胡再昌 陳嘯 侯團(tuán)結(jié) 馬樂 金俊俊 馬坤 李平松
[摘要]在創(chuàng)面愈合過程中總是伴隨著瘢痕的產(chǎn)生,除了影響外觀外,事實(shí)上有不少的瘢痕會(huì)有令人難受的瘙癢、疼痛及干裂,甚至產(chǎn)生瘢痕攣縮,影響五官或四肢關(guān)節(jié)的正常功能。目前,治療瘢痕的方法主要包括手術(shù)、藥物、激光等,但它們也有各自的局限性。PRP作為一種治療瘢痕的新方法,已經(jīng)在臨床上取得了顯著療效,本文就目前PRP對(duì)瘢痕調(diào)節(jié)的作用機(jī)制進(jìn)行綜述。
[關(guān)鍵詞]富血小板血漿;瘢痕;生長(zhǎng)因子;黑色素;透明質(zhì)酸
[中圖分類號(hào)]R619+.6 ? ?[文獻(xiàn)標(biāo)志碼]A ? ?[文章編號(hào)]1008-6455(2019)12-0173-05
Research Progress on the Mechanism of PRP in Scar Prevention and Treatment
HU Zai-chang1,CHEN Xiao2, HOU Tuan-jie2, MA Le2 ,JIN Jun-jun1,MA Kun1,LI Ping-song2
(1. Clinical Medical College Yangzhou University,Yangzhou 225000, Jiangsu,China; 2.Department of Burn and Plastic Surgery,Northern Jiangsu Peoples Hospital,Yangzhou 225000,Jiangsu,China)
Abstract: In the wound healing process, there is always a scar. In addition to the appearance, there are actually many scars that can cause uncomfortable itching, pain and chapped, and even scar contracture affects the normal function of the facial or limb joints. At present,the methods for treating scars mainly include surgery, drugs, lasers, etc. But they also have their own limitations. As a new method for treating scars, PRP has achieved positive clinical effects. This article reviews the current mechanism of PRP on the regulation of scar.
Key words: platelet rich plasma; scars; growth factors; melanin; hyaluronic acid
瘢痕是創(chuàng)面愈合的產(chǎn)物。各種組織受到較為嚴(yán)重的損傷均可能形成瘢痕,瘢痕是機(jī)體組織損傷修復(fù)的必然結(jié)果。在發(fā)達(dá)國(guó)家,每年有超過1億人形成瘢痕,其中30%由于傷口愈合異常而變成增生性瘢痕或瘢痕疙瘩[1]。瘢痕患者不僅影響美觀,還會(huì)給患者帶來社會(huì)和心理障礙,有的影響機(jī)體功能還可能降低其生活質(zhì)量。增生性瘢痕是人類獨(dú)有的,它們一般不會(huì)出現(xiàn)在其他動(dòng)物身上[2],它是一種纖維增生性疾病,其特征為凸起、紅色、結(jié)節(jié),無彈性,與正常瘢痕相比,經(jīng)歷緩慢和不完全消退[3]。
1 ?PRP簡(jiǎn)介
富血小板血漿(platelet rich plasma,PRP)是一種個(gè)性化的治療方法,包括離心患者的血液并去除某些成分,以濃縮血小板的數(shù)量[4]。在大多數(shù)情況下,PRP被激活從血小板的膜內(nèi)顆粒中釋放生長(zhǎng)因子,然后可用于各種治療目的[4]。血小板活化發(fā)生在細(xì)胞內(nèi)顆粒融合到血小板膜上,所含生長(zhǎng)因子經(jīng)過最后的修飾進(jìn)入活躍狀態(tài)并被釋放[5]。在生理?xiàng)l件下,這些顆粒的含量在傷口愈合和止血中起中介作用。血小板同時(shí)含有α和致密顆粒,α顆粒儲(chǔ)存生長(zhǎng)因子,如:血小板源生長(zhǎng)因子(PDGF)、轉(zhuǎn)化生長(zhǎng)因子β(TGF-β)和TGF-β家族的其他成員等,致密顆粒含有生物活性分子,如:血清素、組胺、腺苷等,可調(diào)節(jié)細(xì)胞膜通透性和局部炎癥[6]。
PRP療法目前用于許多皮膚病學(xué)和非皮膚病學(xué)治療,與其他治療相結(jié)合,以增強(qiáng)總體結(jié)果[4]。PRP在治療脫發(fā)、痤瘡、創(chuàng)傷性瘢痕、收縮性瘢痕、皺紋、妊娠紋、慢性潰瘍,以及增強(qiáng)激光表面重修和術(shù)后傷口愈合等均顯示了積極的效果[7-9]。
2 ?PRP的臨床應(yīng)用
Carter等[10]發(fā)現(xiàn)將PRP應(yīng)用在肢體的創(chuàng)面上,能夠使創(chuàng)面形成排列有序的膠原纖維,減少瘢痕形成;加速創(chuàng)面上皮細(xì)胞更新進(jìn)程,縮短創(chuàng)面愈合時(shí)間。Marx[11]在研究中認(rèn)為,傷口的過度收縮可以形成瘢痕,特別是頜面部美學(xué)區(qū)形成瘢痕是非常不理想的愈合,在皮膚外科學(xué)中應(yīng)用PRP可以使皮膚損害區(qū)產(chǎn)生快速及較少瘢痕的愈合。Cervelli [12]研究發(fā)現(xiàn),PRP聯(lián)合脂肪干細(xì)胞和激光治療創(chuàng)傷性瘢痕,有明顯改善作用;另一項(xiàng)研究也證明剝脫性激光聯(lián)合PRP和自體脂肪移植物對(duì)萎縮性和收縮性瘢痕的治療具有協(xié)同作用[13]。Asif等[14]比較了微針聯(lián)合自體PRP與蒸餾水治療萎縮性痤瘡瘢痕的療效,提出微針與PRP結(jié)合治療萎縮性痤瘡瘢痕更有效。對(duì)于痤瘡瘢痕,有報(bào)道自體富血小板血漿結(jié)合鉺激光治療面部痤瘡瘢痕具有明顯療效[15]。對(duì)于急性聲帶損傷,PRP通過誘導(dǎo)上皮生長(zhǎng)因子受體(epithelial growth factor receptor, EGFR)分泌加速受損大鼠聲帶的上皮形成,并且PRP可以有助于防止瘢痕形成[16]。PRP對(duì)重瞼成形術(shù)患者,結(jié)果顯示有效,例如更短的恢復(fù)時(shí)間,減少的副作用和/或并發(fā)癥,甚至改善了瘢痕的分辨率[17]。
3 ?PRP治療的作用機(jī)制
3.1 生長(zhǎng)因子作用:在PRP中,這些生長(zhǎng)因子的比例與體內(nèi)正常比例相符,使生長(zhǎng)因子之間有最佳的協(xié)同作用,這在一定程度上彌補(bǔ)了單一生長(zhǎng)因子刺激創(chuàng)面修復(fù)不佳的缺點(diǎn),應(yīng)用PRP促進(jìn)軟組織損傷愈合,實(shí)際上就是體內(nèi)正常愈合過程中的高度濃縮,使損傷的愈合過程大大加快,而又不會(huì)造成組織生長(zhǎng)的失控。
3.1.1 轉(zhuǎn)化生長(zhǎng)因子β(transfer growth factorβ,TGF-β):TGF-β在目前研究中,是與瘢痕形成關(guān)系最密切的細(xì)胞因子。TGF-β1在增生性瘢痕形成的發(fā)病機(jī)制中起重要作用[18]。增生性瘢痕成纖維細(xì)胞比正常皮膚成纖維細(xì)胞產(chǎn)生更多的TGF-β1蛋白和mRNA[18-19]。TGF-β1誘導(dǎo)成纖維細(xì)胞增殖和細(xì)胞外基質(zhì)(ECM)成分的合成,包括彈性蛋白,纖維連接蛋白和膠原蛋白[20]。在體外,TGF-β1減少膠原酶介導(dǎo)的傷口基質(zhì)降解,并通過誘導(dǎo)間接刺激基質(zhì)生長(zhǎng)PDGF。TGF-β1增強(qiáng)膠原凝膠的收縮,因此,也促進(jìn)傷口收縮[21]。
Seung[22]在其研究中,提出TGF-β1信號(hào)通路具有負(fù)反饋機(jī)制。Mori等先前報(bào)道過TGF-β負(fù)反饋機(jī)制的可能性。簡(jiǎn)而言之,當(dāng)加入超過閾值量的TGF-β1時(shí),激活TGF-β1負(fù)反饋機(jī)制。TGF-β1負(fù)反饋機(jī)制降低結(jié)締組織生長(zhǎng)因子(connective tissue growth factor,CTGF)基因轉(zhuǎn)錄和CTGF蛋白水平。Mori等[23]研究提示TGF-β可誘導(dǎo)皮膚纖維化,CTGF有助于維持纖維化狀態(tài)。Colwell等[24]報(bào)道,增生性瘢痕中CTGF合成的阻斷可能特異性地抵抗過多的膠原基質(zhì)沉積,確保更多的生理膠原沉積模式占優(yōu)勢(shì),從而減少瘢痕形成。CTGF基因轉(zhuǎn)錄和CTGF蛋白水平的降低可以改善增生性瘢痕。
3.1.2 血小板衍化生長(zhǎng)因子(platelet derived growth factor,PDGF):PDGF通過刺激成纖維細(xì)胞膠原合成以及其膠原酶活化,從而調(diào)節(jié)胞外基質(zhì)的更新。在創(chuàng)面的角質(zhì)形成細(xì)胞和成纖維細(xì)胞內(nèi)有PDGF mRNA的表達(dá),PDGF能夠增加創(chuàng)面炎癥細(xì)胞和成纖維細(xì)胞的浸潤(rùn),以及肉芽組織和膠原的形成。但是,如果作用過度,則會(huì)導(dǎo)致瘢痕形成。Minoru等在體外研究表明,因瘢痕疙瘩中成纖維細(xì)胞表面PDGFα受體數(shù)量增加,導(dǎo)致瘢痕疙瘩中的成纖維細(xì)胞對(duì)PDGF敏感性增高。
PDGF是在PRP凝膠中含量較高,其通過基質(zhì)干細(xì)胞、成纖維細(xì)胞趨化作用集中于創(chuàng)面,激活巨噬細(xì)胞和成纖維細(xì)胞并產(chǎn)生大量轉(zhuǎn)化生長(zhǎng)因子-α(TGF-α)、表皮生長(zhǎng)因子,縮短細(xì)胞分裂周期,促進(jìn)成纖維細(xì)胞分化增殖、激發(fā)血管的再生來發(fā)揮促進(jìn)傷口愈合的作用;PDGF還能夠通過誘導(dǎo)成纖維細(xì)胞分泌TGF-β,加速合成與分泌纖維連接蛋白和膠原,在創(chuàng)面修復(fù)后改建局部組織減少瘢痕的產(chǎn)生[25]。
3.1.3 表皮生長(zhǎng)因子(epithelial growth factor,EGF):皮膚損傷后,局部使用PRP凝膠后可釋放表皮生長(zhǎng)因子,其不僅加速表皮生長(zhǎng),而且有增加結(jié)締組織收縮和基質(zhì)形成的作用。Kikuchi等[26]體外正常成纖維細(xì)胞及瘢痕疙瘩對(duì)照研究發(fā)現(xiàn),TGF-β1、PDGF及γ-干擾素對(duì)上述兩種成纖維細(xì)胞的作用無明顯異常。Ryu YH等[27]研究表明,表皮生長(zhǎng)因子(EGF)樣重復(fù)和盤狀I(lǐng)樣結(jié)構(gòu)域3(EDIL3)為一種治療瘢痕疙瘩的潛在新治療工具。然而,組胺和EGF可顯著增加瘢痕疙瘩Ⅰ型膠原的形成,故表明組胺和EGF在瘢痕疙瘩的形成中可能具有某種作用,但目前尚無直接證據(jù)表明瘢痕與EGF形成有直接聯(lián)系。
3.1.4 成纖維細(xì)胞生長(zhǎng)因子(fibroblast growth factor,F(xiàn)GF):目前研究發(fā)現(xiàn)[28],在培養(yǎng)的毛細(xì)血管內(nèi)皮細(xì)胞中加入成纖維細(xì)胞生長(zhǎng)因子,不僅可以誘導(dǎo)毛細(xì)血管樣管腔形成、促進(jìn)細(xì)胞增殖,而且可趨化血管內(nèi)皮細(xì)胞遷移到膠原基質(zhì)中。Edwards與Buckley等[29-30]發(fā)現(xiàn),b FGF能刺激膠原酶的表達(dá)。Elaine等[31]發(fā)現(xiàn),在肝素存在時(shí),a FGF和b FGF在體外能夠抑制正常成纖維細(xì)胞和病理性瘢痕的膠原合成。這是由于FGF對(duì)αⅠ型前膠原基因表達(dá)的下行調(diào)節(jié)作用所致。這一結(jié)果表明,F(xiàn)GF通過減少病理性瘢痕成纖維細(xì)胞膠原蛋白的過量沉積,從而防止病理性瘢痕的產(chǎn)生。
3.1.5 腫瘤壞死因子α(tumor necrosis factor α,TNF-α):腫瘤壞死因子α對(duì)人皮膚成纖維細(xì)胞的增殖有顯著的促進(jìn)作用,并且促進(jìn)聚胺多糖和Ⅰ、Ⅲ 型膠原的合成。TNF-α通過直接抑制纖維粘連蛋白的產(chǎn)生以及增加蛋白聚糖酶和成纖維細(xì)胞內(nèi)膠原酶的活性,從而在皮膚纖維化過程中起著促進(jìn)分解代謝的作用。Greenwel等[32]的研究顯示,腫瘤壞死因子通過抑制CCAAT/增強(qiáng)劑結(jié)合蛋白抑制I型膠原的合成。因此,TNF-α在成纖維細(xì)胞中可能起著雙重作用,既是誘導(dǎo)劑又是抑制劑。Feng C等[33]發(fā)現(xiàn),在增生性瘢痕成纖維細(xì)胞中,TNF-α陽(yáng)性細(xì)胞百分率明顯低于正常皮膚細(xì)胞。這是由于成纖維細(xì)胞中TNF-α mRNA含量下降所致。在傷口愈合時(shí),TNF-α的缺乏可能會(huì)導(dǎo)致膠原的過量沉積。
3.1.6 骨形態(tài)發(fā)生蛋白(bone morphogenic proteins,BMPs):骨形態(tài)發(fā)生蛋白是TGF-β超家族的一個(gè)子集,是PRP中發(fā)現(xiàn)的一組生長(zhǎng)因子[34-37]。BMP-4,BMP-7和較低程度的BMP-2,在正確的條件下都是干細(xì)胞的有效脂肪形成誘導(dǎo)劑,甚至是正常脂肪細(xì)胞分化所必需的[38-40]。最近的體外研究表明,某些骨形態(tài)發(fā)生蛋白(BMP)可誘導(dǎo)瘢痕成肌纖維細(xì)胞去分化和重組成脂肪細(xì)胞。由于血小板在其顆粒內(nèi)含有BMP,因此富含血小板的血漿(PRP)可以充當(dāng)將BMP遞送至瘢痕形成或潛在瘢痕形成部位的載體。此外,當(dāng)PRP與脂肪移植組織混合時(shí),將協(xié)同的脂肪生長(zhǎng)因子(包括BMP)釋放,這有助于完成肌成纖維細(xì)胞的轉(zhuǎn)化和脂肪形成。
在傷口愈合的小鼠模型中,證明在BMP影響下,活躍生長(zhǎng)的毛囊誘導(dǎo)由肌成纖維細(xì)胞去分化成脂肪細(xì)胞引起的周圍脂肪形成[41]。其他研究表明,BMPs,即BMP-4和7,通過拮抗TGF-β原肌成纖維細(xì)胞信號(hào)傳導(dǎo)并誘導(dǎo)更大的PPARγ表達(dá)來阻止和逆轉(zhuǎn)肌成纖維細(xì)胞分化[42-43]。這些發(fā)現(xiàn)支持BMP通過誘導(dǎo)瘢痕組織中肌成纖維細(xì)胞轉(zhuǎn)化為脂肪組織來預(yù)防甚至減少瘢痕形成的可能作用。
3.1.7 血管內(nèi)皮生長(zhǎng)因子(vascular endothelial growth factor ,VEGF):血管內(nèi)皮生長(zhǎng)因子,在體內(nèi)體外都表現(xiàn)出特異性地促進(jìn)血管內(nèi)皮細(xì)胞的增殖并誘導(dǎo)血管生成作用,為細(xì)胞生長(zhǎng)和新生血管網(wǎng)的建立提供營(yíng)養(yǎng)。VEGF在瘢痕疙瘩和增生性瘢痕中的表達(dá)是近年研究的新課題。瘢痕疙瘩和增生性瘢痕的形成與角質(zhì)形成細(xì)胞中VEGF過度表達(dá)有密切關(guān)系,其機(jī)制可能是VEGF通過旁分泌機(jī)制作用于血管內(nèi)皮細(xì)胞,在真皮內(nèi)誘導(dǎo)生成大量新生血管,并能通過某種機(jī)制調(diào)節(jié)成纖維細(xì)胞的活性[44],影響膠原的代謝,這與Detmar等[45]的觀點(diǎn)一致。同時(shí)該組織的缺氧也可刺激細(xì)胞分泌VEGF[46]。
3.2 抗炎作用:傷口感染是導(dǎo)致傷口愈后形成瘢痕和組織再生延遲的主要原因之一[47]。PRP經(jīng)兩次離心而獲得,離心過程中,沉降系數(shù)相近的成分同時(shí)形成 ,所以離心形成的 PRP中含有大量的血小板及高濃度的白細(xì)胞。高濃度的白細(xì)胞能夠起到促進(jìn)傷口早期閉合及防止傷口感染的作用。最新研究證實(shí)[48],PRP中的巨噬細(xì)胞釋放IL-1特定的原始抑制因子,控制早期炎癥的發(fā)生。因此,PRP在創(chuàng)傷修復(fù)過程中能夠明顯降低炎癥的發(fā)生[49]。
研究表明[50],PRP對(duì)大腸桿菌、金黃色葡萄球菌(包括耐甲氧西林金黃色葡萄球菌、白色念珠菌和新型隱球菌)具有抗菌活性。有報(bào)道稱[51],發(fā)現(xiàn)富含血小板的凝膠對(duì)甲氧西林敏感金黃色葡萄球菌(MSSA)有很強(qiáng)的抗菌作用,該活性與慶大霉素和西林類抗生素相當(dāng)。痤瘡丙酸桿菌常引起痤瘡的發(fā)生,且痤瘡好發(fā)于青春期男女面部,在痤瘡愈后常會(huì)伴隨瘢痕形成。有藥敏實(shí)驗(yàn)顯示[52],PRP對(duì)于痤瘡丙酸桿菌有很強(qiáng)的抑制作用,同時(shí)其含有的大量生長(zhǎng)因子可以促進(jìn)創(chuàng)面愈合。另有研究指出[53],無論是否有白細(xì)胞,PRP制劑對(duì)大多數(shù)被檢測(cè)的菌株均顯示出抑菌特性。
3.3 透明質(zhì)酸:有研究報(bào)道[54],隨著PRP濃度的增加,細(xì)胞合成的透明質(zhì)酸與膠原的量有增加趨勢(shì)。當(dāng)PRP使用濃度接近50%時(shí),其透明質(zhì)酸與膠原的量增加幅度明顯。由于缺少定量分析,PRP是通過使細(xì)胞數(shù)量增加,或是細(xì)胞合成量增加進(jìn)而使透明質(zhì)酸與膠原的量升高,還是兩者共同作用,目前不得而知。胎兒無瘢痕愈合的主要特征是胎兒組織細(xì)胞外基質(zhì)(extracellular matrix,ECM)成分與成年組織不同,成年人傷口的透明質(zhì)酸和纖維蛋白僅短暫沉積,很快被膠原基質(zhì)替代;胎兒無瘢痕愈合ECM成分與正常皮膚一致,透明質(zhì)酸含量較高。
透明質(zhì)酸能將水分吸入透明質(zhì)酸基質(zhì)中,使其膨脹,從而產(chǎn)生體積和皮膚浮腫,并潤(rùn)滑組織。也有跡象表明[55],天然透明質(zhì)酸促進(jìn)細(xì)胞增殖和細(xì)胞外基質(zhì)合成,調(diào)節(jié)膠原纖維直徑。萎縮性瘢痕是炎癥過程后膠原和彈性纖維丟失的常見并發(fā)癥。因此筆者認(rèn)為,PRP可以增加透明質(zhì)酸與成纖維細(xì)胞膠原合成,用于重建丟失的膠原蛋白和彈性纖維,改善萎縮性瘢痕。
3.4 黑色素:瘢痕的發(fā)生與皮膚黑色素成正相關(guān),膚色越黑的人種,越容易發(fā)生病理性瘢痕。Burd等研究表明,TGF-β降低黑色素生成[56]。PRP中的TGF-β刺激基底膜蛋白的分泌,例如層粘連蛋白,IV型膠原和肌腱蛋白[57]??焖傩迯?fù)基底膜可能會(huì)減少色素沉著,如PRP聯(lián)合二氧化碳點(diǎn)陣激光煥膚(fractional carbon dioxide resurfacing , FxCR)后色素沉著減少。PRP可以減少短暫色素沉著的確切機(jī)制仍有待考證,但它也有助于在接受FxCR皮膚再生的患者中獲得最佳效果。
4 ?展望
富血小板血漿(PRP)是一種治療瘢痕的新方法,也可作為微針射頻、皮下注射、手術(shù)、皮膚微針等治療的佐劑。自體PRP在作為佐劑時(shí)不僅減少了需要的治療次數(shù),而且降低了治療的成本。然而,PRP激活和應(yīng)用尚未標(biāo)準(zhǔn)化,導(dǎo)致多種不同的治療方案具有不同的功效水平。PRP對(duì)于瘢痕的具體機(jī)制,尚未完全闡明,還有待進(jìn)一步研究。
[參考文獻(xiàn)]
[1]Mokos ZB,Anamaria J,Lovorka G,et al.Current therapeutic approach to hypertrophic scars[J]. Front Med,2017,4:83.
[2]Mirastschijski U,Jokuszies A,Vogt PM.Skin wound healing: repair biology, wound, and scar treatment [J].Plast Surg,2012,3:267-296.
[3]Wang R,Ghahary A,Shen Q,et al.Hypertrophic scar tissues and fibroblasts produce more transforming growth factor-beta1 mRNA and protein than normal skin and cells[J].Wound Repair Regen,2000,8(2):128-137.
[4]Lynch MD,Bashir S.Applications of platelet-rich plasma in dermatology: A critical appraisal of the literature[J].Dermatolog Treat,2016,27(3):285-289.
[5]Dhurat R,Sukesh M.Principles and Methods of Preparation of Platelet-Rich Plasma: A Review and Author's Perspective[J].Cutan Aesthet Surg,2014,7(4):189-197.
[6]Leo MS,Kumar AS,Kirit R,et al.Systematic review of the use of platelet-rich plasma in aesthetic dermatology[J].Cosmet Dermatol,2015,14(4):315-323.
[7]Nofal E,Helmy A,Nofal A,et al.Platelet-rich plasma versus CROSS technique with 100% trichloroacetic acid versus combined skin needling and platelet rich plasma in the treatment of atrophic acne scars: a comparative study[J].Dermatol Surg,2014,40(8):864-873.
[8]Nita AC,Orzan OA,F(xiàn)ilipescu M,et al.Fat graft,laser CO2 and platelet-rich-plasma synergy in scars treatment[J].Med Life,2013,6(4):430-433.
[9]Jones ME,McLane J,Adenegan R,et al.Advancing keloid treatment: a novel multimodal approach to ear keloids[J].Dermatol Surg,2017,43(9):1164-1169.
[10]Carter CA,Jolly DG,Sr CEW,et al.Platelet-rich plasma gel promotes differentiation and regeneration during equine wound healing[J].Exp Mol Pathol,2003,74(3):244-255.
[11]Marx R.Platelet-rich plasma:Growth factor enhancement for bone grafts[J].Oral Surg Oral Med Oral Pathol Oral Radiol Endod,1998,85(6):638-646.
[12]Cervelli V,Nicoli F,Spallone D,et al.Treatment of traumatic scars using fat grafts mixed with platelet-rich plasma, and resurfacing of skin with the 1540 nm nonablative laser[J].Clin Exp Dermatol, 2012,37(1):55-61.
[13]Nita A,Orzan O,F(xiàn)ilipescu M,et al.Fat graft,laser CO2 and platelet-rich-plasma synergy in scars treatment[J].J Med Life,2013,6(4):430-433.
[14]Asif M,Kanodia S,Singh K.Combined autologous platelet-rich plasma with microneedling versesmicroneedling with distilled water in the treatment of atrophic acne scars: a concurrent split-face study[J].Cosmet Dermatol,2016,15(4):434-443.
[15]Zhu JT,Xuan M,Zhang YN,et al.The efficacy of autologous platelet-rich plasma combined with erbium fractional laser therapy for facial acne scars or acne[J].Mol Med Rep,2013,8(1):233-237.
[16]Cobden SB,Oztrk K,Duman S,et al.Treatment of acute vocal fold injury with platelet-rich plasma [J].J Voice,2016,30(6):731-735.
[17]Parra F,Morales DE,Campos R,et al.Effect of platelet-rich plasma on patients after blepharoplasty surgery[J].Orbit,2017,37(6):1-6.
[18]Zhang Z,Garron TM,Li XJ,et al.Recombinant human decorin inhibits TGF-β-induced contraction of collagen lattice by hypertrophic scar fibroblasts[J].Burns,2009,35(4):527-537.
[19]Wang R,Ghahary A,Shen Q,et al.Hypertrophic scar tissues and fibroblasts produce more transforming growth factor mRNA and protein than normal skin and cells[J].Wound Repair ?Regen,2001,8(2):128-137.
[20]Rodland KD,Muldoon LL,Magun BE.Cellular mechanisms of TGF-beta action[J].J Invest Dermatol,1990,94(6 Suppl):33S.
[21]Tateshita T,Ono I,Kaneko F.Effects of collagen matrix containing transforming growth factor (TGF)-β1 on wound contraction[J].J Dermatol Sci,2001,27(2):104-113.
[22]Nam SM, Kim YB. The effects of platelet-rich plasma on hypertrophic scars fibroblasts[J].Int Wound J,2018,15(4):547-554.
[23]Mori T,Kawara S,Shinozaki M,et al.Role and interaction of connective tissue growth factor with transforming growth factor-beta in persistent fibrosis: A mouse fibrosis model[J].Cell Physiol, 1999,181(1):153-159.
[24]Colwell AS,Phan TT,Kong W,et al.Hypertrophic scar fibroblasts have increased connective tissue growth factor expression after transforming growth factor-beta stimulation[J].Plast Reconstr Surg 2005,116(5):1387-1390;discussion 1391-1392.
[25]Eppley BL,Pietrzak WS,Blanton M. Platelet-rich plasma: a review of biology and applications in plastic surgery[J].Plast Reconstr Surg,2006,118(6):147e-159e.
[26]Soma Y,Mizoguchi M,Yamane K,et al.Specific inhibition of human skin fibroblast chemotaxis to platelet-derived growth factor A-chain homodimer by transforming growth factor-β1[J].Arch Dermatol Res,2002,293(12):609-613.
[27]Ryu YH,Lee YJ, Ki-Joo Kim,et al.Epidermal growth factor (EGF)-like repeats and discoidin I-Like domains 3 (edil3): a potential new therapeutic tool for the treatment of keloid scars[J].Tissue Engineering and Regenerative Medicine,2017,14(3):267-277.
[28]Fukuda T, Kusuhara H, Nakagoshi T,et al.A basic fibroblast growth factor slow-release system combined to a biodegradable nerve conduit improves endothelial cell and Schwann cell proliferation: A preliminary study in a rat model[J].Microsurgery,2018,38(8):
899-906.
[29]Edwards AK,Heuvel MJ,Wessels JM,et al. Expression of angiogenic basic fibroblast growth factor, platelet derived growth factor, thrombospondin-1 and their receptors at the porcine maternal-fetal interface[J].Reprod Biol Endocrinol,2011,9(1):1-11.
[30]Broadley KN,Aquino AM,Woodward SC,et al. Monospecific antibodies implicate basic fibroblast growth factor in normal wound repair[J].Lab Invest,1989,61(5):571-575.
[31]Tan E M L,Rouda S,Greenbaum SS,et al.Acidic and basic fibroblast growth factors down-regulate collagen gene expression in keloid fibroblasts[J].Am J Pathol,1993,142(2):463-470.
[32]Greenwel P,Tanaka S,Penkov D,et al.Tumor necrosis factor alpha inhibits type I collagen synthesis through repressive CCAAT/enhancer-binding proteins[J].Mol Cell Biol,2000,20(3):912-918.
[33]Feng C,Luo J.Experimental study of biologic effects of tumour necrosis factor-alpha on scar-derived fibroblasts[J].Zhonghua Zheng Xing Wai Ke Za Zhi,2000,16(1):27-29.
[34]McElwee K,Hoffmann R.Growth factors in early hair follicle morphogenesis[J].Eur J Dermatol,2000,10(5):341-350.
[35]Kang Q, Song WX, Luo Q,et al.A comprehensive analysis of the dual roles of BMPs in regulating adipogenic and osteogenic differentiation of mesenchymal progenitor cells[J].Stem Cells Dev,2009,18(4):545-559.
[36]Cheng BH,Leng L,Wu MQ,et al.Expression analysis of bone morphogenetic protein 4 between fat and lean birds in adipose tissue and serum[J].Domest Anim Endocrinol,2016,56:13-19.
[37]Yadav PS,Khan MP,Prashar P,et al.Characterization of BMP signaling dependent osteogenesis using a BMP depletable avianized bone marrow stromal cell line (TVA-BMSC)[J].Bone,2016,91:39-52.
[38]Zhang Y,O'Keefe RJ,Jonason JH. BMP-TAK1 (MAP3K7) induces adipocyte differentiation through PPARgamma signaling[J].Cell Biochem,2017,118(1):204-210.
[39]Sottile V,Seuwen K.Bone morphogenetic protein-2 stimulates adipogenic differentiation of mesenchymal precursor cells in synergy with BRL 49653 (rosiglitazone)[J].FEBS Lett,2000,475(3):201-204.
[40]Huang H, Song TJ, Li X, et al BMP signaling pathway is required for commitment of C3H10T1/2 pluripotent stem cells to the adipocyte lineage[J].Proc Natl Acad Sci USA,2009,106(31):12670-12675.
[41]Plikus MV,Guerrero-Juarez CF,Ito M,et al.Regeneration of fat cells from myofibroblasts during wound healing[J].Science,2017,355(6326):748-752.
[42]Baraban E, Chavakis T, Hamilton BS, et al. Anti-inflammatory properties of bone morphogenetic protein 4 in human adipocytes[J].Int J Obes,2016,40(2):319-327.
[43]Midgley AC,Duggal L,Jenkins R,et al.Hyaluronan regulates bone morphogenetic protein-7-dependent prevention and reversal of myofibroblast phenotype[J].J Biol Chem,2015,290(18):11218-11234.
[44]Altavilla D,Saitta A,Cucinotta D,et al.Inhibition of lipid peroxidation restores impaired vascular endothelial growth factor expression and stimulates wound healing and angiogenesis in the genetically diabetic mouse[J].Diabetes,2001,50(3):667-674.
[45]Detmar, Michael.The role of VEGF and thrombospondins in skin angiogenesis[J].J Dermatol Sci,2000,24(Supplement 1):S78-S84.