著:(荷蘭)阿揚·范提默倫 譯:沈鋒
近來,對不同國家的城市進行比較的學術(shù)研究一直以“西方”(the west)與“東方”(the east)之間,或更常用的發(fā)達國家(the global north)與發(fā)展中國家(the global south)之間的嚴格區(qū)分作為標志。這反映了一種根深蒂固的假設,即世界上發(fā)達程度不同的地區(qū)、城市之間的不可衡量性。如今,這些假設正面臨挑戰(zhàn),因為發(fā)展中國家與發(fā)達國家城市之間的比較通?;谇罢呦蚝笳邔W習政策或“經(jīng)驗教訓”[1-2]。比較應該基于平等的條件,即可以從各自的經(jīng)驗中學到的東西以及它們相互之間的“政策和技術(shù)流動性”[3]的潛力。在此背景下,筆者介紹了荷蘭一個蓬勃發(fā)展的新研究所的工作:AMS研究所(Amsterdam Based Institute for Advanced Metropolitan Solutions),希望能加強中荷合作、促進相互學習和積累項目經(jīng)驗。本研究的重點是為未來的城市尋找、開發(fā)和實現(xiàn)新的、更好的和更令人興奮的解決方案——基于出色的學術(shù)研究,以及創(chuàng)新型公司之間關(guān)于提出愿景、公共管理和項目實施方面的動態(tài)互動。
“智慧城市”的3個基本要素是:城市+人+技術(shù),每個要素都有自己的變化和發(fā)展步伐。對于城市本身而言,已建成的環(huán)境和基礎設施變化非常緩慢,而且經(jīng)常需要大量的投資,但是城市的遺產(chǎn)通常會賦予城市魅力和吸引力;信息技術(shù)發(fā)展得非常迅速,給社會帶來了重大變化;相比物質(zhì)環(huán)境(城市)的變化,人的行為模式能夠更快地進行適應和作出改變,但比信息技術(shù)的變化要更慢。然而,在所有情況下,人都應該成為主要的研究視角。
為了解決這些競爭因素,創(chuàng)新不能強加于城市,而需要在“生活實驗室”(living lab)中形成和測試,實驗室包括設計空間和試驗平臺,公民、學術(shù)界、政府、公民社會和企業(yè)家(“四螺旋”)可以在該平臺共同制定有針對性的技術(shù)解決方案與政策,使城市更適宜于生活。
AMS研究所是一個年輕的科學組織,借助將阿姆斯特丹市作為生活實驗室進行一系列的前沿研究,它致力于與公共和私人合作伙伴一起應對當今和未來的都市挑戰(zhàn)(圖1)。在AMS研究所,大都市問題的解決方案是對城市在可持續(xù)性和生活質(zhì)量方面的挑戰(zhàn)進行回應,這些挑戰(zhàn)包括能源、資源和糧食安全、機動性和物流、水和廢物管理以及其對健康和福祉的影響。除了研究項目外,AMS研究所還通過慕課(MOOC)和相應的理學碩士項目(Master of Science, MSc)、都市分析和設計工程(Metropolitan Analysis and Design Engineering, MADE),為全球優(yōu)秀的學生提供新開發(fā)的方法和工具。AMS研究所的總體目標是應對與城市化進程和變革領域相關(guān)的都市挑戰(zhàn),例如氣候變化。AMS研究所的活動也關(guān)注具有挑戰(zhàn)性的國際問題,并力求將解決方案應用在那些面臨著更嚴峻挑戰(zhàn)的都市圈。
在獲得阿姆斯特丹市的國際招標后,AMS研究所由代爾夫特理工大學(TUD)、瓦赫寧根大學(WUR)和波士頓麻省理工學院(MIT)于2014年成立。此次招標的背景是阿姆斯特丹市意在將更多技術(shù)引入阿姆斯特丹都會區(qū)(Amsterdam Metropolitan Area, AMA)的生態(tài)系統(tǒng),應對科學中新的“機遇窗口”,從而創(chuàng)造各種價值和商機(圖2)。為此,這座城市及其周邊地區(qū)被作為“生活實驗室”:用于實驗的寶貴的城市文脈,將有助于開發(fā)先進的解決方案,應對全球日益增多的城市化大都市地區(qū)。
為此,AMS研究所作為一個網(wǎng)絡組織,計劃與本地和國際合作伙伴(私人和公共),以及最重要的,與公民和用戶建立平臺。AMS研究所匯集了該領域最聰明的人才,為都市解決方案創(chuàng)造了新方法,并在試點項目和實驗中進行了測試和演示,以求能對開展這些實驗的城市的市民生活帶來積極影響(圖3)。
AMS研究所的項目和研究的一般方法是基于:1)科學的嚴謹和基礎性的“再思考”;2)在大都市范圍內(nèi),為人、基礎設施和建筑物進行技術(shù)和接口的開發(fā)、設計、實施以及評估;3)與社會資本和社會學習相關(guān)的參與性開發(fā)和使用策略;4)基于形成AMS研究所DNA的四螺旋方法,采用多學科和跨部門的方法(多重領域和多重參與者的過程);5)協(xié)同進化(既包含個體行為者所處的層次,又包含體制參與者);6)無標度思維,借助基于基礎研究的解決方案,通過生活實驗室的工作方式進行應用和測試;7)城市肌理,基于建筑物、基礎設施與動態(tài)城市系統(tǒng)中的使用者之間的互惠性;8)方法的完整性。
研究工作的多學科性質(zhì)使得在AMS研究所的發(fā)起大學(代爾夫特理工大學、瓦赫寧根大學以及波士頓麻省理工學院)的基礎研究與整個社會的實施之間增加一個步驟是很重要的,無論這些基礎研究是基于理論、實驗室還是模型(圖4)。為了解釋這一點,我們提出了“三級跳”(“單足跳—跨步跳—跳躍”)的類比:基于已有的社會挑戰(zhàn),進行問題分析并提出研究問題,重點關(guān)注大都市環(huán)境以及關(guān)鍵利益相關(guān)者?!叭壧惐取敝小皢巫闾钡钠瘘c:基礎科學,包括在設置約束條件的環(huán)境下進行的模型和實驗室研究。這些研究仍將主要在3所發(fā)起大學進行,以確保創(chuàng)建尖端科學,引領能夠?qū)崿F(xiàn)真正范式轉(zhuǎn)變的解決方案。接下來,作為創(chuàng)新和新引入的類似于“三級跳”之間的“跨步跳”,研究活動的第一階段(“單足跳”)的結(jié)果將在阿姆斯特丹都會區(qū)(AMA)內(nèi)部的特定居住環(huán)境(設置部分約束條件)中被實施和驗證,同時涉及所有(公共和私人)關(guān)鍵利益相關(guān)者。在合作創(chuàng)新的包容環(huán)境中,這一獨特的“跨步跳”構(gòu)成了現(xiàn)實生活研究與其多重利益相關(guān)者之間重要的“中間步驟”。因此,它將有助于實現(xiàn)有活力的生活環(huán)境:更加宜居、可持續(xù)、有韌性和公正,并能夠擴大自身規(guī)模。這個步驟構(gòu)成了解決方案的基礎,使解決方案可以更好地適應現(xiàn)實生活和城市環(huán)境的所謂“雙重復雜性”,從而最終在全社會范圍內(nèi)實現(xiàn)更快的實施(“跳躍”):在這個日益城市化和充滿挑戰(zhàn)的世界中,實現(xiàn)更快的科學成果轉(zhuǎn)化,最重要的是,以更大的影響力,更快、更安全和更成功地過渡到更可持續(xù)、更公正和更有韌性的未來。
正因如此,生活實驗室的方法引入了一個重要的中間步驟,來獲得更大影響、更快,以及最重要的,在社會范圍內(nèi)更好的實施。AMS研究所的關(guān)注點直接解決了這一問題,方法是基于對城市主義的系統(tǒng)思考,這些系統(tǒng)思考被歸納為過去20年演變成的城市復雜性理論(Complexity Theories of Cities, CTC)。CTC假 設城市是由多個相互連接的子系統(tǒng)組成的多層系統(tǒng),包括建筑物、街區(qū)、河流和交通網(wǎng)絡、社會結(jié)構(gòu)。由于所涉及子系統(tǒng)的多重性、幾個動態(tài)主體之間的相互作用及其嵌套性,作為復雜系統(tǒng)的城市邊界是模糊的。此外,城市是由“相互作用的成分”所組成,這些成分“可能隨著時間的推移以不可預測的方式改變其作用”:這個生態(tài)系統(tǒng)包含協(xié)同進化的物種和系統(tǒng),并遵循獨特的進化軌跡。 AMS研究所基于CTC的方法除了將城市評價為陌生的“復雜系統(tǒng)”之外,還認識到其復雜性帶來的好處:首先,復雜的城市系統(tǒng)會產(chǎn)生感知上的豐富性并提供更多的功能;其次,在復雜的環(huán)境里,城市中的系統(tǒng)會產(chǎn)生協(xié)同作用,從而創(chuàng)造出附加價值,其價值要大于各個部分的總和。
在各種城市挑戰(zhàn)和系統(tǒng)思考的背景下,通??梢杂贸鞘行玛惔x的概念來考慮大都市地區(qū)的運轉(zhuǎn)。城市新陳代謝是指一個用于對復雜城市系統(tǒng)的物質(zhì)和能量流進行建模的框架,就好像城市是一個生態(tài)系統(tǒng)。AMS研究所引入了這種城市新陳代謝方法中整合技術(shù)和社會視角的基本組成部分,因為它將這種整合視為“發(fā)生在城市中的技術(shù)和社會經(jīng)濟過程的總和,促進了城市的增長、(可再生)能源的生產(chǎn),并消除浪費,以提高公平性、可持續(xù)性和宜居性”(圖5)。
氣候變化、生物多樣性喪失、資源稀缺以及與宜居性相關(guān)的挑戰(zhàn),反復陳述這些令人擔憂的現(xiàn)實似乎有些陳詞濫調(diào),即便是對具備新聞素養(yǎng)的人也是如此,但其警示性怎么強調(diào)都不為過。當前,我們面臨著一系列日益棘手的全球危機。眾所周知,這些危機嚴重威脅著我們的文明和特定的方面,如過度城市化、人口增長、陸地或水生生態(tài)系統(tǒng)的退化、氣候變化的多種后果(城市熱島、干旱、降水模式、洪水等)、資源稀缺(能源、水、材料、食物和清潔的土壤)、地下水枯竭、城市、農(nóng)業(yè)和工業(yè)對合理清潔水的更高需求、向可再生能源轉(zhuǎn)變以及全球向水、能源和資源密集型生活方式和飲食的轉(zhuǎn)變。如今的人類對地球的生物、地質(zhì)和水文過程都產(chǎn)生了巨大的影響,以至于當前的地質(zhì)時代被稱為人類世。在過去的30年中,每隔5年,聯(lián)合國政府間氣候變化專門委員會(Intergovernmental Panel on Climate Change, IPCC)的報告在確定誰是罪魁禍首(人類)時變得更加一致,對未來的預測(危機)更加清醒,對我們應該何時解決這個問題(現(xiàn)在)更加明確。
AMS研究所負責以一種方法論和創(chuàng)新的方式解決這一問題。但是,面對這些相互交織的危機,調(diào)整城市社區(qū)將是這個時代最大的挑戰(zhàn)。為此,對于能源、食品、廢物和交通這些方面的基本流程和基礎設施,城市必須確保其安全和“綠色化”。但最重要的是,需要幫助改變公民的行為模式和參與方式,從而使他們成為這些解決方案不可或缺的支持部分(圖6)。
當前,這些問題的答案很有限,并且目前影響大都市解決方案的框架不能始終確保問責制。隨著這些系統(tǒng)的普遍性、復雜性和規(guī)模的增長,缺乏經(jīng)過驗證、可靠且因而能夠迅速實施的解決方案是一個日益緊迫的問題,有意義的(集成的)解決方案必須包括盡責、負責和正當程序的基本保障。一些人(例如“智慧城市”的擁護者)認為,人類唯一的出路是加快工業(yè)化進程,并像從前那樣創(chuàng)新以擺脫稀缺性。其他人則聲稱,為了拯救地球,工業(yè)文明必須被制止,這就像在比賽中跳出超速賽車一樣荒謬。不管堅持哪種意識形態(tài),事實是,確保我們的物種和地球生存的任何途徑都意味著人類圈必須經(jīng)歷徹底和大規(guī)模轉(zhuǎn)變——也許這種轉(zhuǎn)變比從農(nóng)業(yè)人(類)到工業(yè)人(類)的轉(zhuǎn)變還要劇烈。最重要的是要意識到?jīng)]有什么是一夜之間發(fā)生的。使用智能傳感器對城市進行改造、安裝新的能源系統(tǒng)和碳固存技術(shù)、測試可以挽救數(shù)百萬生命的轉(zhuǎn)基因作物新品系,這些都需要時間和資金。這也意味著我們需要以不同的方式來組織和規(guī)劃城市??缭綄I(yè)領域的邊界,同時也跨越物理甚至法律邊界,以實現(xiàn)系統(tǒng)性變革(圖7)。
如今,城市已成為現(xiàn)代性的舞臺。大數(shù)據(jù)革命,個人賦權(quán)以及自組織的社區(qū)和技術(shù),這些變革將培育未來的城市環(huán)境。與地理相關(guān)的數(shù)據(jù)成為重要的信息,因為這些數(shù)據(jù)的反饋回路(feedback-loops)為市政當局提供了更多選擇,以使決策更快、更有效。正如全世界對美國國家安全局(National Security Agency, NSA)竊聽丑聞的強烈擔憂所表明的那樣,大數(shù)據(jù)不應該與侵犯個人隱私有關(guān),而應在公民與政府之間建立有用的聯(lián)系,從而促進賦權(quán)和場所營造??偠灾髷?shù)據(jù)的新興趨勢,個人、基礎設施和自然界產(chǎn)生的數(shù)據(jù)點軌跡有望從根本上改變我們的城市(圖8)。
然而,重要的是要認識到,盡管大數(shù)據(jù)可以更好地識別離群值和處理數(shù)據(jù)分層,信息泛濫引發(fā)了有關(guān)數(shù)據(jù)質(zhì)量以及誰擁有訪問權(quán)限的問題。大數(shù)據(jù)不僅將使建筑物和城市區(qū)域變得更智能,而且作為次級效應,建筑物或社區(qū)將成為能源市場等領域的積極參與者。有些建筑物或社區(qū)已經(jīng)參與了需求響應計劃(Demand-Response Programs),該計劃重視“負電量”(即用戶向電網(wǎng)供電)。隨著法規(guī)政策的變化,更多的建筑所有者將發(fā)現(xiàn)以自己的條件——小規(guī)模,“產(chǎn)消合一者”(prosumer),即所謂的“千瓦”(kilowatt)——參與能源市場在財務上是可行的,使得他們能夠向電網(wǎng)傳輸電力或?qū)⑵浯鎯υ诒镜?。由于建筑物或區(qū)域在能源市場中充當“產(chǎn)消合一者”,因此產(chǎn)生的能源是否來源于可再生方式變得不再明顯,并且無論產(chǎn)生的能源是否可持續(xù),它們都可能破壞現(xiàn)有的商業(yè)模式和已有的系統(tǒng),這些系統(tǒng)被設計來應對單方向的電流傳輸——來自集中式的電源。零能耗建筑和城市區(qū)域等雄心勃勃的目標將改變城市中實體結(jié)構(gòu)的關(guān)系,進而改變使用者(全時或非全時)與建筑物、城市以及彼此之間的關(guān)系(圖9)。它可以充當促進者,降低參與的障礙,并增加交換的速度和頻率,這個特征可以帶來積極或消極的結(jié)果。 AMS研究所的“空間能源”(Spacergy)、“智慧電網(wǎng)”(DC Smart Grids)和“URSUS+”等項目是此類研究的先行者(圖10)。這些原則也適用于其他由于城市環(huán)境和生活中的信息通信技術(shù)(Information and Communication Technologies, ICT)的集成而受到智能化影響的方面。
今天,我們充分意識到,現(xiàn)狀是無法維持的。我們擁有的技術(shù)能力可以滿足所有人的基本需求,但是我們的技術(shù)和經(jīng)濟體系被架構(gòu)成規(guī)避風險和實現(xiàn)利潤最大化的模式。我們必須認識到,僅憑技術(shù)并不能拯救我們。如果我們的生活方式以及社會和政治制度沒有做出重大的改變,激進的技術(shù)創(chuàng)新將陷入困境。
真正的社會變革只有在我們意識到創(chuàng)新不只是簡單地改變新陳代謝的機制,或重新布置城市的組成部分(建筑物、基礎設施及其管理方式),或者認為已經(jīng)擁有所有的“拼圖塊”時發(fā)生。我們需要實現(xiàn)并支持智慧公民和用戶的增長[4]。我們應該學習擁抱城市(或社會總體)的風險與復雜性,不論是其最低微的部分還是最光輝的部分,而不是通過簡化復雜性和使用截斷算法來最大限度地降低風險和維持現(xiàn)狀。我們對我們的星球和宇宙有很多了解,但是無論我們的計算機多么先進,我們都無法創(chuàng)建真正反映現(xiàn)實的模型。設計先進的技術(shù)和基礎設施來支持城市生活是遠遠不夠的。我們需要同樣精巧且令人信服的故事,以使思想從犬儒主義和虛無主義中解放出來(這兩種主義普遍存在于當今文化中,并改變了我們對彼此之間以及與地球的關(guān)系的思考方式),朝著更美好的未來前進,在這個未來中,技術(shù)創(chuàng)新能夠滿足人和自然需要,與倫理和理性相調(diào)和,而不是相反。
(未來)城市的專業(yè)人員通過應用ICT,能夠借助算法軟件來分析“大”數(shù)據(jù),這些數(shù)據(jù)來源于整個城市環(huán)境中部署的傳感器,這個過程構(gòu)成了經(jīng)常被稱為“智慧城市”都市構(gòu)想的一部分。面對當今的多重危機,“智慧城市”的構(gòu)想時常被認為是使城市更具響應力、更敏捷和更有韌性的下一個關(guān)鍵城市基礎設施范式。AMS研究所也致力于實現(xiàn)這一目標,然而,它從一開始就采用了一種創(chuàng)新的方式,來應對對全球現(xiàn)行的“智慧城市”措施的普遍批評。據(jù)稱,這些措施通過強調(diào)專有軟件來遏制創(chuàng)新,這種軟件通常具有非民主和壟斷性質(zhì),以市場為主導,而不是以公民為中心,通過追蹤來削弱個人的自主性。與此相反,對于AMS研究所而言,一個城市如果要變得智慧,只有能夠集成和分類從每種類型的傳感器收集的數(shù)據(jù),并使公民和企業(yè)能夠應用新的ICT技術(shù)來節(jié)省時間,提升個人流動性,促進信息和服務的可達性,節(jié)省能源和資源,幫助他們適應變化以及參與城市營造(和決策)的過程。只有這樣,才能提高大都市區(qū)和其市民與使用者的持久效率、公平性、可持續(xù)性以及生活質(zhì)量(圖11)。
一般而言,大都市解決方案和生活實驗室中與城市新陳代謝相關(guān)的所有主題均與城市的各種流動相關(guān),并且需要數(shù)據(jù)(包括大數(shù)據(jù))分析。在這種背景下,AMS研究所的價值平臺不僅是數(shù)字城市網(wǎng)絡生成數(shù)據(jù)的中立主機,這個主機使這些數(shù)據(jù)的處理以及它們的交換成為可能;而且是一處集市,創(chuàng)造交叉點或幣值。為此,AMS研究所的關(guān)鍵工作是創(chuàng)建支持合理使用和公民共同增長的社會、政治和經(jīng)濟基礎設施。因此,公正和可持續(xù)的轉(zhuǎn)型應理解為既包括分配要素,即與投資預期的和已實現(xiàn)的社會、經(jīng)濟和環(huán)境成果的分配有關(guān)的要素;又包括程序性要素,即由誰參與創(chuàng)造(決策)都市環(huán)境相關(guān)的要素。
這種基于共生和互惠的替代途徑,可以看作是一種以生物為導向,以資源為基礎的社會。在ICT的幫助下,這樣的社會能夠振興并賦權(quán)地方經(jīng)濟,鼓勵城市新陳代謝的多中心發(fā)展,并維護城市、環(huán)都市和農(nóng)村腹地的尊嚴——這三者之間的相互關(guān)系定義了如今的文明。我們必須樹立一種新的精神:重視社區(qū)、自組織以及個人及其社區(qū)的賦權(quán),無論是在本地還是全球范圍內(nèi)。定義了現(xiàn)代社會的城市集群必須超越僅基于技術(shù)、運輸和貿(mào)易的連通性,而轉(zhuǎn)向其周邊腹地、農(nóng)村社區(qū)和自然環(huán)境的界限,以促進動態(tài)的平衡。
隨著城市復雜性的增長和基礎設施的愈發(fā)網(wǎng)絡化,它們不可避免地越來越成為城市居民日常生活的組成部分,最重要的是,面對顛覆性的系統(tǒng)性變革,它們十分脆弱。因此,其形式和服務的規(guī)劃必須適應當前和未來城市居民的需求以及環(huán)境基準條件的預期變化。在城市化和智慧城市中應用的系統(tǒng)思維是“城市復雜性理論”[5]和“城市新科學”[6]的重要分支。系統(tǒng)思維的方法不再將復雜性問題呈現(xiàn)為效率問題或最明顯的因果關(guān)系,并將其重構(gòu)為關(guān)系、結(jié)構(gòu)、元過程甚至人文關(guān)懷的語言。
盡管系統(tǒng)思維有助于理解復雜(城市)系統(tǒng)的形式結(jié)構(gòu)特征,但它本身很少考慮網(wǎng)絡化對環(huán)境的影響以及數(shù)據(jù)驅(qū)動變革的角色和使用。作為結(jié)果,有人可能會辯稱,建成環(huán)境與自然是截然相反的實體這一主流觀點極大地增加了城市環(huán)境在面對不可預知的沖擊時的脆弱性[7]。然而,挑戰(zhàn)并不是停止顛覆性變革(這一任務已被反復證明是不可能的),而是要在發(fā)生變化時對其進行理解,最終以處于動態(tài)平衡的“城市—自然”系統(tǒng)的結(jié)合來提高城市環(huán)境適應和吸收破壞的能力[4]。這表明,隨著城市環(huán)境的復雜性不斷增長,行動驅(qū)動型戰(zhàn)略的有效性似乎不斷下降(圖12)。
應對這些挑戰(zhàn),有3種替代方法:1)不作為策略;2)減法策略;3)刺激效應策略,即讓主體(城市、鄰里、社區(qū)等)承受較小、可控制且連續(xù)的壓力,目的是強化它,以防將來可能會面臨的相同類型的大沖擊。如果不作為策略或減法策略導致了匱乏,則最后一個策略可以根植于前兩個策略,比如,可以有意識地使生活水平的舒適度,相對地低于正常水平[7]。尤其是結(jié)合了刺激效應的減法策略,引起了廣泛的興趣,因為它建立在系統(tǒng)性學習的基礎上,并且有機會引入基于組合技術(shù)和基于自然措施(nature-based solutions, NBS)的方法。其中更深層的原理是在城市環(huán)境中應用此類策略將提高“社會—生態(tài)”的韌性。這“需要理解包含本地用戶知識的生態(tài)系統(tǒng)”[8],還要理解社會過程如何通過有計劃和有針對性的不作為來最大限度地減少其影響,最終目標是提高城市環(huán)境應對顛覆性變革的能力。社會過程需要擁抱變化,并讓生態(tài)過程來幫助應對變化[7]。社會、城市和AMS研究所研究的解決方案所面臨的主要挑戰(zhàn)是如何在(環(huán)境)技術(shù)、用戶(市民)參與和自然(生態(tài)過程)之間找到平衡。
城市基礎設施不僅構(gòu)成城市的物質(zhì)結(jié)構(gòu),還具有城市和都市的永久性功能,但就目前的形式而言,它既不靈敏也不適合于空間、社會、技術(shù)、政治和生態(tài)變化的新視角。關(guān)于網(wǎng)絡的新科學被稱為復雜性理論。過去20年的發(fā)展中,復雜的系統(tǒng)被描繪為相互連接的節(jié)點。對復雜網(wǎng)絡的大多數(shù)研究都傾向于關(guān)注其節(jié)點不是動態(tài)代理的網(wǎng)絡。相對而言,人類網(wǎng)絡的節(jié)點(例如城市)是動態(tài)的認知主體,每個主體都是嵌套的復雜系統(tǒng)。人類活動和城市網(wǎng)絡是代理之間多次互動的結(jié)果,至少在理論上,它們“在全局上思考并在局部上采取行動”。通過這種方式,代理的局部活動和互動導致了多個城市社會網(wǎng)絡和實體城市網(wǎng)絡之間的相互依存關(guān)系,反過來又影響了代理在循環(huán)因果關(guān)系中的認知、行為、運動和行動。
由于氣候變化、城市擴張導致的天氣擾動增加,我們對能源、水和物質(zhì)資源的需求不斷增加,對地球正在進入稀缺期的預測。在這些因素下,應對顛覆性變革、脆弱性、復雜性和依賴性對規(guī)劃未來城市的發(fā)展至關(guān)重要[7]。19—20世紀,人口的大量增長和城市化速度的提高導致當今城市環(huán)境遇到的生態(tài)、經(jīng)濟和社會沖擊的頻率和規(guī)模不斷增加。即使到今天,這些沖擊所帶來的后果的程度也難以確定。生活中主要的壓力和焦慮的來源,是不可控制和不可預測的[9](圖13)。
可以肯定的是,盡管許多城市的基礎設施似乎表面上可以通過技術(shù)進行管理,但我們面臨的最重要的城市問題實際上是社會和經(jīng)濟問題,也稱為“棘手問題”。棘手的問題是那些無法由中央計劃委員會(board of central planners)或自上而下的控制機制解決的情形[10]。AMS研究所的大多數(shù)項目中所包含的新通信技術(shù)在改善城市環(huán)境的可持續(xù)性和整體質(zhì)量方面的主要優(yōu)勢在于,能夠使人們與其他技術(shù)一同協(xié)作,這些技術(shù)可以提高舒適度、效率、響應能力、靈活性并減少開支。如果以正確的方式建立起來,信息通信技術(shù)將為具有相似目標和抱負(例如韌性、宜居性和可持續(xù)性)的機構(gòu)、公司、社區(qū)和個人提供分享思想、進行對話和組織的相應途徑。重要的是,任何新的制度安排都應與所有參與方(特別是公民)密切同步[11]。如果這些系統(tǒng)不具有包容性,人們可能會開始覺得采取行動或采用建議或?qū)嵤┑慕鉀Q方案是徒勞的。沒有包容性,當今以技術(shù)為主導的文化將縮小留給人類影響自己的生活條件的范圍。在這種前景下,需要采取新的體制來應對信息通信技術(shù)的使用以及與物質(zhì)環(huán)境相關(guān)的問題。實際上,新的體制更加強調(diào)采用另一種方法來組織基礎設施和建筑。應對大都市挑戰(zhàn)和通常相關(guān)的基礎設施投資的解決方案是那些能夠反映、重現(xiàn)和改變城市空間中社會、經(jīng)濟和環(huán)境關(guān)系的變革推動者。
技術(shù)進步可能并不是我們僅有的優(yōu)點。在大都市的社會背景中提高技術(shù)效率和功效的不太理智的驅(qū)動可能會使一些考慮變得模棱兩可,比如歷史位次以及古典和古代社會用來應對不斷變化的環(huán)境條件的實用知識和技術(shù)。AMS研究所的方法與它的西方社會背景相關(guān),也與它通常在生活實驗室環(huán)境中進行的一些研究項目相關(guān)。它旨在呼吁互惠互利的中荷對等學習合作,這種合作著重于2個古老的社會和文化,同時學習彼此的方法和都市解決方案,且最好在類似的基于四螺旋的背景下。這種對等的學習以及共同尋找解決方案和相關(guān)的系統(tǒng)變化的前景既迫切又充滿希望。實現(xiàn)過渡到維持某種正常狀態(tài)的“后稀缺”(post-scarcity)社會這個任務需要一種跨學科的方法,并且需要將我們最優(yōu)秀的工程師、物理學家、醫(yī)生、設計師、社區(qū)組織者、藝術(shù)家、農(nóng)民、教師,尤其是個人和社區(qū)都納入其中(圖14)。
圖片來源:
圖1、4、5、7、8、10由AMS研究所提供;圖2由creative commons pinterest提供;圖3由Leif Niemczik拍攝;圖6由AMS研究所和MIT共同提供;圖9由代爾夫特理工大學環(huán)境技術(shù)與設計部提供;圖11由Daniela Maiullari繪制;圖12由Waag Society提供;圖13由Ge Dubbelman拍攝;圖14由Dimitri Houtteman拍攝。
(編輯/王亞鶯)
Until recently, academic research that compared cities in different countries has been marked by a rigid divide between either“the west” and“the east”, or more frequently stated, “the global north” and“the global south”, reflecting embedded assumptions about the incommensurability of cities in more or less developed parts of the world. These assumptions are now being challenged because comparisons between cities of the south with those of the north are usually based on the transfer of policies or“l(fā)essons” from the latter to the former[1-2]. Comparisons should be based on equal terms with regard to what can be learned from the experience of each and the potential for“policy and technology mobility”[3]in any direction between them. In this context this article presents the work of a thriving new institute in The Netherlands: the AMS Institute(the Amsterdam based Institute for Advanced Metropolitan Solutions) in the hope it will enrich the Sino-Dutch collaboration, reciprocal learnings and projects. The focus of this article be on finding, developing and realising new, better and more exciting solutions for our future cities— based on excellent academic research and the dynamic interaction of vision, public administration and implementation by innovative companies.
The three basic ingredients for“smarter cities” are: city+ people+ technology, each with its own pace of change and development. The city itself, the built environment and infrastructure, changes very slowly and often with major investment costs. The heritage of cities however often provides the city’s charm and attractiveness. Information Technology develops very rapidly, thus causing major changes for society. People’s behavioral patterns adapt and change faster than the physical environment but slower than Information Technology. However, in all cases, people should be the leading perspective.
To resolve these competing ingredients, innovation cannot be imposed on cities but needs to be generated and tested within“l(fā)iving labs” — inclusive design spaces, test-beds where citizens, academia, government, civil society and entrepreneurs(a quadruple helix) can come together to co-create bespoke technological solutions and policy that can make the cities we love even better places to live.
AMS is a young scientific organization that addresses together with its public and private partners todays’ and future’s metropolitan challenges with cutting edge research using the city of Amsterdam as a Living Laboratory(Fig. 1). At AMS Institute, metropolitan solutions are responses to the urban challenges of sustainability and quality of life, including energy, resource and food security, mobility and logistics, water and waste management, and its effects on health and wellbeing. Besides of the research projects, at the AMS Institute’s newly developed methods and tools are taught to a rising amount of young excellent students at all levels of expertise around the world, through MOOCs, but also in a proper MSc“MADE” (Metropolitan Analysis and Design Engineering). As the general aim of the AMS Institute is to address metropolitan challenges related to processes of urbanization and(related) aspects of change, e.g. climate change, the activities of AMS Institute also have a challenging international outlook. To implement solutions in metropolitan areas elsewhere, where(similar) challenges are(even more) disruptive.
The AMS Institute was founded in 2014 by Delft University of Technology(TUD), Wageningen University(WUR) and Boston based Massachusetts Institute of Technology(MIT), after winning the international tender by the City of Amsterdam. Background of this tender was the aim of the City of Amsterdam to introduce more technology into the ecosystem of the Amsterdam Metropolitan Area(AMA), addressing new“windows of opportunities” in science and by doing so, creating all kinds of value and business opportunities(Fig. 2). To do so the city and its surroundings had been put forward as a“Living Laboratory”: a valuable context for experiments that would help develop advanced solutions for challenges in a rising amount of urbanized metropolitan areas around the globe.
In this, the AMS Institute intends to work as a networking organization, initiating platforms with local and international partners, private and public, and above all with citizens and users. AMS Institute brings the field’s brightest minds together to create innovations for metropolitan solutions, tested and demonstrated in pilot projects and experiments in and with the city that will have a positive impact on the life of citizens(Fig. 3).
The general approach to projects and research of AMS Institute is based on: 1) Scientific rigor and a fundamental“re-think”; 2) Development, design, implementation and assessment of technology and interfaces for people, infrastructures and buildings within the metropolitan context; 3) Participative development and use strategy connected to social capital and social learning; 4) Multi-disciplinary and cross-sectoral approach(multi domain and multi-actor processes), based on the quadruple helix approach that forms the DNA of the AMS Institute; 5) Co-evolutionary(both incorporating the niche level on which individual actors operate, as incorporating regime players); 6) Scalefree thinking, with fundamental research based solutions, applied and tested in-, and through a Living Lab way of working; 7) Urban fabric based on reciprocity of both buildings and infrastructures and use(rs) with(in) dynamic(urban) systems; 8) Integralness in approach.
The multidisciplinary nature of working makes that it is important to include a step in between fundamental, either theory based, laboratory based or modeling based research at our founding universities Delft University of Technology, Wageningen University and Research and MIT Boston, and society wide implementation(Fig. 4). To explain this, we bring up the analogy of the Triple-Jump(“Hop-Step-Jump”): Based on discerned societal challenges, focusing on metropolitan contexts, together with key-stakeholders, problem analyses are made and research questions formulated. This is the starting point for the“Hop” in this“Triple Jump analogy”: fundamental science, including modeling and laboratory research within conditioned environments, will still mostly take place at the three founding father universities, assuring creation of cutting-edge science leading to solutions which aim for true paradigm shifts. Next, as an innovative, newly introduced in-between“Step” in this analogy of Triple-Jump, outcomes of this first phase of the research activities(“Hop”) will be implemented and validated in dedicated living environments inside the AMA, within partially conditioned settings, while involving all(public and private) key stakeholders. This unique in-between“Step” forms the important“in between step” of reallife research with its multiple stakeholders, in a coinnovating inclusive setting. It thus will help achieve prosperous living environments: more liveable, sustainable, resilient and just, capable to be scaled up. It forms the basis of solutions which are better tuned to the so-called“double complexity” of real life and urban environments, and thus in the end faster society-wide implementation(“Jump”): faster science-to-implementation trajectories, and above all, with higher impact and faster, more secured and successful transitions to more sustainable, just and resilient futures in this increasingly urbanizing and challenged world.
In this, the Living Lab approach forms an important in between step to achieve more impact, and faster and above all better society wide implementation. AMS Institute’s focus addresses this directly, basing its approach on systems thinking to urbanism, codified as Complexity Theories of Cities(CTC), evolving in the last two decades. Complexity Theory of Cities assumes cities as multilevel systems of several interconnected subsystems, as buildings, blocks, networks of streams and transport, social structures. Because of the multiplicity of subsystems involved, the interactions among several dynamic agents and their nestedness, the boundaries of cities as complex systems are fuzzy. Furthermore, a city is composed of“interactive components that may change their roles over time in unpredictable ways”: ecosystems contain coevolving species and systems and follow unique evolution trajectories. Beside the assessment of cities as“complex systems” unfamiliarity, the AMS Institute’s CTC based approach recognizes benefits entailed in their complexity: firstly, a complex urban system produces perceptual richness and offers more functional capacity. Furthermore, in a complex environment, synergies arise, creating an added value, which is more than the sum of the parts.
Within this context of urban challenges and systems thinking, metropolitan regions are often considered from the concept of urban metabolism: a framework for modeling complex urban systems’ material and energy flows as if the city were an ecosystem. AMS Institute introduces the essential component of integration of both technical as well as social perspective within this urban metabolism approach, as it addresses it as“the sum total of the technical and socio-economical processes that occur in cities, resulting in growth, production of(renewable) energy, and elimination of waste, for the improvement of equity, sustainability and livability” (Fig. 5).
1 Our“Joint Challenges”
The alarming realties of climate change, biodiversity loss, resource scarcity and challenges related to livability might at this point seem quite banal to reiterate for even the somewhat news literate, but it cannot be stressed enough. Presently, we are facing a number of concurrent and increasingly intractable global crises that pose a serious threat to the named aspects and to civilization as we know it: hyper urbanization, population growth, the degradation or terrestrial and aquatic ecosystems, the multitudinous consequences of climate change(urban heat island, drought, precipitation patterns, flooding, etc.), resource scarcity(energy, water, materials, food and clean soil), groundwater depletion, the increased demands from cities, agriculture and industry for reasonably clean water, renewable energy(transition) and the global shift toward increasingly water, energy and resource intensive lifestyles and diets. Humanity now exerts such a tremendous influence on earth’s biological, geological and hydrological processes that the current geologic epoch is dubbed the Anthropocene. Every five years for the last three decades, IPCC reports(ao) have only become more universal in their certainty of who is the culprit(human beings), more lucid in their predictions of the future to come(dire) and more unequivocal of when we ought to deal the problem(now).
AMS Institute takes up the responsibility to address this in a methodological and innovative way. But still, adapting our urban communities in the face of these intertwined crises will be the greatest challenge of our time. To do this, cities must secure and“greenify” their essential flows and infrastructures for energy, food, waste and transportation. But foremost they need to help change citizens behavior and involvement, and thus make them an integral and supportive part of these solutions(Fig. 6).
Currently there are few answers to the questions, and the frameworks presently governing metropolitan solutions are not at all times capable of ensuring accountability. As the pervasiveness, complexity, and scale of these systems grow, the lack of meaningful(integrated) solutions, which are tested, accountable and thus able to be implemented rapidly— including basic safeguards of responsibility, liability, and due process— is an increasingly urgent concern. Some have argued(e.g proponents of“smart cities”) that the only way forward is to ramp up industrialization and innovate our way out of scarcity as we have done before. Others claim that in order to save the planet industrial civilization must be halted full stop— something as ludicrous as jumping out of speeding race car in the middle of a race. Whatever ideology you adhere to, the truth is that the any path that ensures the survival of both our species and the planet means that the anthroposphere must undergo radical and large-scale transformation— perhaps a transformation even more drastic than the shift from agrarian to industrial(hu)man. The key thing to realize is that nothing happens overnight. Retrofitting our cities with smart sensors, installing new energy systems and carbon sequestration technology, or testing new strains of genetically modified crops that can save millions of lives will take time and— most dauntingly— money, and a lot of it. But it will also imply that we need to organize and plan our cities in a different way. Crossing borders of specialisms, but also crossing physical and even legal borders towards systemic change(Fig. 7).
2 Reciprocities of Cities and Hinterlands as the Cradles of Smart Solutions
Nowadays, cities have become the stage of modernity. The revolutions of big data, empowerment of individuals and self-organized communities and technologies will foster the urban environments of the future. Data tied to geography becomes important information, as feedback-loops giving municipalities greater options for faster, more efficient decision making. As exemplified by the worldwide fervor over the NSA wire-tapping scandals, big data should not be about infringing on the privacy of individuals but creating useful connections between citizens and government that can potentially lead to empowerment and place making. In general, the emerging trends of big data, the trail of data points generated by individuals, infrastructure, and the natural world are what promises to fundamentally change our cities(Fig. 8). However, it is important to realize that while big data allows for better identification of outlier values and a finer stratification of data, the flood of information raises issues about the quality of the data and who has access to it. Big data will not only make buildings and urban areas smarter, but as a second order effect, buildings or communities will become active participants in for instance energy markets. Some are already participating in demand-response programs that put a value on“negawatts”. As regulatory policies change, more building owners will find it financially feasible to participate in energy markets on their own terms(smaller-, prosumer, so-called kilowatt), allowing them to upload electricity generated or store it onsite. As buildings or areas operate as“prosumers” in energy markets it is not that obvious that energy produced will be renewably sourced, and whether the energy produced is sustainable or not, they can disrupt existing business models and the systems in place that are designed for electricity flow in one direction— from centralized sources. Ambitious goals such as zero net energy buildings and urban areas will change the relationships that physical structures have within cities, and in turn change the relationships that occupants(full or part-time) have with buildings, cities and one another(Fig. 9). It may act as a facilitator, lowering barriers to participation, and increasing the speed and frequency of exchange, a characteristic that could lead to positive or negative outcomes. AMS Institute’s projects like“Spacergy”, “DC Smart Grids” and“URSUS+” are pioneering examples of research related to this(Fig. 10). The same will hold for several other aspects which will be influenced by smartness due to ICT integration in urban environments and life.
3 From Smart Cities Towards Intelligent Citizens
Today, we are completely aware that the status quo is untenable and have the technological capacity meet the basic needs of all human beings, yet our technological and economic systems are geared toward risk aversion and profit maximization. We must recognize that technology alone will not save us. Radical technological innovation without equally radical changes to our lifestyles and social and political institutions would render the former moot.
True societal transformation can only occur once we realize that innovation is not a matter of simply changing the metabolism, rearranging the components(buildings, infrastructures and the way they are managed) of a city, or thinking that we already have all the puzzle pieces on the table. We need to achieve and support the growth of intelligent citizens and users[4]. Instead of simplifying complexity and using algorithmic truncation to minimize risk and maintain the status quo, we must learn embrace risk and complexity of cities, or our societies in general, in all its obscurity and splendor. We understand a great deal about our planet and our universe, but no matter how advanced our computers get, we could never create a model that truly mirrors reality. Designing advanced technologies and infrastructures to support urban life is not enough. We need equally sophisticated and cogent narratives that immunize the mind from the cynicism and nihilism that is pervasive in today’s culture and changes the way we think about our relationship with one another other and the planet itself— towards possible futures where technological innovation, tempered by ethics and reason, meets the needs of both man and nature and not the other way around.
The use of ICTs to guide(future) urban professionals via the use of algorithmic software to analyse“big” data obtained from sensors deployed throughout the urban environment is often made part of the so-called“Smart City” urban imaginary, which is frequently considered as the next key urban infrastructure paradigm to make our cities more responsive, agile and resilient in the face of the concurrent crises we now face. AMS Institute aims to achieve this too, however, does so by applying from the very beginning an innovative response to general criticism to actual“Smart Cities” approaches around the globe; which are stated to be stifling innovation by emphasizing proprietary software, being too often non-democratic and monopolistic in character, market-led instead of citizen focused and reducing individual autonomy through indiscriminate tracking. Opposed to this, for AMS Institute a city can be smart only if it is able to integrate and sort data gathered from each type of sensor, while it enables citizens and enterprises to apply new ICTs to economise time, improve individual mobility, facilitate access to information and services, save energy and resources, assists them to adapt to change, and foremost to participate in urban(decision-)making processes. Only then, it will help to increase enduring efficiency, equity, sustainability and quality of life of metropolitan areas, its citizens and users(Fig. 11).
In principle, all themes in metropolitan solutions and Living Labs related to the metabolism of cities relate to urban flows and require data(including big data) analytics. The AMS Institute’s value platform in this context, is a neutral host for data generated by digital urban networks, enabling the handling of these data as well as their exchange and a possible marketplace to create cross overs or coin values. Key for AMS Institute in this, is the creation of social, political and economic infrastructures that support the growth of intelligent use and citizens. Just and sustainable transformations are therefore understood to include both distributive components, relating to the investment’s anticipated and realised distribution of social, economic and environmental outcomes, and procedural elements relating to who is involved in the(decision) making of metropolitan environments.
This alternative path, based on symbiosis and reciprocity, can be seen as a biologically oriented, resource-based society that, with help of ICT, revitalizes and empowers local economies, encourages polycentric development of urban metabolisms and vindicates the sanctity of city, peri-urban and rural hinterland, whose reciprocal relationship has defined our civilization thus far. We must foster a new ethos that values community, self-organization and the empowerment of the individual and their communities at a both local and global scales. The menagerie of polies(cities) that define modern society must look beyond connectivity based solely on technology, transportation and trade toward their surrounding hinterlands, their rural communities and the bounds of the natural environment, promoting a dynamic equilibrium.
4 Intelligent Citizens as a Key-Condition to(Urban) Resilience
As cities grow in complexity and infrastructures become more networked they invariably become increasingly integral to the functioning of daily life of city dwellers and, most importantly, fragile to disruptive systemic changes. Therefore, the planning of their forms and services must adapt to the needs of present and future urban dwellers as well as predicted shifts in environmental baseline conditions. Systems thinking as it is applied in urbanism and smart cities is considerable branch of what has been called the“Complexity Theories of Cities”[5]and the“new science of cities”[6]. The systems thinking approach presents problems of complexity as more than issues of efficiency or their most obvious causes and effects and reframes it into the language of relations, structures, meta processes, and even humanistic concerns.
While thinking in systems is useful in understanding the formal structural characteristics of complex(urban) systems, by itself it holds little regard for the environmental implications of networks and the role and use of data driven change. As a consequence, it may be argued that the predominant view that the built environment and nature are diametrically opposed entities drastically increases the vulnerability of urban environments in face of unforeseen shocks[7]. The challenge, however, is not in stopping disruptive change— a task that has repeatedly proven to be impossible— but in understanding them as they occur and, ultimately, improving the capacity of urban environments to adapt and assimilate disruptions as a combined urban-natural system in dynamic equilibrium[4]. It addresses the fact that while the complexity of urban environments is growing, at the same time the effectiveness of action-driven strategies appears to be decreasing(Fig. 12).
There are three alternative approaches which can be determined in response to this: 1) strategies of inaction; 2) strategies of subtraction; 3) strategies of hormesis, that keep their subject(cities, neighborhoods, communities, etc.) under a small, controlled and continuous dosage of stress, with the purpose of strengthening it for the eventuality of a possible future large shock of the same kind. The last strategy may be rooted in the first two if inaction or subtraction causes deprivation, especially when, say, consciously inducing lower-than-usual levels in relative comfort of living[7]. In particular the latter, that of hormesis is of interest, as it builds upon systems-learning and opportunities to include a combined technology based and nature-based solutions(NBS) approach. Background idea is that applying such strategies in urban environments will improve socialecological resilience. This“requires understanding of ecosystems that incorporates the knowledge of local users”[8], but also the understanding of how social processes can minimize their impact through calculated and targeted inaction, with the ultimate goal of improving the capacity of our urban environments to face disruptive change. Social processes need to embrace change and let ecological processes help in responding to it[7]. Key challenge to our societies, cities and AMS Institute’s solutions investigated is how to find a balance between(environmental) technology, engagement of users(citizens) and nature(ecological processes).
Urban infrastructure constitutes the physical structure as well as the urban and metropolitan functions of greatest permanency in cities and yet, in its current form, it is neither sensitive nor suitable to new perspectives on spatial, social, technological, political, and ecological change. The new science of networks is called complexity theory. Evolving in the last two decades, it portrays complex systems in terms of connected nodes. Most studies of complex networks tend to focus on networks whose nodes are not dynamic agents. The nodes of human networks(e.g. cities), per contra, are dynamic cognitive agents, each of which are nested complex systems. Human activity and urban networks are the outcome of multiple interactions between agents that, at least in theory, “think globally and act locally”. In this way, the local activities and interaction of agents gives rise to the interdependencies between multiple social and physical urban networks that in turn affects the agents’ cognition, behavior, movement, and actions in circular causality.
5 Sino-Dutch Outlook of Peer-to-peer Learning on Metropolitan Solutions
Considering the increase in weather perturbations resulting from climate change, urban growth, our constantly increasing demand for energy, water, and material resources and predictions that the planet is entering a period of scarcity, responses to disruptive change, vulnerability, complexity and dependence are essential to planning future urban growth[7]. Massive population growth and increased rates of urbanization over the past two centuries have contributed to the increased frequency and magnitude of ecological, economic and social shocks encountered by today’s urban environments. The full extent of the consequences of these shocks is even today difficult to determine. The major stressors in life, especially in anxiogenic situations, are uncontrollability and unpredictability[9](Fig. 13).
To be sure, while many of infrastructural aspects of cities seem superficially manageable through technology, the most important urban problems facing are in fact social and economic, also known as“wicked problems”. Wicked problems are situations that cannot be solved by a board of central planners or top-down mechanisms of control[10]. The key benefit of new communication technologies as included in most of AMS Institute’s projects in improving the sustainability and overall quality of urban environments is their ability to allow people to be more social in tandem with other technologies that improve comfort, efficiency, responsiveness, flexibility and reduce costs. If set up in the right way, ICTs will give institutions, companies, communities, and individuals with similar goals and aspirations(e.g. resilience, livability and sustainability) the means of sharing ideas, having conversations and organizing accordingly. It is important that any new institutional arrangements should be made in close agreement with all actors— especially citizens— involved[11]. If such systems are not inclusive, people might start to feel that it is useless to take action or adopt solutions proposed or implemented. If not, the scope that is left for them to affect their own living conditions will be reduced by the dominant technology driven culture of today. Within such an outlook, new institutional arrangements are required to cope with the use of ICT and physical environment related problems. In fact, it puts a greater emphasis on another way of organizing infrastructure and architecture. Solutions for metropolitan challenges and often related infrastructure investments are agents of change that reflect, reproduce and alter social, economic and environmental relations in urban space.
Technological progress might not be our saving grace. The pathological drive to increase the efficiency and efficacy of technology in metropolitan societal contexts might obfuscate considerations of historical precedence, pragmatic knowledge and techniques used by classical and ancient societies to cope with shifts environmental conditions. Through this article the approach of AMS Institute has been explained and illustrated related to its Western societal context and several of its research projects, often in a setting of Living Labs. It aims to call for a reciprocal Sino-Dutch peer-to-peer learning collaboration, which emphasizes two ancient societies and cultures while learning from each other’s approaches and metropolitan solutions, preferably in similar quadruple-helix based settings. The outlook of such peer-to-peer learning and joint finding of solutions and related systemic change is both urgent and promising. The task of transitioning to a postscarcity society that maintains some semblance of normalcy will require an interdisciplinary approach that includes our finest engineers, physicists, doctors, designers, community organizers, artists, farmers, teachers and above all, individuals and communities(Fig. 14).
Sources of Figures:
Fig. 1, 4, 5, 7, 8, 10 ? AMS Institute; Fig. 2 ? creative commons pinterest; Fig. 3 ? Leif Niemczik; Fig. 6 ? AMS Institute and MIT; Fig. 9 ? TU Delft/ Environmental Technology& Design; Fig. 11 ? Daniela Maiullari; Fig. 12 ? Waag Society; Fig. 13 ? Ge Dubbelman; Fig. 14 ? Dimitri Houtteman.