Bs916在水稻莖稈定殖能力和對水稻紋枯病防治效果的測定

挑取Δ-GFP突變株單菌落接種至含有100μg·mL-1壯觀霉素LB液體培養(yǎng)基,Bs916-GFP單菌落接種至不含有抗生素的LB液體培養(yǎng)基,37℃條件過夜培養(yǎng)。分別取上述過夜培養(yǎng)的新鮮菌液10 μL于50 mL不含抗生素LB培養(yǎng)基的三角瓶中,200 r/min轉(zhuǎn)速37℃條件下?lián)u培24 h,分別噴施上述擴培菌液20 mL于已接種水稻紋枯病菌的水稻莖稈部位,不同時間段內(nèi)取水稻莖稈樣品于激光共聚焦顯微鏡下觀察菌落的定殖情況。每個處理重復(fù)3次。

相同的處理方式分別處理Δ突變株和Bs916,分別將擴培之后20 mL新鮮菌液噴施于已接種水稻紋枯病菌的水稻莖稈部位,空白對照組CK僅接種水稻紋枯病菌,待對照組水稻紋枯病發(fā)病明顯時測量病斑直徑,分別計算對水稻紋枯病的防治效果。每個處理重復(fù)3次。

2 結(jié)果

2.1 ΔfliZ突變株生物膜形成表型缺陷的驗證

采用定向突變的方式敲除了Bs916基因組中的位點序列,經(jīng)MSgg培養(yǎng)基誘導(dǎo)檢測Δ突變株形成的缺陷,結(jié)果如圖1所示。對照野生型菌株Bs916能夠形成具有三維結(jié)構(gòu)的完整生物膜,輪廓清晰。Δ突變株也能夠形成部分的生物膜組織,僅具有平面二維結(jié)構(gòu),呈現(xiàn)漂浮破碎狀,分布均勻。干重分析顯示,Δ突變株生物膜干重僅為Bs916的23%,生物膜形成能力顯著下降。

*: P<0.05

2.2 ΔfliZ突變株和Bs916游動能力

檢測了對照野生型菌株Bs916和Δ突變株在菌體游動性表型上的差異,結(jié)果如圖2所示,Bs916菌體在24 h鋪滿整個培養(yǎng)皿,Δ突變株在24 h與12—18 h相比無顯著差異,與Bs916相比具有顯著差異,擴展直徑僅為Bs916的32%。

圖2 ΔfliZ突變株和Bs916游動能力測定

2.3 ΔfliZ突變株和Bs916對水稻紋枯病菌的抑菌能力

野生型菌株Bs916對水稻紋枯病抑菌帶寬為3.2 mm,Δ突變株抑菌帶寬是3.3 mm,Bs916和Δ突變株對水稻紋枯病菌均具有正常的抑菌能力,兩者無顯著差異(圖3)。

圖3 ΔfliZ突變株和Bs916抑菌能力測定

2.4 ΔfliZ突變株和Bs916分泌的3種脂肽抗生素的相對產(chǎn)量

利用HPLC檢測了同等發(fā)酵條件下野生型菌株Bs916和Δ突變株產(chǎn)桿菌霉素L、表面活性素和泛革素的相對產(chǎn)量,如圖4所示,Bs916分泌的桿菌霉素L、表面活性素和泛革素經(jīng)HPLC檢測分別存在3、6和5個峰,分子量數(shù)據(jù)定性由本實驗室前期數(shù)據(jù)確定[5,36]。結(jié)果顯示桿菌霉素L相對產(chǎn)量具有顯著差異,Δ突變株相對產(chǎn)量是Bs916的兩倍,而表面活性素和泛革素兩者無顯著差異。

2.5 ΔfliZ突變株和Bs916在水稻莖稈的定殖能力

成功構(gòu)建了Δ突變株和Bs916分別攜帶綠色熒光標(biāo)記的菌株Δ-GFP和Bs916-GFP。利用綠色熒光蛋白表達(dá)技術(shù),在激光共聚焦顯微鏡下成功觀測到Δ-GFP和Bs916-GFP在水稻莖稈上定殖能力的差異(圖5),水稻紋枯病菌從第3天顯示發(fā)病跡象,Δ-GFP和Bs916-GFP菌體數(shù)量處于指數(shù)繁殖階段,無明顯的聚集效應(yīng)。在第6天開始,在水稻紋枯病菌侵染部位Bs916菌群出現(xiàn)部分的聚集效應(yīng),Δ-GFP則無此種聚集效應(yīng)。至第9天觀測效果顯著,Bs916菌體量增加顯著,高度聚集在侵染病斑周圍,呈片狀分布,Δ-GFP菌體數(shù)量增加,但呈現(xiàn)游離狀態(tài)分布。第12—15天由于病原菌在競爭中占據(jù)優(yōu)勢地位,菌體數(shù)量明顯下降,Bs916仍具有聚集效應(yīng),但Δ-GFP菌體一直延續(xù)游離狀態(tài)。

A—C圖藍(lán)色代表Bs916,紅色代表ΔfliZ突變株In fig A-C, blue represents Bs916, red represents ΔfliZmutant. A:桿菌霉素L 相對產(chǎn)量Relative production of bacillomycin L;B:表面活性素相對產(chǎn)量Relative production of surfactin;C:泛革素相對產(chǎn)量Relative production of fengycin;D:3種脂肽抗生素相對產(chǎn)量柱形圖histogram of relative production of 3 lipopeptide antibiotics. *: P<0.05

圖5 ΔfliZ突變株和Bs916在水稻莖稈定殖能力觀測

2.6 ΔfliZ突變株和Bs916對水稻紋枯病的田間防治效果

野生型菌株Bs916防治效果由于水稻紋枯病菌的持續(xù)擴展侵染呈現(xiàn)下降趨勢,Δ突變株同樣呈現(xiàn)下降趨勢,但顯著低于Bs916的防治效果,說明該位點的突變顯著降低了Bs916對水稻紋枯病的防治效果(表2)。

表2 ΔfliZ突變株和Bs916對水稻紋枯病的防治效果

同列數(shù)據(jù)后含有不同小寫字母表示差異顯著(<0.05)

Different lowercases after the data indicate significant difference (<0.05)

3 討論

水稻紋枯病是影響全球水稻主產(chǎn)區(qū)稻米產(chǎn)量的主要病害之一,在我國長江流域以南水稻種植地區(qū)廣泛分布[37-38]。防治水稻紋枯病主要依靠抗病品種選育和化學(xué)農(nóng)藥,但化學(xué)農(nóng)藥存在殘留、抗藥性產(chǎn)生和影響環(huán)境等問題,使得以芽孢桿菌為代表的綠色微生物農(nóng)藥得到長足發(fā)展。除直接分泌抗生素殺死或抑制病原真菌侵染和擴展外[39],芽孢桿菌防治水稻紋枯病的前提是以生物膜的形式在水稻植株上成功定殖和繁殖。Bianciotto等[40]研究發(fā)現(xiàn),強壯的生物膜能夠增強熒光假單胞菌()CHA0在胡蘿卜根部的定殖能力,進(jìn)而增強對病原菌侵入的抑制作用;Bais等[41]研究發(fā)現(xiàn),枯草芽孢桿菌6051能夠形成強大的三維結(jié)構(gòu)生物膜定殖于擬南芥根部,抑制病原菌對擬南芥根部的侵染;Timmusk等[42]研究發(fā)現(xiàn),根際促生菌多粘類芽孢桿菌()通過強大的生物膜結(jié)構(gòu)定殖于植物根際并抵抗病原菌入侵;Chen等[43]發(fā)現(xiàn)并鑒定了6株生防菌,在培養(yǎng)基和番茄根部均能形成良好的生物膜結(jié)構(gòu)以抑制番茄青枯病菌(),進(jìn)一步發(fā)現(xiàn)很多生物膜胞外聚合物基因得到增強表達(dá)。

本研究出發(fā)菌株Bs916是微生物農(nóng)藥“紋曲寧”的主效成分,被用于防治水稻紋枯病已長達(dá)15年,是一株優(yōu)秀的生防菌株[44]。筆者實驗室前期基礎(chǔ)研究已完成對Bs916的全基因組精細(xì)圖譜的測序工作[36,45],構(gòu)建轉(zhuǎn)座子標(biāo)簽庫,篩選生物膜缺陷表型獲取到插入位點并驗證[34]。本研究以為切入點,通過生物信息學(xué)分析和文獻(xiàn)報道,基因位點位于細(xì)菌控制鞭毛運動的信號通路,是Ⅱ型正調(diào)控因子,與菌體游動能力直接正相關(guān)[46-47]。Wang等[48]通過缺失表達(dá)假結(jié)核耶爾森菌YPIII鞭毛系統(tǒng)一級主調(diào)控蛋白FlhDC,使其喪失游動性的同時發(fā)現(xiàn)其在不同表面上生物膜形成能力顯著下降;Zhuo等[49]研究發(fā)現(xiàn),在柑橘潰瘍病菌(subsp.)中缺失表達(dá)CarB蛋白可導(dǎo)致其在半固體培養(yǎng)基表面游動性顯著下降,也導(dǎo)致了突變株在聚苯乙烯孔板中生物膜形成強度的顯著下降;Sanchez-Torres等[50]研究表明,大腸桿菌中環(huán)二鳥苷酸(c-di-GMP)含量能夠顯著負(fù)調(diào)控游動性與生物膜的形成,其主要由GGDEF蛋白進(jìn)行負(fù)調(diào)控,在缺失表達(dá)GGDEF蛋白如YeaI、YedQ和YfiN的菌株中均表現(xiàn)出游動性與早期生物膜形成顯著增強的現(xiàn)象。本研究構(gòu)建了定向敲除突變株,檢測了其游動性和生物膜形成能力,結(jié)果顯示突變株在上述兩表型上均具有顯著缺陷,因此筆者認(rèn)為Bs916中受調(diào)控下的游動性和生物膜形成能力呈正相關(guān)。

通過直接分泌抗生素來殺死或抑制病原菌入侵和擴展是生防菌防治植物病害的主要手段[39,51],本研究檢測了位點突變后對水稻紋枯病菌抑菌能力的變化,發(fā)現(xiàn)突變并不影響其對水稻紋枯病菌的抑制能力。進(jìn)一步利用HPLC檢測了抑菌所需的3種脂肽類抗生素桿菌霉素L、表面活性素和泛革素的相對產(chǎn)量,發(fā)現(xiàn)僅有桿菌霉素L的相對產(chǎn)量顯著增強,結(jié)合抑菌圈直徑無顯著差異,筆者認(rèn)為可能是桿菌霉素L在抑菌作用中的貢獻(xiàn)較小所致。

定殖能力的強弱是另一個影響芽孢桿菌防治效果的重要因子,傳統(tǒng)定殖試驗普遍發(fā)生在病原菌侵入的寄主植物根部[40-43],本研究中的水稻紋枯病菌主要入侵水稻莖稈部位,因此借助于綠色熒光蛋白標(biāo)記技術(shù)和激光共聚焦顯微鏡能夠直接檢測在接種水稻紋枯病菌的水稻莖稈部位定殖情況,發(fā)現(xiàn)位點突變嚴(yán)重降低了Bs916在水稻莖稈上聚集程度,菌群無序分布,菌體數(shù)量低于Bs916,說明其在水稻莖稈上的定殖能力顯著下降。芽孢桿菌脂肽抗生素和在寄主體表的定殖能力最終決定對植物病害的防治效果,本研究測定了位點突變對水稻紋枯病防治效果的影響,發(fā)現(xiàn)其防治水稻紋枯病的效果均顯著下降,筆者認(rèn)為是由于其顯著下降的生物膜形成能力與在水稻莖稈定殖效果導(dǎo)致的。

4 結(jié)論

位于枯草芽孢桿菌Bs916控制鞭毛游動信號通路中,直接調(diào)控菌體的游動和擴展能力,對Bs916生物膜形成具有重要的單一調(diào)控作用,在抑菌能力無顯著差異前提下直接調(diào)控Bs916在水稻莖稈的定殖能力,最終顯著調(diào)控對水稻紋枯病的防治效果。

[1] KUMAR K V K, REDDY M S, KLOEPPER J W, LAWRENCE K S, GROTH D E, MILLER M E. Sheath blight disease of rice (L.)–an overview., 2009, 6(2): 465-480.

[2] CHOUDHURY D, ANAND Y R, KUNDU S, NATH R, KOLE R K, SAHA J. Effect of plant extracts against sheath blight of rice caused by., 2017, 6(4): 399-404.

[3] BONANOMI G, CESARANO G, ANTIGNANI V, DI MAIO C, DE FILIPPIS F, SCALA F. Conventional farming impairsdisease suppression by disrupting soil food web., 2018, 166(9): 663-673.

[4] ZHENG A, LIN R, ZHANG D, QIN P, XU L, AI P, DING L, WANG Y, CHEN Y, LIU Y, Sun Z, Feng H, Liang X, Fu R, Tang C, Li Q, Zhang J, Xie Z, Deng Q, Li S, Wang S, Zhu J, Wang L, Liu H, Li P. The evolution and pathogenic mechanisms of the rice sheath blight pathogen., 2013, 4: 1424.

[5] LUO C, ZHOU H, ZOU J, WANG X, ZHANG R, XIANG Y, CHEN Z. Bacillomycin L and surfactin contribute synergistically to the phenotypic features of916 and the biocontrol of rice sheath blight induced by., 2015, 99(4): 1897-1910.

[6] SHRESTHA B K, KARKI H S, GROTH D E, JUNGKHUN N, HAM J H. Biological control activities of rice-associatedsp. strains against sheath blight and bacterial panicle blight of rice., 2016, 11(1): e0146764.

[7] QI Z, YU J, SHEN L, YU Z, YU M, DU Y, ZHANG R, SONG T, YIN X, ZHOU Y, LI H, WEI Q, LIU Y. Enhanced resistance to rice blast and sheath blight in rice (L.) by expressing the oxalate decarboxylase protein Bacisubin from., 2017, 265: 51-60.

[8] ALETI G, LEHNER S, BACHER M, COMPANT S, NIKOLIC B, PLESKO M, SCHUHMACHER R, SESSITSCH A, BRADER G. Surfactin variants mediate species‐specific biofilm formation and root colonization in., 2016, 18(8): 2634-2645.

[9] XU Z, ZHANG H, SUN X, LIU Y, YAN W, XUN W, SHEN Q, ZHANG R.wall teichoic acids are required for biofilm formation and root colonization., 2019, 85(5): e02116-18.

[10] GUTTENPLAN S B, BLAIR K M, KEARNS D B. The EpsE flagellar clutch is bifunctional and synergizes with EPS biosynthesis to promotebiofilm formation., 2010, 6(12): e1001243.

[11] CZACZYK K, MYSZKA K. Biosynthesis of extracellular polymeric substances (EPS) and its role in microbial biofilm formation., 2007, 16(6): 799-806.

[12] MARVASI M, VISSCHER P T, CASILLAS MARTINEZ L. Exopolymeric substances (EPS) from: polymers and genes encoding their synthesis., 2010, 313(1): 1-9.

[13] DIEHL A, ROSKE Y, BALL L, CHOWDHURY A, HILLER M, MOLIèRE N, KRAMER R, ST?PPLER D, WORTH C L, SCHLEGEL B, Leidert M, Cremer N, Erdmann N, Lopez D, Stephanowitz H, Krause E, van Rossum B J, Schmieder P, Heinemann U, Turgay K, Akbey ü, Oschkinat H. Structural changes of TasA in biofilm formation of., 2018, 115(13): 3237-3242.

[14] ZHOU H, LUO C, FANG X, XIANG Y, WANG X, ZHANG R, CHEN Z. Loss of Gltb inhibits biofilm formation and biocontrol efficiency ofBs916 by altering the production of-polyglutamate and three lipopeptides., 2016, 11(5): e0156247.

[15] Bischoff D S, WEINREICH M D, ORDAL G W. Nucleotide sequences offlagellar biosynthetic genesandand identification of a novel flagellar gene,., 1992, 174(12): 4017-4025.

[16] XU S J, PENG Z, CUI B, WANG T, SONG Y, ZHANG L, WEI G, WANG Y, SHEN X. FliS modulates FlgM activity by acting as a non-canonical chaperone to control late flagellar gene expression, motility and biofilm formation in., 2014, 16(4): 1090-1104.

[17] 楊丙燁, 付丹, 胡方平, 蔡學(xué)清. 西瓜細(xì)菌性果斑病菌鞭毛基因的功能分析. 中國農(nóng)業(yè)科學(xué), 2017, 50(15): 2946-2956.

YANG B Y, FU D, HU F P, CAI X Q. Function analysis of flagellar genein., 2017, 50(15): 2946-2956. (in Chinese)

[18] BRANDA S S, VIK ?, FRIEDMAN L, KOLTER R. Biofilms: the matrix revisited., 2005, 13(1): 20-26.

[19] BRANDA S S, CHU F, KEARNS D B, LOSICK R, KOLTER R. A major protein component of thebiofilm matrix., 2006, 59(4): 1229-1238.

[20] ROMERO D, AGUILAR C, LOSICK R, KOLTER R. Amyloid fibers provide structural integrity tobiofilms., 2010, 107(5): 2230-2234.

[21] KOBAYASHI K, IWANO M. BslA (YuaB) forms a hydrophobic layer on the surface ofbiofilms., 2012, 85(1): 51-66.

[22] KEARNS D B, CHU F, BRANDA S S, KOLTER R, LOSICK R. A master regulator for biofilm formation by., 2005, 55(3): 739-749.

[23] DELOUGHERY A, DENGLER V, CHAI Y, LOSICK R. Biofilm formation byrequires an endoribonuclease-containing multisubunit complex that controls mRNA levels for the matrix gene repressor SinR., 2016, 99(2): 425-437.

[24] KAMPF J, GERWIG J, KRUSE K, CLEVERLEY R, DORMEYER M, GRüNBERGER A, KOHLHEYER D, COMMICHAU F M, LEWIS R J, STüLKE J. Selective pressure for biofilm formation in: differential effect of mutations in the master regulator SinR on bistability., 2018, 9(5): e01464-18.

[25] HAMON M A, STANLEY N R, BRITTON R A, GROSSMAN A D, LAZAZZERA B A. Identification of AbrB-regulated genes involved in biofilm formation by., 2004, 52(3): 847-860.

[26] MURRAY E J, STRAUCH M A, STANLEY-WALL N R. σXis involved in controllingbiofilm architecture through the AbrB homologue Abh., 2009, 191(22): 6822-6832.

[27] CHU F, KEARNS D B, BRANDA S S, KOLTER R, LOSICK R. Targets of the master regulator of biofilm formation in., 2006, 59(4): 1216-1228.

[28] STRAUCH M A, BOBAY B G, CAVANAGH J, YAO F, WILSON A, LE BRETON Y. Abh and AbrB control ofantimicrobial gene expression., 2007, 189(21): 7720-7732.

[29] FUJITA M, LOSICK R. Evidence that entry into sporulation inis governed by a gradual increase in the level and activity of the master regulator Spo0A., 2005, 19(18): 2236-2244.

[30] HAMON M A, LAZAZZERA B A. The sporulation transcription factor Spo0A is required for biofilm development in., 2001, 42(5): 1199-1209.

[31] DUBNAU E J, CARABETTA V J, TANNER A W, MIRAS M, DIETHMAIER C, DUBNAU D. A protein complex supports the production of Spo0A‐P and plays additional roles for biofilms and the K‐state in., 2016, 101(4): 606-624.

[32] BANSE A V, CHASTANET A, RAHN-LEE L, HOBBS E C, LOSICK R. Parallel pathways of repression and antirepression governing the transition to stationary phase in., 2008, 105(40): 15547-15552.

[33] SAIFUDDIN N, WONG C W, YASUMIRA A A. Rapid biosynthesis of silver nanoparticles using culture supernatant of bacteria with microwave irradiation., 2009, 6(1): 61-70.

[34] 周華飛, 羅楚平, 王曉宇, 張榮勝, 陳志誼. 枯草芽胞桿菌Bs916突變體庫的構(gòu)建和抑制水稻細(xì)菌性條斑病菌相關(guān)基因的克隆. 中國農(nóng)業(yè)科學(xué), 2013, 46(11): 2232-2239.

ZHOU H F, LUO C P, WANG X Y, ZHANG R S, CHEN Z Y. Construction ofBs916 mutant libraries by transposon tagging and cloning the genes to the organism’s anti-bacterial activities., 2013, 46(11): 2232-2239. (in Chinese)

[35] GRABA M, SAUVAGE S, MOULIN F Y, URREA G, SABATER S, SANCHEZ-PéREZ J M. Interaction between local hydrodynamics and algal community in epilithic biofilm., 2013, 47(7): 2153-2163.

[36] LUO C, LIU X, ZHOU H, WANG X, CHEN Z. Nonribosomal peptide synthase gene clusters for lipopeptide biosynthesis in916 and their phenotypic functions., 2015, 81(1): 422-431.

[37] 周而勛, 曹菊香, 楊媚, 朱西儒. 我國南方六省(區(qū))水稻紋枯病菌遺傳多樣性的研究. 南京農(nóng)業(yè)大學(xué)學(xué)報, 2002, 25(3): 36-40.

ZHOU E X, CAO J X, YANG M, ZHU X R. Studies on the genetic diversity ofAG-1-IA from six provinces in the southern China., 2002, 25(3): 36-40. (in Chinese)

[38] 鄒成佳, 唐芳, 楊媚, 賀曉霞, 李獻(xiàn)軍, 周而勛. 華南3省(區(qū))水稻紋枯病菌的生物學(xué)性狀與致病力分化研究. 中國水稻科學(xué), 2011, 25(2): 206-212.

ZOU C J, TANG F, YANG M, HE X X, LI X J, ZHOU E X. Studies on biological characteristics and pathogenicity differentiation of rice sheath blight pathogen from three provinces in South China., 2011, 25(2): 206-212. (in Chinese)

[39] 向亞萍, 陳志誼, 羅楚平, 周華飛, 劉永鋒. 芽孢桿菌的抑菌活性與其產(chǎn)脂肽類抗生素的相關(guān)性. 中國農(nóng)業(yè)科學(xué), 2015, 48(20): 4064-4076.

XIANG Y P, CHEN Z Y, LUO C P, ZHOU H F, LIU Y F. The antifungal activities ofspp. and its relationship with lipopeptide antibiotics produced byspp., 2015, 48(20): 4064-4076. (in Chinese)

[40] BIANCIOTTO V, ANDREOTTI S, BALESTRINI R, BONFANTE P, PEROTTO S. Mucoid mutants of the biocontrol strainCHA0 show increased ability in biofilm formation on mycorrhizal and nonmycorrhizal carrot roots., 2001, 14(2): 255-260.

[41] BAIS H P, FALL R, VIVANCO J M. Biocontrol ofagainst infection ofroots byis facilitated by biofilm formation and surfactin production., 2004, 134(1): 307-319.

[42] Timmusk S, Grantcharova N, WAGNER E G H.invades plant roots and forms biofilms., 2005, 71(11): 7292-7300.

[43] CHEN Y, CAO S, CHAI Y, Clardy J, Kolter R, GUO J H, Losick R. Asensor kinase involved in triggering biofilm formation on the roots of tomato plants., 2012, 85(3): 418-430.

[44] 陳志誼, 劉永鋒, 陸凡. 水稻紋枯病生防菌Bs-916產(chǎn)業(yè)化生產(chǎn)關(guān)鍵技術(shù). 植物保護(hù)學(xué)報, 2004, 31(3): 230-234.

CHEN Z Y, LIU Y F, LU F. Study on key technology in the industrialized production ofBs-916, the rice sheath blight control agent., 2004, 31(3): 230-234. (in Chinese)

[45] WANG X, LUO C, CHEN Z. Genome sequence of the plant growth-promoting rhizobacteriumsp. strain 916., 2012, 194(19): 5467-5468.

[46] IYODA S, KAMIDOI T, HIROSE K, KUTSUKAKE K, WATANABE H. A flagellar generegulates the expression of invasion genes and virulence phenotype inserovar Typhimurium., 2001, 30(2): 81-90.

[47] KUTSUKAKE K, IKEBE T, YAMAMOTO S. Two novel regulatory genes,and, in the flagellar regulon of., 1999, 74(6): 287-292.

[48] WANG Y, DING L S, HU Y B, ZHANG Y, YANG B Y, SHEN S Y. Thegene affects motility and biofilm formation in.:,2007, 50(6): 814-821.

[49] ZHUO T, WEI R, SONG X, GUO J, FAN X, KAMAU G G, ZOU H. Molecular study on theoperon reveals thatgene is required for swimming and biofilm formation insubsp.., 2015, 15: 225.

[50] SANCHEZ-TORRES V, HU H, WOOD T K. GGDEF proteins YeaI, YedQ, and YfiN reduce early biofilm formation and swimming motility in., 2011, 90(2): 651-658.

[51] 高學(xué)文, 姚仕義, PHAM H, VATER J, 王金生. 基因工程菌枯草芽孢桿菌GEB3產(chǎn)生的脂肽類抗生素及其生物活性研究. 中國農(nóng)業(yè)科學(xué), 2003, 36(12): 1496-1501.

GAO X W, YAO S Y, PHAM H, VATER J, WANG J S. Lipopeptide antibiotic produced by the engineered strainGEB3 and detection of its bioactivity., 2003, 36(12): 1496-1501. (in Chinese)

FliZ regulated the biofilm formation ofBs916 and its biocontrol efficacy on rice sheath blight

ZHOU HuaFei1,2, YANG HongFu1, YAO KeBing1, ZHUANG YiQing1, SHU ZhaoLin1, CHEN ZhiYi3

(1Zhenjiang Institute of Agricultural Sciences in Hilly Region of Jiangsu, Jurong 212400, Jiangsu;2College of Plant Protection, Nanjing Agricultural University, Nanjing 210095;3Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014)

【】The objective of this study is to discover and identify new regulatory genes on biofilm formation ofBs916, detect its effect on biofilm formation of Bs916 and biocontrol efficacy on rice sheath blight.【】The single knockout mutant of Bs916 atwas construct by homologous recombination, and its defects in biofilm formation were verified by dry weight analysis. The anti-bacterial effect ofmutant and Bs916 on rice sheath blight pathogen () was detected by flat panel. The relative production of 3 lipopeptide antibiotics (LPs) surfactin, bacillomycin L, and fengycin inmutant and Bs916 was detected by HPLC. The GFP-labeled strains of Bs916 andmutant were constructed by green fluorescent labeling, the colonization ability of them in rice stalks was observed, and the biocontrol efficacy ofmutant and Bs916 on rice sheath blight was detected.【】The single knockout mutant of Bs916 atwas successfully constructed. compared with the three-dimensional structure biofilm of the control group Bs916,mutant only formed a planar two-dimensional structure biofilm, appeared broken form, which proved that it had significant defects in biofilm formation. Quantitative analysis of the dry weight of biofilms showed that the biofilm dry weight ofmutant was only 23% of the control group Bs916, which further verified that the biofilm formation ability ofmutant was significantly decreased. the motility test found that the expanded diameter ofmutant was only 32% of Bs916, which proved that the swimming ability ofmutant was significantly reduced. The bacteriostatic test showed that the antibacterial bandwidth of the two strains was basically the same, and it is proved that the antibacterial activity ofmutant againstwas not significantly different from that of Bs916. The relative production of three LPs bacillomycin L, surfactin, and fengycin inmutant and Bs916 was successfully detected. compared with Bs916, the relative production of bacillomycin L was significantly increased by 1 time inmutant, but the relative production of surfactin and fengycin was not significantly different from that of Bs916. The colonization test of rice stalks showed that the number ofmutant was significantly lower than that of Bs916, and there was no significant aggregation effect near the rice sheath blight lesions, and presented an unordered state, which proved that the colonization ability ofmutant on rice stalks was significantly lower than that of Bs916. The field biocontrol trials against rice sheath blight showed that biocontrol efficacy ofmutant ranged from 6.0% to 20.7% on days 6-15, which was significantly lower than that of Bs916 (36.0%-57.6%). It was proved that the biocontrol efficacy ofmutant on rice sheath blight was significantly reduced.【】The new regulatory geneof Bs916 biofilm identified in this study is located in the signal pathway controlling flagellar movement, directly acts on swimming and expansion of the bacteria, and can significantly control the biofilm formation and its biocontrol efficacy on rice sheath blight.

Bs916; regulated genes; biofilm; lipopeptide antibiotics (LPs); colonization; rice sheath blight; biocontrol efficacy

10.3864/j.issn.0578-1752.2020.01.005

2019-07-01;

2019-08-04

國家重點研發(fā)計劃(2017YFD0201100)、江蘇省農(nóng)業(yè)科技自主創(chuàng)新資金(CX(17)3023)、鎮(zhèn)江市農(nóng)業(yè)科學(xué)院青年基金(QNJJ2017006)

周華飛,Tel:0511-80978079;E-mail:zhhf2010@126.com。通信作者陳志誼,Tel:025-84390393;E-mail:njaujaas@163.com

(責(zé)任編輯 岳梅)

猜你喜歡
定殖游動紋枯病
永不停歇的魚
球軸承用浪型保持架徑向游動量的測量
哈爾濱軸承(2021年1期)2021-07-21 05:43:16
把手放進(jìn)袋子里
鐵載體產(chǎn)生菌Paenibacillus illinoisensisYZ29在花生根際定殖能力研究
植物根部內(nèi)生細(xì)菌多樣性及其生防作用研究進(jìn)展
復(fù)合微生物肥料對香蕉枯萎病防控作用研究
不同處理方式對內(nèi)生細(xì)菌R15定殖數(shù)量和辣椒疫病防治效果的影響
四川水稻品種對紋枯病抗性的評價
小麥紋枯病大田防治藥劑篩選試驗
水稻紋枯病防治藥劑的篩選及田間防效
乾安县| 肇东市| 乌拉特中旗| 茂名市| 涿鹿县| 遂平县| 亚东县| 托克逊县| 吉林省| 本溪市| 芦山县| 县级市| 民丰县| 六枝特区| 阆中市| 宜阳县| 慈利县| 曲沃县| 武山县| 遵义县| 潮安县| 高平市| 永平县| 济南市| 安徽省| 雅江县| 石家庄市| 钟祥市| 剑阁县| 喀什市| 嘉祥县| 津市市| 北海市| 遂宁市| 马尔康县| 鄂托克前旗| 河源市| 汕头市| 思茅市| 呈贡县| 长寿区|